1
|
Jara CP, Al-Gahmi AM, Lazenby A, Hollingsworth MA, Carlson MA. Selective epithelial expression of KRAS G12D in the Oncopig pancreas drives ductal proliferation and desmoplasia that is accompanied by an immune response. Sci Rep 2025; 15:4736. [PMID: 39922849 PMCID: PMC11807195 DOI: 10.1038/s41598-025-87178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a formidable challenge in oncology, characterized by a high mortality rate, largely attributable to delayed diagnosis and the intricacies of its tumor microenvironment. Innovations in modeling pancreatic epithelial transformation provide valuable insights into the pathogenesis and potential therapeutic strategies for PDAC. We employed a porcine (Oncopig) model, utilizing the Ad-K8-Cre adenoviral vector, to investigate the effects of variable doses (107 to 1010 pfu) on pancreatic epithelial cells. This vector, the expression from which being driven by a Keratin-8 promoter, will deliver Cre-recombinase specifically to epithelial cells. Intraductal pancreatic injections in transgenic Oncopigs (LSL-KRASG12D-TP53R167H) were performed with histologically based evaluation at 2 months post-injection. Specificity of the adenoviral vector was validated through Keratin-8 expression and Cre-recombinase activity. We confirmed that the Ad-K8-Cre adenoviral vector predominantly targets ductal epithelial cells lining both large and small pancreatic ducts, as evidenced by Keratin 8 and CAM5.2 staining. Higher doses resulted in significant tissue morphology changes, including atrophy, and enlarged lymph nodes. Microscopic examination revealed concentration-dependent proliferation of the ductal epithelium, cellular atypia, metaplasia, and stromal alterations. Transgene expression was confirmed with immunohistochemistry. Desmoplastic responses were evident through vimentin, α-SMA, and Masson's trichrome staining, indicating progressive collagen deposition, particularly at the higher vector doses. Our study suggests a distinct dose-response relationship of Ad-K8-Cre in inducing pancreatic epithelial proliferation and possible neoplasia in an Oncopig model. All doses of the vector induced epithelial proliferation; the higher doses also produced stromal alterations, metaplasia, and possible neoplastic transformation. These findings highlight the potential for site-specific activation of oncogenes in large animal models of epithelial tumors, with the ability to induce stromal alterations reminiscent of human PDAC.
Collapse
Affiliation(s)
- Carlos P Jara
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Audrey Lazenby
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
3
|
He A, Tian S, Kopper O, Horan DJ, Chen P, Bronson RT, Sheng R, Wu H, Sui L, Zhou K, Tao L, Wu Q, Huang Y, Shen Z, Han S, Chen X, Chen H, He X, Robling AG, Jin R, Clevers H, Xiang D, Li Z, Dong M. Targeted inhibition of Wnt signaling with a Clostridioides difficile toxin B fragment suppresses breast cancer tumor growth. PLoS Biol 2023; 21:e3002353. [PMID: 37943878 PMCID: PMC10635564 DOI: 10.1371/journal.pbio.3002353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Oded Kopper
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniel J. Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Barnhill, Indianapolis, United States of America
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Roderick T. Bronson
- Rodent Histopathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ren Sheng
- Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hao Wu
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Lufei Sui
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kun Zhou
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Liang Tao
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Wu
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yujing Huang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Zan Shen
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Sen Han
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xueqing Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Chen
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Xi He
- Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Barnhill, Indianapolis, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Song Y, Fioramonti M, Bouvencourt G, Dubois C, Blanpain C, Van Keymeulen A. Cell type and stage specific transcriptional, chromatin and cell-cell communication landscapes in the mammary gland. Heliyon 2023; 9:e17842. [PMID: 37456014 PMCID: PMC10339025 DOI: 10.1016/j.heliyon.2023.e17842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
The mammary gland (MG) is composed of three main epithelial lineages, the basal cells (BC), the estrogen receptor (ER) positive luminal cells (ER+ LC), and the ER negative LC (ER- LC). Defining the cell identity of each lineage and how it is modulated throughout the different stages of life is important to understand how these cells function and communicate throughout life. Here, we used transgenic mice specifically labelling ER+ LC combined to cell surface markers to isolate with high purity the 3 distinct cell lineages of the mammary gland and defined their expression profiles and chromatin landscapes by performing bulk RNAseq and ATACseq of these isolated populations in puberty, adulthood and mid-pregnancy. Our analysis identified conserved genes, ligands and transcription factor (TF) associated with a specific lineage throughout life as well as genes, ligands and TFs specific for a particular stage of the MG. In summary, our study identified genes and TF network associated with the identity, function and cell-cell communication of the different epithelial lineages of the MG at different stages of life.
Collapse
Affiliation(s)
- Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
5
|
Mondal P, Patel NS, Bailey K, Aravind S, Cartwright SB, Hollingsworth MA, Lazenby AJ, Carlson MA. Induction of pancreatic neoplasia in the KRAS/TP53 Oncopig. Dis Model Mech 2023; 16:286617. [PMID: 36579622 PMCID: PMC9884120 DOI: 10.1242/dmm.049699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
The 5-year survival of pancreatic cancer (PC) remains low. Murine models may not adequately mimic human PC and can be too small for medical device development. A large-animal PC model could address these issues. We induced and characterized pancreatic tumors in Oncopigs (transgenic swine containing KRASG12D and TP53R167H). The oncopigs underwent injection of adenovirus expressing Cre recombinase (AdCre) into one of the main pancreatic ducts. Resultant tumors were characterized by histology, cytokine expression, exome sequencing and transcriptome analysis. Ten of 14 Oncopigs (71%) had gross tumor within 3 weeks. At necropsy, all of these subjects had gastric outlet obstruction secondary to pancreatic tumor and phlegmon. Oncopigs with injections without Cre recombinase and wild-type pigs with AdCre injection did not show notable effect. Exome and transcriptome analysis of the porcine pancreatic tumors revealed similarity to the molecular signatures and pathways of human PC. Although further optimization and validation of this porcine PC model would be beneficial, it is anticipated that this model will be useful for focused research and development of diagnostic and therapeutic technologies for PC. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA,Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Neesha S. Patel
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA,Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Katie Bailey
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA,Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Shruthishree Aravind
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA,Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Sara B. Cartwright
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA,Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Audrey J. Lazenby
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mark A. Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA,Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA,Author for correspondence ()
| |
Collapse
|
6
|
Araki M, Noguchi S, Kubo Y, Yasuda A, Koh M, Otsuka H, Yokosuka M, Soeta S. Expression of receptor-type tumour endothelial marker 8 in carcinoma cells showing luminal progenitor-like phenotypes in canine mammary gland carcinomas. J Comp Pathol 2023; 200:35-45. [PMID: 36641985 DOI: 10.1016/j.jcpa.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 11/05/2022] [Indexed: 01/15/2023]
Abstract
This study aimed to investigate the expression of receptor-type tumour endothelial marker 8 (TEM8RT) in canine mammary gland carcinomas (CMGCs) using immunohistochemistry and to evaluate the association between carcinoma cell TEM8RT expression and tumour histological features, histological grades and the differentiation status of neoplastic epithelial cells. TEM8RT expression was more frequently detected in simple carcinomas (tubular and tubulopapillary) than in solid carcinomas, and it was significantly correlated with histological grade Ⅰ tumours and a low mitotic index. Additionally, TEM8RT+ carcinoma cells were more frequently found in CMGCs showing luminal progenitor-like phenotypes, such as Notch1+, CK19+/CK5+/CD49f+ and CK19+/CK5-/CD49f+. Double-labelling immunofluorescence detection techniques confirmed that most TEM8RT+ carcinoma cells expressed CD49f, Notch1 and CK19. However, TEM8RT immunoreactivity was not found in carcinoma cells expressing GATA3, which upregulates mature luminal cell differentiation. Furthermore, TEM8RT+ carcinoma cells were detected in a few CMGCs showing basal/stem cell-like phenotypes such as CK19-/CK5+/CD49f+ and CK19-/CK5+/CD49f-. These findings indicate that TEM8RT is expressed in luminal progenitor-like carcinoma cells in CMGCs. Since TEM8 enhances self-renewal in human mammary stem/progenitor cells, it also may be involved in maintenance of luminal progenitor-like carcinoma cells, resulting in prevention of their transition to basal/stem cell-like carcinoma cells and development of less malignant CMGCs. Therefore, TEM8RT may be useful for indicating prognostic outcomes and identifying the possible ontogeny of carcinoma cells in mammary gland tumours.
