1
|
Shiga S, Murakami Y, Wang Z, Ando R, Casco-Robles MM, Maruo F, Toyama F, Chiba C. An adult myogenic cell line of the Japanese fire-bellied newt Cynops pyrrhogaster. Sci Rep 2024; 14:30041. [PMID: 39627485 PMCID: PMC11614899 DOI: 10.1038/s41598-024-81899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
Adult myogenic cell lines are useful to study muscle development, repair and regeneration. In newts, which are known for their high regenerative capacity, myogenic cell lines have not been established in species other than the Eastern newt Notophthalmus viridescens. In this study, we established another myogenic cell line, named CpM01, from the skeletal muscle of the forearm of the adult Japanese fire-bellied newt Cynops pyrrhogaster. CpM01 maintained high proliferative ability even after numerous passages, and could be induced to differentiate into myotubes by changing the culture medium. CpM01 expressed myogenic regulatory factors (MRFs) such as Myf5, MRF4 and myogenin. Changes in the immunorectivities of MRFs during differentiation of CpM01 into myotubes were consistent with those during new muscle generation in limb regeneration. In newts, myogenic cells have two origins, muscle fibers or satellite cells. CpM01 expressed Pax7, suggesting the origin might be satellite cells. scRNA-seq analysis deeply characterized CpM01 and demonstrated that the expression patterns of myogenic genes (Pax3, Pax7, myocyte-specific enhancer factor 2 A, and genes encoding MRFs) in CpM01 are related to progress of the cell cycle. CpM01 can be a useful tool for future studies of limb muscle regeneration in adult newts.
Collapse
Affiliation(s)
- Shota Shiga
- Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yuri Murakami
- Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Zixiao Wang
- Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryo Ando
- Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Martin Miguel Casco-Robles
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fumiaki Maruo
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fubito Toyama
- School of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, 321-8585, Japan.
| | - Chikafumi Chiba
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
2
|
Dooling KE, Kim RT, Kim EM, Chen E, Abouelela A, Tajer BJ, Lopez NJ, Paoli JC, Powell CJ, Luong AG, Wu SC, Thornton KN, Singer HD, Savage AM, Bateman J, DiTommaso T, Payzin-Dogru D, Whited JL. Amputation Triggers Long-Range Epidermal Permeability Changes in Evolutionarily Distant Regenerative Organisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610385. [PMID: 39257748 PMCID: PMC11383696 DOI: 10.1101/2024.08.29.610385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Previous studies have reported that amputation invokes body-wide responses in regenerative organisms, but most have not examined the implications of these changes beyond the region of tissue regrowth. Specifically, long-range epidermal responses to amputation are largely uncharacterized, with research on amputation-induced epidermal responses in regenerative organisms traditionally being restricted to the wound site. Here, we investigate the effect of amputation on long-range epidermal permeability in two evolutionarily distant, regenerative organisms: axolotls and planarians. We find that amputation triggers a long-range increase in epidermal permeability in axolotls, accompanied by a long-range epidermal downregulation in MAPK signaling. Additionally, we provide functional evidence that pharmacologically inhibiting MAPK signaling in regenerating planarians increases long-range epidermal permeability. These findings advance our knowledge of body-wide changes due to amputation in regenerative organisms and warrant further study on whether epidermal permeability dysregulation in the context of amputation may lead to pathology in both regenerative and non-regenerative organisms.
Collapse
Affiliation(s)
- Kelly E. Dooling
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Ryan T. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Elane M. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Erica Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Adnan Abouelela
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Benjamin J. Tajer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Noah J. Lopez
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Julia C. Paoli
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Connor J. Powell
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Anna G. Luong
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - S.Y. Celeste Wu
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Kara N. Thornton
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Hani D. Singer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Aaron M. Savage
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Joel Bateman
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
| | - Tia DiTommaso
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
| | - Duygu Payzin-Dogru
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA 02138
| |
Collapse
|
3
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Zhang XS, Wei L, Zhang W, Zhang FX, Li L, Li L, Wen Y, Zhang JH, Liu S, Yuan D, Liu Y, Ren C, Li S. ERK-activated CK-2 triggers blastema formation during appendage regeneration. SCIENCE ADVANCES 2024; 10:eadk8331. [PMID: 38507478 PMCID: PMC10954200 DOI: 10.1126/sciadv.adk8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Appendage regeneration relies on the formation of blastema, a heterogeneous cellular structure formed at the injury site. However, little is known about the early injury-activated signaling pathways that trigger blastema formation during appendage regeneration. Here, we provide compelling evidence that the extracellular signal-regulated kinase (ERK)-activated casein kinase 2 (CK-2), which has not been previously implicated in appendage regeneration, triggers blastema formation during leg regeneration in the American cockroach, Periplaneta americana. After amputation, CK-2 undergoes rapid activation through ERK-induced phosphorylation within blastema cells. RNAi knockdown of CK-2 severely impairs blastema formation by repressing cell proliferation through down-regulating mitosis-related genes. Evolutionarily, the regenerative role of CK-2 is conserved in zebrafish caudal fin regeneration via promoting blastema cell proliferation. Together, we find and demonstrate that the ERK-activated CK-2 triggers blastema formation in both cockroach and zebrafish, helping explore initiation factors during appendage regeneration.