Collapse
Affiliation(s)
- Mami Araki
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Attached Facility, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Akiko Yasuda
- Veterinary Medical Teaching Hospital, Attached Facility, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Miki Koh
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Makoto Yokosuka
- Laboratory of Comparative and Behavioral Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan.
| |
Collapse
|
7
|
Langille E, Al-Zahrani KN, Ma Z, Liang M, Uuskula-Reimand L, Espin R, Teng K, Malik A, Bergholtz H, El Ghamrasni S, Afiuni-Zadeh S, Tsai R, Alvi S, Elia A, Lü Y, Oh RH, Kozma KJ, Trcka D, Narimatsu M, Liu JC, Nguyen T, Barutcu S, Loganathan SK, Bremner R, Bader GD, Egan SE, Cescon DW, Sørlie T, Wrana JL, Jackson HW, Wilson MD, Witkiewicz AK, Knudsen ES, Pujana MA, Wahl GM, Schramek D. Loss of Epigenetic Regulation Disrupts Lineage Integrity, Induces Aberrant Alveogenesis, and Promotes Breast Cancer. Cancer Discov 2022; 12:2930-2953. [PMID: 36108220 PMCID: PMC9812400 DOI: 10.1158/2159-8290.cd-21-0865] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 01/21/2023]
Abstract
Systematically investigating the scores of genes mutated in cancer and discerning disease drivers from inconsequential bystanders is a prerequisite for precision medicine but remains challenging. Here, we developed a somatic CRISPR/Cas9 mutagenesis screen to study 215 recurrent "long-tail" breast cancer genes, which revealed epigenetic regulation as a major tumor-suppressive mechanism. We report that components of the BAP1 and COMPASS-like complexes, including KMT2C/D, KDM6A, BAP1, and ASXL1/2 ("EpiDrivers"), cooperate with PIK3CAH1047R to transform mouse and human breast epithelial cells. Mechanistically, we find that activation of PIK3CAH1047R and concomitant EpiDriver loss triggered an alveolar-like lineage conversion of basal mammary epithelial cells and accelerated formation of luminal-like tumors, suggesting a basal origin for luminal tumors. EpiDriver mutations are found in ∼39% of human breast cancers, and ∼50% of ductal carcinoma in situ express casein, suggesting that lineage infidelity and alveogenic mimicry may significantly contribute to early steps of breast cancer etiology. SIGNIFICANCE Infrequently mutated genes comprise most of the mutational burden in breast tumors but are poorly understood. In vivo CRISPR screening identified functional tumor suppressors that converged on epigenetic regulation. Loss of epigenetic regulators accelerated tumorigenesis and revealed lineage infidelity and aberrant expression of alveogenesis genes as potential early events in tumorigenesis. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Ellen Langille
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Khalid N. Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Minggao Liang
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | | | - Roderic Espin
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Katie Teng
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Somaieh Afiuni-Zadeh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sana Alvi
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Andrew Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robin H. Oh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Katelyn J. Kozma
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Daniel Trcka
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Masahiro Narimatsu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeff C. Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Nguyen
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Seda Barutcu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sampath K. Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rod Bremner
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sean E. Egan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - David W. Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Jeffrey L. Wrana
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hartland W. Jackson
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | | | - Erik S. Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Kern JG, Tilston-Lunel AM, Federico A, Ning B, Mueller A, Peppler GB, Stampouloglou E, Cheng N, Johnson RL, Lenburg ME, Beane JE, Monti S, Varelas X. Inactivation of LATS1/2 drives luminal-basal plasticity to initiate basal-like mammary carcinomas. Nat Commun 2022; 13:7198. [PMID: 36443313 PMCID: PMC9705439 DOI: 10.1038/s41467-022-34864-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Basal-like breast cancers, an aggressive breast cancer subtype that has poor treatment options, are thought to arise from luminal mammary epithelial cells that undergo basal plasticity through poorly understood mechanisms. Using genetic mouse models and ex vivo primary organoid cultures, we show that conditional co-deletion of the LATS1 and LATS2 kinases, key effectors of Hippo pathway signaling, in mature mammary luminal epithelial cells promotes the development of Krt14 and Sox9-expressing basal-like carcinomas that metastasize over time. Genetic co-deletion experiments revealed that phenotypes resulting from the loss of LATS1/2 activity are dependent on the transcriptional regulators YAP/TAZ. Gene expression analyses of LATS1/2-deleted mammary epithelial cells notably revealed a transcriptional program that associates with human basal-like breast cancers. Our study demonstrates in vivo roles for the LATS1/2 kinases in mammary epithelial homeostasis and luminal-basal fate control and implicates signaling networks induced upon the loss of LATS1/2 activity in the development of basal-like breast cancer.
Collapse
Affiliation(s)
- Joseph G Kern
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew M Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Anthony Federico
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Boting Ning
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Amy Mueller
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Grace B Peppler
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Eleni Stampouloglou
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Nan Cheng
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Marc E Lenburg
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Jennifer E Beane
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Stefano Monti
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
9
|
Oncogenic Events Dictate the Types and Locations of Gynecological Malignancies Originating from Krt8+ Mesothelial and Müllerian-Derived Epithelial Cells. Cancers (Basel) 2022; 14:cancers14030841. [PMID: 35159108 PMCID: PMC8834519 DOI: 10.3390/cancers14030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Ovarian and uterine cancers are the most common gynecological malignancies in women. The early detection, prevention, and treatment of these gynecological cancers can benefit from a better understanding of how tumor-initiating cells in them are formed from their corresponding target cell populations in the female reproductive system. To study this, we utilized a genetic approach in mice to introduce driver mutations commonly found in these cancers to Keratin 8 positive (K8+) mesothelial and epithelial cells in the ovary, fallopian tube, and uterus. We found that p53-loss appears to preferentially affect K8+ epithelial cells, leading to the development of uterine and ovarian malignancies, whereas PTEN-loss may preferentially affect mesothelial cells, leading to the development of ovarian endometrioid malignancies or adenoma on the fallopian tube surface. Collectively, our data suggest that oncogenic driver mutations may dominantly determine the locations and types of gynecological malignancies developed from K8+ mesothelial and epithelial cells in the female reproductive system. Abstract Ovarian and uterine cancers are the most prevalent types of gynecological malignancies originating from mesothelial and/or Müllerian-derived epithelial cells. Recent genomic studies have identified common mutations in them that affect signaling pathways such as p53, PTEN/PI3K, RAS, and WNT pathways. However, how these mutations and their corresponding deregulated pathways affect gynecological cancer development from their cells-of-origin remains largely elusive. To address this, we performed the intrabursal injection of Cre-expressing adenovirus under the control of Krt8 promoter (Ad-K8-Cre) to mice carrying combinations of various conditional alleles for cancer genes. We found that Ad-K8-Cre specifically targeted mesothelial cells, including ovarian surface epithelial (OSE) cells (mainly the LGR5+ subset of OSE cells) and mesothelial cells lining the fallopian tube (FT) serosa; the injected Ad-K8-Cre also targeted Müllerian-derived epithelial cells, including FT epithelial cells and uterine endometrial epithelial cells. The loss of p53 may preferentially affect Müllerian-derived epithelial cells, leading to the development of uterine and ovarian malignancies, whereas PTEN-loss may preferentially affect mesothelial cells, leading to the development of ovarian endometrioid malignancies (upon KRAS-activation or APC-loss) or adenoma on the FT surface (upon DICER-loss). Overall, our data suggest that different Krt8+ mesothelial and epithelial cell types in the female reproductive system may have different sensitivities toward oncogenic mutations and, as a result, oncogenic events may dominantly determine the locations and types of the gynecological malignancies developed from them.
Collapse
|
10
|
Liu S, Zhang B, Rowan BG, Jazwinski SM, Abdel-Mageed AB, Steele C, Wang AR, Sartor O, Niu T, Zhang Q. A Novel Controlled PTEN-Knockout Mouse Model for Prostate Cancer Study. Front Mol Biosci 2021; 8:696537. [PMID: 34150854 PMCID: PMC8211560 DOI: 10.3389/fmolb.2021.696537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is associated with advanced age, but how age contributes to prostate carcinogenesis remains unknown. The prostate-specific Pten conditional knockout mouse model closely imitates human PCa initiation and progression. To better understand how age impacts PCa in an experimental model, we have generated a spatially and temporally controlled Pten-null PCa murine model at different ages (aged vs. non-aged) of adult mice. Here, we present a protocol to inject the Cre-expressing adenovirus with luciferin tag, intraductally, into the prostate anterior lobes of Pten-floxed mice; Pten-loss will be triggered post-Cre expression at different ages. In vivo imaging of luciferin signal following viral infection confirmed successful delivery of the virus and Cre activity. Immunohistochemical staining confirmed prostate epithelial-specific expression of Cre recombinase and the loss of Pten and activation of P-Akt, P-S6, and P-4E-BP1. The Cre-expression, Pten ablation, and activated PI3K/AKT/mTOR pathways were limited to the prostate epithelium. All mice developed prostatic epithelial hyperplasia within 4 weeks after Pten ablation and prostatic intraepithelial neoplasia (PIN) within 8 weeks post-Pten ablation. Some PINs had progressed to invasive adenocarcinoma at 8-16 weeks post-Pten ablation. Aged mice exhibited significantly accelerated PI3K/AKT/mTOR signaling and increased PCa onset and progression compared to young mice. The viral infection success rate is ∼80%. This model will be beneficial for investigations of cancer-related to aging.
Collapse
Affiliation(s)
- Sen Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bing Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Medical Laboratory of ShenZhen LuoHu People’s Hospital, Shenzhen, China
| | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - S. Michal Jazwinski
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
| | - Asim B. Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alun R. Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Oliver Sartor
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tianhua Niu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Qiuyang Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
11
|
Ying Z, Beronja S. Embryonic Barcoding of Equipotent Mammary Progenitors Functionally Identifies Breast Cancer Drivers. Cell Stem Cell 2020; 26:403-419.e4. [PMID: 32059806 PMCID: PMC7104873 DOI: 10.1016/j.stem.2020.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Identification of clinically relevant drivers of breast cancers in intact mammary epithelium is critical for understanding tumorigenesis yet has proven challenging. Here, we show that intra-amniotic lentiviral injection can efficiently transduce progenitor cells of the adult mammary gland and use that as a platform to functionally screen over 500 genetic lesions for functional roles in tumor formation. Targeted progenitors establish long-term clones of both luminal and myoepithelial lineages in adult animals, and via lineage tracing with stable barcodes, we found that each mouse mammary gland is generated from a defined number of ∼120 early progenitor cells that expand uniformly with equal growth potential. We then designed an in vivo screen to test genetic interactions in breast cancer and identified candidates that drove not only tumor formation but also molecular subtypes. Thus, this methodology enables rapid and high-throughput cancer driver discovery in mammary epithelium.
Collapse
Affiliation(s)
- Zhe Ying
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Slobodan Beronja
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Expression of Tumour Endothelial Marker 8 in Canine Mammary Gland Tumour Cells. J Comp Pathol 2019; 173:30-40. [PMID: 31812171 DOI: 10.1016/j.jcpa.2019.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the expression of tumour endothelial marker 8 (TEM8) in canine mammary gland tumours (MGTs) by immunohistochemistry and to evaluate the association between tumour cell TEM8 expression and tumour histological features, histological grades and expression of luminal and basal/myoepithelial cell markers. TEM8 expression was detected in >60 % of neoplastic epithelial cells in all simple adenomas (n = 25), simple carcinomas (n = 43) and invasive micropapillary carcinomas (n = 5) studied. Six of the 18 solid carcinomas studied showed TEM8 expression in >60% of carcinoma cells present in solid structures and in 12 of the 18 solid carcinomas, <30% of the luminal structure-forming carcinoma cells showed TEM8 expression. TEM8 expression in the neoplastic cells was not associated with histological malignancy in canine MGTs. TEM8+ tumour cells frequently showed the luminal-like phenotype cytokeratin (CK)19+/p63-/α-smooth muscle actin (SMA)-, while most TEM8- tumour cells exhibited the basal-like phenotype CK19-/p63+/αSMA-. These findings indicate that TEM8 may be involved in maintaining the characteristics of luminal cells in canine MGTs and that TEM8 would be useful in identifying the type of neoplastic epithelial cell in MGTs.
Collapse
|
13
|
LSD1 suppresses invasion, migration and metastasis of luminal breast cancer cells via activation of GATA3 and repression of TRIM37 expression. Oncogene 2019; 38:7017-7034. [PMID: 31409898 PMCID: PMC6823153 DOI: 10.1038/s41388-019-0923-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/28/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
Abstract
LSD1 (KDM1A) is a histone demethylase that plays both oncogenic and tumor suppressor roles in breast cancer. However, the exact contexts under which it plays these opposite functions remain largely elusive. By characterizing its role in luminal breast epithelial cells, here we show that inhibition of LSD1 by both genetic and pharmacological approaches increases their invasion and migration, whereas its inhibition by genetic approach, but not by pharmacological approach, impairs their proliferation/survival. Induced loss of LSD1 in luminal cells in a mouse model of luminal breast cancer, MMTV-PyMT, leads to a profound increase in lung metastasis. Mechanistically, LSD1 interacts with GATA3, a key luminal-specific transcription factor (TF), and their common target genes are highly related to breast cancer. LSD1 positively regulates GATA3 expression. It also represses expression of TRIM37, a breast epithelial oncogene encoding a histone H2A ubiquitin ligase, and ELF5, a key TF gene for luminal progenitors and alveolar luminal cells. LSD1-loss also leads to reduced expression of several cell-cell adhesion genes (e.g., CDH1, VCL, CTNNA1), possibly via TRIM37-upregulation and subsequently TRIM37-mediated repression. Collectively, our data suggest LSD1 largely plays a tumor suppressor role in luminal breast cancer and the oncogenic program associated with LSD1-inhibition may be suppressed via TRIM37-inhibition.
Collapse
|
14
|
Wang H, Xiang D, Liu B, He A, Randle HJ, Zhang KX, Dongre A, Sachs N, Clark AP, Tao L, Chen Q, Botchkarev VV, Xie Y, Dai N, Clevers H, Li Z, Livingston DM. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell 2019; 178:135-151.e19. [PMID: 31251913 PMCID: PMC6716369 DOI: 10.1016/j.cell.2019.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
Loss of BRCA1 p220 function often results in basal-like breast cancer (BLBC), but the underlying disease mechanism is largely opaque. In mammary epithelial cells (MECs), BRCA1 interacts with multiple proteins, including NUMB and HES1, to form complexes that participate in interstrand crosslink (ICL) DNA repair and MEC differentiation control. Unrepaired ICL damage results in aberrant transdifferentiation to a mesenchymal state of cultured, human basal-like MECs and to a basal/mesenchymal state in primary mouse luminal MECs. Loss of BRCA1, NUMB, or HES1 or chemically induced ICL damage in primary murine luminal MECs results in persistent DNA damage that triggers luminal to basal/mesenchymal transdifferentiation. In vivo single-cell analysis revealed a time-dependent evolution from normal luminal MECs to luminal progenitor-like tumor cells with basal/mesenchymal transdifferentiation during murine BRCA1 BLBC development. Growing DNA damage accompanied this malignant transformation.
Collapse
Affiliation(s)
- Hua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ben Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aina He
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helena J Randle
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Norman Sachs
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qing Chen
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir V Botchkarev
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ning Dai
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, New Brunswick, NJ 08901, USA
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Xiang D, Tao L, Li Z. Modeling Breast Cancer via an Intraductal Injection of Cre-expressing Adenovirus into the Mouse Mammary Gland. J Vis Exp 2019. [PMID: 31233030 DOI: 10.3791/59502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Breast cancer is a heterogeneous disease, possibly due to complex interactions between different cells of origins and oncogenic events. Mouse models are instrumental in gaining insights into these complex processes. Although many mouse models have been developed to study contributions of various oncogenic events and cells of origin to breast tumorigenesis, these models are often not cell-type or organ specific or cannot induce the initiation of mammary tumorigenesis in a temporally controlled manner. Here we describe a protocol to generate a new type of breast cancer mouse models based on the intraductal injection of Cre-expressing adenovirus (Ad-Cre) into mouse mammary glands (MGs). Due to the direct injection of Ad-Cre into mammary ducts, this approach is MG specific, without any unwanted cancer induction in other organs. The intraductal injection procedure can be performed in mice at different stages of their MG development (thus, it permits temporal control of cancer induction, starting from ~3-4 weeks of age). The cell-type specificity can be achieved by using different cell-type-specific promoters to drive Cre expression in the adenoviral vector. We show that luminal and basal mammary epithelial cells (MECs) can be tightly targeted for Cre/loxP-based genetic manipulation via an intraductal injection of Ad-Cre under the control of the Keratin 8 or Keratin 5 promoter, respectively. By incorporating a conditional Cre reporter (e.g., Cre/loxP-inducible Rosa26-YFP reporter), we show that MECs targeted by Ad-Cre, and tumor cells derived from them, can be traced by following the reporter-positive cells after intraductal injection.
Collapse
Affiliation(s)
- Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School;
| |
Collapse
|
16
|
Annunziato S, de Ruiter JR, Henneman L, Brambillasca CS, Lutz C, Vaillant F, Ferrante F, Drenth AP, van der Burg E, Siteur B, van Gerwen B, de Bruijn R, van Miltenburg MH, Huijbers IJ, van de Ven M, Visvader JE, Lindeman GJ, Wessels LFA, Jonkers J. Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer. Nat Commun 2019; 10:397. [PMID: 30674894 PMCID: PMC6344487 DOI: 10.1038/s41467-019-08301-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. Validation of these candidates requires novel approaches for high-throughput in vivo perturbation of gene function. Here we develop genetically engineered mouse models (GEMMs) of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers by either retargeting of GEMM-derived embryonic stem cells, lentivirus-mediated somatic overexpression or in situ CRISPR/Cas9-mediated gene disruption. We use these approaches to validate Myc, Met, Pten and Rb1 as bona fide drivers in BRCA1-associated mammary tumorigenesis. Iterative mouse modeling and comparative oncogenomics analysis show that MYC-overexpression strongly reshapes the CNA landscape of BRCA1-deficient mammary tumors and identify MCL1 as a collaborating driver in these tumors. Moreover, MCL1 inhibition potentiates the in vivo efficacy of PARP inhibition (PARPi), underscoring the therapeutic potential of this combination for treatment of BRCA1-mutated cancer patients with poor response to PARPi monotherapy.
Collapse
Affiliation(s)
- Stefano Annunziato
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Chiara S Brambillasca
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - François Vaillant
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Federica Ferrante
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Bjørn Siteur
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Bas van Gerwen
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Jane E Visvader
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Geoffrey J Lindeman
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medicine, University of Medicine, Parkville, VIC, 3010, Australia.,Parkville Familial Cancer Centre, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, 3050, Australia
| | - Lodewyk F A Wessels
- Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands. .,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands. .,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands. .,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands. .,Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Stem Cells and Cellular Origins of Mammary Gland: Updates in Rationale, Controversies, and Cancer Relevance. Stem Cells Int 2019; 2019:4247168. [PMID: 30728840 PMCID: PMC6341275 DOI: 10.1155/2019/4247168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 01/31/2023] Open
Abstract
Evidences have supported the pivotal roles of stem cells in mammary gland development. Many molecular markers have been identified to characterize mammary stem cells. Cellular fate mapping of mammary stem cells by lineage tracing has put unprecedented insights into the mammary stem cell biology, which identified two subtypes of mammary stem cells, including unipotent and multipotent, which specifically differentiate to luminal or basal cells. The emerging single-cell sequencing profiles have given a more comprehensive understanding on the cellular hierarchy and lineage signatures of mammary epithelium. Besides, the stem cell niche worked as an essential regulator in sustaining the functions of mammary stem cells. In this review, we provide an overview of the characteristics of mammary stem cells. The cellular origins of mammary gland are discussed to understand the stem cell heterogeneity and their diverse differentiations. Importantly, current studies suggested that the breast cancer stem cells may originate from the mammary stem cells after specific mutations, indicating their close relationships. Here, we also outline the recent advances and controversies in the cancer relevance of mammary stem cells.
Collapse
|
18
|
Lloyd-Lewis B, Davis FM, Harris OB, Hitchcock JR, Watson CJ. Neutral lineage tracing of proliferative embryonic and adult mammary stem/progenitor cells. Development 2018; 145:145/14/dev164079. [PMID: 30045917 PMCID: PMC6078330 DOI: 10.1242/dev.164079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Mammary gland development occurs over multiple phases, beginning in the mammalian embryo and continuing throughout reproductive life. The remarkable morphogenetic capacity of the mammary gland at each stage of development is attributed to the activities of distinct populations of mammary stem cells (MaSCs) and progenitor cells. However, the relationship between embryonic and adult MaSCs, and their fate during different waves of mammary gland morphogenesis, remains unclear. By employing a neutral, low-density genetic labelling strategy, we characterised the contribution of proliferative stem/progenitor cells to embryonic, pubertal and reproductive mammary gland development. Our findings further support a model of lineage restriction of MaSCs in the postnatal mammary gland, and highlight extensive redundancy and heterogeneity within the adult stem/progenitor cell pool. Furthermore, our data suggest extensive multiplicity in their foetal precursors that give rise to the primordial mammary epithelium before birth. In addition, using a single-cell labelling approach, we revealed the extraordinary capacity of a single embryonic MaSC to contribute to postnatal ductal development. Together, these findings provide tantalising new insights into the disparate and stage-specific contribution of distinct stem/progenitor cells to mammary gland development. Summary: Neutral, low-density lineage tracing of proliferative mammary stem and progenitor cells during embryonic, pubertal and reproductive mammary gland development reveal the disparate and stage-specific contribution of distinct stem/progenitor cells.
Collapse
Affiliation(s)
| | - Felicity M Davis
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Olivia B Harris
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | | | - Christine J Watson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK .,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
19
|
Early lineage segregation of multipotent embryonic mammary gland progenitors. Nat Cell Biol 2018; 20:666-676. [PMID: 29784918 PMCID: PMC5985933 DOI: 10.1038/s41556-018-0095-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The mammary gland (MG) is composed of basal cells (BCs) and luminal cells (LCs). While it is generally believed that MG arises from embryonic multipotent progenitors (EMPs), it remains unclear when lineage restriction occurs and what are the mechanisms responsible for the switch from multipotency to unipotency during MG morphogenesis. Here, we performed multicolor lineage tracing and assessed the fate of single progenitors and demonstrated the existence of a developmental switch from multipotency to unipotency during embryonic MG development. Molecular profiling and single cell RNA-seq revealed that EMPs express a unique hybrid basal and luminal signature and the factors associated with the different lineages. Sustained p63 expression in EMPs promotes unipotent BC fate and was sufficient to reprogram adult LCs into BCs by promoting an intermediate hybrid multipotent like state. Altogether, this study identifies the timing and the mechanisms mediating the early lineage segregation of multipotent progenitors during MG development.
Collapse
|
20
|
Van Keymeulen A, Fioramonti M, Centonze A, Bouvencourt G, Achouri Y, Blanpain C. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage. Cell Rep 2018; 20:1525-1532. [PMID: 28813665 PMCID: PMC5575359 DOI: 10.1016/j.celrep.2017.07.066] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 01/07/2023] Open
Abstract
The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER)+ and ER− cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER+ lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER+ LCs and study their fate and long-term maintenance. Our results show that ER+ cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER+ lineage during puberty and their maintenance during adult life. ER+ stem cells mediate expansion and maintenance of the ER+ lineage ER+ stem cells expand and differentiate into ER+ cells following transplantation ER+ stem cells survive involution and repopulate the ER+ lineage
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.
| | - Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Alessia Centonze
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Younes Achouri
- de Duve Institute, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels 1070, Belgium.
| |
Collapse
|
21
|
Annunziato S, Kas SM, Nethe M, Yücel H, Del Bravo J, Pritchard C, Bin Ali R, van Gerwen B, Siteur B, Drenth AP, Schut E, van de Ven M, Boelens MC, Klarenbeek S, Huijbers IJ, van Miltenburg MH, Jonkers J. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 2017; 30:1470-80. [PMID: 27340177 PMCID: PMC4926868 DOI: 10.1101/gad.279190.116] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/27/2016] [Indexed: 11/25/2022]
Abstract
Annunziato et al. describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC). Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting sgRNA in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell–cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.
Collapse
Affiliation(s)
- Stefano Annunziato
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sjors M Kas
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Micha Nethe
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hatice Yücel
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jessica Del Bravo
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bas van Gerwen
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bjørn Siteur
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Mirjam C Boelens
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
22
|
Abstract
Cellular heterogeneity in cancer represents a significant challenge. In order to develop effective and lasting therapies, it is essential to understand the source of this heterogeneity, and its role in tumor progression and therapy resistance. Here, we consider not only genetic and epigenetic mechanisms, but also inflammation and cell state reprogramming in creating tumor heterogeneity. We discuss similarities between normal mammary epithelial developmental states and various breast cancer molecular sub-types, and the cells that are thought to propagate them. We emphasize that while stem cell phenotypes and mesenchymal character have often been conflated, existing data suggest that the combination of intrinsic genetic and epigenetic changes, and microenvironmental influences generate multiple types of tumor propagating cells distinguishable by their positions along a continuum of epithelial to mesenchymal, stem to differentiated and embryonic to mature cell states. Consequently, in addition to the prospect of stem cell-directed tumor therapies, there is a need to understand interrelationships between stem cell, epithelial–mesenchymal, and tumor-associated reprogramming events to develop new therapies that mitigate cell state plasticity and minimize the evolution of tumor heterogeneity.
Collapse
|
23
|
Tao L, Xiang D, Xie Y, Bronson RT, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun 2017; 8:14431. [PMID: 28194015 PMCID: PMC5316831 DOI: 10.1038/ncomms14431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 12/28/2016] [Indexed: 12/19/2022] Open
Abstract
Most breast cancers may have a luminal origin. TP53 is one of the most frequently mutated genes in breast cancers. However, how p53 deficiency contributes to breast tumorigenesis from luminal cells remains elusive. Here we report that induced p53 loss in Krt8+ mammary luminal cells leads to their clonal expansion without directly affecting their luminal identity. All induced mice develop mammary tumours with 9qA1 (Yap1) and/or 6qA2 (Met) amplification(s). These tumours exhibit a mammary stem cell (MaSC)-like expression signature and most closely resemble claudin-low breast cancer. Thus, although p53 does not directly control the luminal fate, its loss facilitates acquisition of MaSC-like properties by luminal cells and predisposes them to development of mammary tumours with loss of luminal identity. Our data also suggest that claudin-low breast cancer can develop from luminal cells, possibly via a basal-like intermediate state, although further study using a different luminal promoter is needed to fully support this conclusion.
Collapse
Affiliation(s)
- Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Roderick T Bronson
- Rodent Histopathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Annunziato S, Barazas M, Rottenberg S, Jonkers J. Genetic Dissection of Cancer Development, Therapy Response, and Resistance in Mouse Models of Breast Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:141-150. [PMID: 27815543 DOI: 10.1101/sqb.2016.81.030924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cancer genomics revolution has rapidly expanded the inventory of somatic mutations characterizing human malignancies, highlighting a previously underappreciated extent of molecular variability between and within patients. Also in breast cancer, the most commonly diagnosed malignancy in women, this heterogeneity complicates the understanding of the stepwise sequence of pathogenic events and the design of effective and long-lasting target therapies. To disentangle this complexity and pinpoint which molecular perturbations are crucial to hijack the cellular machinery and lead to tumorigenesis and drug resistance, functional studies are needed in model systems that faithfully and comprehensively recapitulate all the salient aspects of their cognate human counterparts. Mouse models of breast cancer have been instrumental for the study of tumor initiation and drug response but also involve cost and time limitations that represent serious bottlenecks in translational research. To keep pace with the overwhelming amount of hypotheses that warrant in vivo testing, continuous refinement of current breast cancer models and implementation of new technologies is crucial. In this review, we summarize the current state of the art in modeling human breast cancer in mice, and we put forward our vision for future developments.
Collapse
Affiliation(s)
- Stefano Annunziato
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marco Barazas
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
25
|
Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev 2016; 30:1261-77. [PMID: 27284162 PMCID: PMC4911926 DOI: 10.1101/gad.280057.116] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
Abstract
Here, Wuidart et al. present a rigorous new method for assessing the lineage relationship and stem cell fate in different organs and tissues. The authors developed two novel methods for determining lineage relationships: the first one based on statistical analysis of multicolor lineage tracing, and the second one based on lineage tracing at saturation to assess the fate of all stem cells within a given lineage and the “flux” of cells between different lineages. Lineage tracing has become the method of choice to study the fate and dynamics of stem cells (SCs) during development, homeostasis, and regeneration. However, transgenic and knock-in Cre drivers used to perform lineage tracing experiments are often dynamically, temporally, and heterogeneously expressed, leading to the initial labeling of different cell types and thereby complicating their interpretation. Here, we developed two methods: the first one based on statistical analysis of multicolor lineage tracing, allowing the definition of multipotency potential to be achieved with high confidence, and the second one based on lineage tracing at saturation to assess the fate of all SCs within a given lineage and the “flux” of cells between different lineages. Our analysis clearly shows that, whereas the prostate develops from multipotent SCs, only unipotent SCs mediate mammary gland (MG) development and adult tissue remodeling. These methods offer a rigorous framework to assess the lineage relationship and SC fate in different organs and tissues.
Collapse
|
26
|
Abstract
Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in quiescent or actively dividing states. 'Professional' stem cells may also co-exist with facultative stem cells, which are more specialized daughter cells that revert to a stem cell state under specific tissue damage conditions. Here, we discuss stem cell strategies as seen in three solid mammalian tissues: the intestine, mammary gland and skeletal muscle.
Collapse
|
27
|
Abstract
Tumor heterogeneity impinges on prognosis, response to therapy, and metastasis. As such, heterogeneity is one of the most important and clinically relevant areas of cancer research. Breast cancer displays frequent intra- and inter-tumor heterogeneity as the result of genetic and non-genetic alterations that often enhance the vigor of cancer cells. In-depth characterization and understanding of the origin of this phenotypic and molecular diversity is paramount to improving diagnosis, the definition of prognostic and predictive biomarkers, and the design of therapeutic strategies. Here, we summarize current knowledge about sources of breast cancer heterogeneity, its consequences, and possible counter-measures. We discuss especially the impact on tumor heterogeneity of the differentiation state of the cell-of-origin, cancer cell plasticity, the microenvironment, and genetic evolution. Factors that enhance cancer cell vigor are clearly detrimental for patients.
Collapse
Affiliation(s)
- Shany Koren
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | |
Collapse
|
28
|
Shore AN, Chang CH, Kwon OJ, Weston MC, Zhang M, Xin L, Rosen JM. PTEN is required to maintain luminal epithelial homeostasis and integrity in the adult mammary gland. Dev Biol 2015; 409:202-217. [PMID: 26526198 DOI: 10.1016/j.ydbio.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
Abstract
In the mammary gland, PTEN loss in luminal and basal epithelial cells results in differentiation defects and enhanced proliferation, leading to the formation of tumors with basal epithelial characteristics. In breast cancer, PTEN loss is associated with a hormone receptor-negative, basal-like subtype that is thought to originate in a luminal epithelial cell. Here, we show that luminal-specific PTEN loss results in distinct effects on epithelial homeostasis and mammary tumor formation. Luminal PTEN loss increased proliferation of hormone receptor-negative cells, thereby decreasing the percentage of hormone receptor-positive cells. Moreover, luminal PTEN loss led to misoriented cell divisions and mislocalization of cells to the intraluminal space of mammary ducts. Despite their elevated levels of activated AKT, Pten-null intraluminal cells showed increased levels of apoptosis. One year after Pten deletion, the ducts had cleared and no palpable mammary tumors were detected. These data establish PTEN as a critical regulator of luminal epithelial homeostasis and integrity in the adult mammary gland, and further show that luminal PTEN loss alone is not sufficient to promote the progression of mammary tumorigenesis.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Chi-Hsuan Chang
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oh-Joon Kwon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Matthew C Weston
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mei Zhang
- Department of Developmental Biology, University of Pittsburg, Pittsburg, PA 15213, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
29
|
PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature 2015; 525:114-8. [PMID: 26266975 DOI: 10.1038/nature14669] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 06/16/2015] [Indexed: 12/14/2022]
Abstract
The adult mouse mammary epithelium contains self-sustained cell lineages that form the inner luminal and outer basal cell layers, with stem and progenitor cells contributing to its proliferative and regenerative potential. A key issue in breast cancer biology is the effect of genomic lesions in specific mammary cell lineages on tumour heterogeneity and progression. The impact of transforming events on fate conversion in cancer cells of origin and thus their contribution to tumour heterogeneity remains largely elusive. Using in situ genetic lineage tracing and limiting dilution transplantation, we have unravelled the potential of PIK3CA(H1047R), one of the most frequent mutations occurring in human breast cancer, to induce multipotency during tumorigenesis in the mammary gland. Here we show that expression of PIK3CA(H1047R) in lineage-committed basal Lgr5-positive and luminal keratin-8-positive cells of the adult mouse mammary gland evokes cell dedifferentiation into a multipotent stem-like state, suggesting this to be a mechanism involved in the formation of heterogeneous, multi-lineage mammary tumours. Moreover, we show that the tumour cell of origin influences the frequency of malignant mammary tumours. Our results define a key effect of PIK3CA(H1047R) on mammary cell fate in the pre-neoplastic mammary gland and show that the cell of origin of PIK3CA(H1047R) tumours dictates their malignancy, thus revealing a mechanism underlying tumour heterogeneity and aggressiveness.
Collapse
|
30
|
Tao L, van Bragt MPA, Li Z. A Long-Lived Luminal Subpopulation Enriched with Alveolar Progenitors Serves as Cellular Origin of Heterogeneous Mammary Tumors. Stem Cell Reports 2015; 5:60-74. [PMID: 26120057 PMCID: PMC4618443 DOI: 10.1016/j.stemcr.2015.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 12/26/2022] Open
Abstract
It has been shown that the mammary luminal lineage could be maintained by luminal stem cells or long-lived progenitors, but their identity and role in breast cancer remain largely elusive. By lineage analysis using Wap-Cre mice, we found that, in nulliparous females, mammary epithelial cells (MECs) genetically marked by Wap-Cre represented a subpopulation of CD61+ luminal progenitors independent of ovarian hormones for their maintenance. Using a pulse-chase lineage-tracing approach based on Wap-Cre adenovirus (Ad-Wap-Cre), we found that Ad-Wap-Cre-marked nulliparous MECs were enriched with CD61+ alveolar progenitors (APs) that gave rise to CD61- alveolar luminal cells during pregnancy/lactation and could maintain themselves long term. When transformed by different oncogenes, they could serve as cells of origin of heterogeneous mammary tumors. Thus, our study revealed a type of long-lived AP within the luminal lineage that may serve as the cellular origin of multiple breast cancer subtypes.
Collapse
Affiliation(s)
- Luwei Tao
- Division of Genetics, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Maaike P A van Bragt
- Division of Genetics, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Arendt LM, Kuperwasser C. Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia 2015; 20:9-25. [PMID: 26188694 PMCID: PMC4596764 DOI: 10.1007/s10911-015-9337-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
The mammary gland undergoes dramatic post-natal growth beginning at puberty, followed by full development occurring during pregnancy and lactation. Following lactation, the alveoli undergo apoptosis, and the mammary gland reverses back to resemble the nonparous gland. This process of growth and regression occurs for multiple pregnancies, suggesting the presence of a hierarchy of stem and progenitor cells that are able to regenerate specialized populations of mammary epithelial cells. Expansion of epithelial cell populations in the mammary gland is regulated by ovarian steroids, in particular estrogen acting through its receptor estrogen receptor alpha (ERα) and progesterone signaling through progesterone receptor (PR). A diverse number of stem and progenitor cells have been identified based on expression of cell surface markers and functional assays. Here we review the current understanding of how estrogen and progesterone act together and separately to regulate stem and progenitor cells within the human and mouse mammary tissues. Better understanding of the hierarchal organization of epithelial cell populations in the mammary gland and how the hormonal milieu affects its regulation may provide important insights into the origins of different subtypes of breast cancer.
Collapse
Affiliation(s)
- Lisa M Arendt
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
- Raymond and Beverly Sackler Laboratory for the Convergence of Biomedical, Physical and Engineering Sciences, Boston, MA, 02111, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI, 53706, USA
| | - Charlotte Kuperwasser
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA.
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
- Raymond and Beverly Sackler Laboratory for the Convergence of Biomedical, Physical and Engineering Sciences, Boston, MA, 02111, USA.
- Developmental, Molecular, and Chemical Biology Department, Tufts University School of Medicine, 800 Washington St, Box 5609, Boston, MA, 02111, USA.
| |
Collapse
|
32
|
Sale S, Pavelic K. Mammary lineage tracing: the coming of age. Cell Mol Life Sci 2015; 72:1577-83. [PMID: 25563489 PMCID: PMC11113887 DOI: 10.1007/s00018-014-1817-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Identification and characterization of the normal epithelial lineages in the mammary gland is a fundamental step in understanding both development and cellular origin of cancer. In contrast to other tissues where lineage tracing has been widely accepted as a method of choice for dissecting the stem cell hierarchy, mammary gland has long remained a challenge due to its unique developmental and topological features. Recent advances in high-resolution single-cell imaging, combined with the use of inducible Cre-recombinase and in situ cell ablation, have provided unprecedented insight into mammary epithelial cell composition and function. Here, we briefly summarize and compare different mammary gland lineage tracing strategies, examine associated caveats and discuss future challenges and opportunities.
Collapse
Affiliation(s)
- Sanja Sale
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia,
| | | |
Collapse
|
33
|
The origin of breast tumor heterogeneity. Oncogene 2015; 34:5309-16. [PMID: 25703331 DOI: 10.1038/onc.2014.475] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
How breast diversity is generated is a fascinating and fundamental question with important clinical implications. It is clear that the diversity of phenotypes displayed by breast cancer cells reflects the array of cell types present in the disease-free breast epithelium, including luminal, basal and stem cells. Therefore, it is hypothesized that the molecular regulators governing normal development of the breast epithelium may double as engines of breast tumor diversity. In the past few years, a deepened understanding of the mammary epithelial hierarchy has prompted the search for the cellular precursors of breast tumors. At the same time, the use of novel experimental strategies including the new technology of massively parallel sequencing has provided insight into the origin and evolution of breast tumors. Here, we review the current understanding of the basis of the intrinsic subtypes and the sources of inter-tumor heterogeneity.
Collapse
|
34
|
van Bragt MPA, Hu X, Xie Y, Li Z. RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. eLife 2014; 3:e03881. [PMID: 25415051 PMCID: PMC4381933 DOI: 10.7554/elife.03881] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022] Open
Abstract
RUNX1 encodes a RUNX family transcription factor (TF) and was
recently identified as a novel mutated gene in human luminal breast cancers. We found
that Runx1 is expressed in all subpopulations of murine mammary
epithelial cells (MECs) except the secretory alveolar luminal cells. Conditional
knockout of Runx1 in MECs by MMTV-Cre led to a
decrease in luminal MECs, largely due to a profound reduction in the estrogen
receptor (ER)-positive mature luminal subpopulation, a phenotype that could be
rescued by the loss of either Trp53 or Rb1.
Mechanistically RUNX1 represses Elf5, a master regulatory TF gene
for alveolar cells, and regulates mature luminal TF/co-factor genes (e.g.,
Foxa1 and Cited1) involved in the ER program.
Collectively, our data identified a key regulator of the ER+ luminal
lineage whose disruption may contribute to the development of ER+
luminal breast cancer when under the background of either TP53 or
RB1 loss. DOI:http://dx.doi.org/10.7554/eLife.03881.001 Stem cells can develop into the many types of specialized cell found in the body.
Several proteins regulate these transformations by switching on and off the
expression of genes that are specific to different cell types. Disrupting these
proteins can cause the development of cells to go awry and can lead to cancer. A protein called RUNX1 controls gene expression to direct the development of blood
cells. Mutations in the gene encoding this protein have been linked to blood cancers
and a particular type of breast cancer, which begins in the cells that line the ducts
that carry milk towards the nipple. Mammary duct-lining cells develop from a pool of stem cells that produces breast
tissue cells. Now van Bragt et al. have found that RUNX1 is expressed in the cells
lining the ducts of the mammary glands, except those that produce milk. Deleting the
gene for RUNX1 in mice reduced the number of duct-lining cells, especially a subgroup
of cells that are the sensors for the hormone estrogen. Through experiments on breast
cancer cells, van Bragt et al. found that RUNX1 is able to dictate the fate of
duct-lining breast cells by controlling other protein regulators. RUNX1 boosts the
activity of at least one regulator that encourages the cells to become duct-lining
cells and represses another regulatory protein that turns cells into milk-producing
cells. Next, van Bragt et al. found that, in mice lacking the gene for RUNX1, reducing the
amounts of certain proteins that normally suppress the formation of tumors restored
the populations of estrogen-sensing duct-lining cells. This suggests that mutations
in the gene encoding RUNX1, coupled with the loss of a tumor-suppressing protein, may
contribute to the development of cancer in the cells that line the breast ducts. The next challenge is to determine exactly how RUNX1 mutations work together with the
loss of the tumor-suppressing protein to drive breast cancer development. This
knowledge may translate into new approaches to prevent or treat this type of breast
cancer. DOI:http://dx.doi.org/10.7554/eLife.03881.002
Collapse
Affiliation(s)
| | - Xin Hu
- Division of Genetics, Brigham and Women's Hospital, Boston, United States
| | - Ying Xie
- Division of Genetics, Brigham and Women's Hospital, Boston, United States
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, Boston, United States
| |
Collapse
|
35
|
Wip1 phosphatase in breast cancer. Oncogene 2014; 34:4429-38. [PMID: 25381821 DOI: 10.1038/onc.2014.375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
Understanding the factors contributing to tumor initiation, progression and evolution is of paramount significance. Among them, wild-type p53-induced phosphatase 1 (Wip1) is emerging as an important oncogene by virtue of its negative control on several key tumor suppressor pathways. Originally discovered as a p53-regulated gene, Wip1 has been subsequently found amplified and more recently mutated in a significant fraction of human cancers including breast tumors. Recent development in the field further uncovered the utility of anti-Wip1-directed therapies in delaying tumor onset or in reducing the tumor burden. Furthermore, Wip1 could be an important factor that contributes to tumor heterogeneity, suggesting that its inhibition may decrease the rate of cancer evolution. These effects depend on several signaling pathways modulated by Wip1 phosphatase in a spatial and temporal manner. In this review we discuss the recent development in understanding how Wip1 contributes to tumorigenesis with its relevance to breast cancer.
Collapse
|
36
|
Zhou J, Chen Q, Zou Y, Chen H, Qi L, Chen Y. Conservative surgery in the Zollinger-Ellison syndrome. Front Oncol 1984; 9:820. [PMID: 31555586 PMCID: PMC6722475 DOI: 10.3389/fonc.2019.00820] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer stem cells have been known to contribute immensely to the carcinogenesis of the breast and therapeutic resistance in the clinic. Current studies show that the population of breast cancer stem cells is heterogeneous, involving various cellular markers and regulatory signaling pathways. In addition, different subtypes of breast cancer exhibit distinct subtypes and frequencies of breast cancer stem cells. In this review, we provide an overview of the characteristics of breast cancer stem cells, including their various molecular markers, prominent regulatory signaling, and complex microenvironment. The cellular origins of breast cancer are discussed to understand the heterogeneity and diverse differentiations of stem cells. Importantly, we also outline the recent advances and controversies in the therapeutic implications of breast cancer stem cells in different subtypes of breast cancer.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
- *Correspondence: Jiaojiao Zhou
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiheng Zou
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Huihui Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Qi
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
| | - Yiding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
- Yiding Chen
| |
Collapse
|