Collapse
Affiliation(s)
- Xiao-Shuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Fei-Xue Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yejie Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jia-Hui Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
5
|
Lu B. Evolutionary Insights into the Relationship of Frogs, Salamanders, and Caecilians and Their Adaptive Traits, with an Emphasis on Salamander Regeneration and Longevity. Animals (Basel) 2023; 13:3449. [PMID: 38003067 PMCID: PMC10668855 DOI: 10.3390/ani13223449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The extant amphibians have developed uncanny abilities to adapt to their environment. I compared the genes of amphibians to those of other vertebrates to investigate the genetic changes underlying their unique traits, especially salamanders' regeneration and longevity. Using the well-supported Batrachia tree, I found that salamander genomes have undergone accelerated adaptive evolution, especially for development-related genes. The group-based comparison showed that several genes are under positive selection, rapid evolution, and unexpected parallel evolution with traits shared by distantly related species, such as the tail-regenerative lizard and the longer-lived naked mole rat. The genes, such as EEF1E1, PAFAH1B1, and OGFR, may be involved in salamander regeneration, as they are involved in the apoptotic process, blastema formation, and cell proliferation, respectively. The genes PCNA and SIRT1 may be involved in extending lifespan, as they are involved in DNA repair and histone modification, respectively. Some genes, such as PCNA and OGFR, have dual roles in regeneration and aging, which suggests that these two processes are interconnected. My experiment validated the time course differential expression pattern of SERPINI1 and OGFR, two genes that have evolved in parallel in salamanders and lizards during the regeneration process of salamander limbs. In addition, I found several candidate genes responsible for frogs' frequent vocalization and caecilians' degenerative vision. This study provides much-needed insights into the processes of regeneration and aging, and the discovery of the critical genes paves the way for further functional analysis, which could open up new avenues for exploiting the genetic potential of humans and improving human well-being.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
6
|
Ramey-Ward A, Dong Y, Yang J, Ogasawara H, Bremer-Sai EC, Brazhkina O, Franck C, Davis M, Salaita K. Optomechanically Actuated Hydrogel Platform for Cell Stimulation with Spatial and Temporal Resolution. ACS Biomater Sci Eng 2023; 9:5361-5375. [PMID: 37604774 PMCID: PMC10498418 DOI: 10.1021/acsbiomaterials.3c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Cells exist in the body in mechanically dynamic environments, yet the vast majority of in vitro cell culture is conducted on static materials such as plastic dishes and gels. To address this limitation, we report an approach to transition widely used hydrogels into mechanically active substrates by doping optomechanical actuator (OMA) nanoparticles within the polymer matrix. OMAs are composed of gold nanorods surrounded by a thermoresponsive polymer shell that rapidly collapses upon near-infrared (NIR) illumination. As a proof of concept, we crosslinked OMAs into laminin-gelatin hydrogels, generating up to 5 μm deformations triggered by NIR pulsing. This response was tunable by NIR intensity and OMA density within the gel and is generalizable to other hydrogel materials. Hydrogel mechanical stimulation enhanced myogenesis in C2C12 myoblasts as evidenced by ERK signaling, myocyte fusion, and sarcomeric myosin expression. We also demonstrate rescued differentiation in a chronic inflammation model as a result of mechanical stimulation. This work establishes OMA-actuated biomaterials as a powerful tool for in vitro mechanical manipulation with broad applications in the field of mechanobiology.
Collapse
Affiliation(s)
- Allison
N. Ramey-Ward
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jin Yang
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth C. Bremer-Sai
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Olga Brazhkina
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Christian Franck
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Michael Davis
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Pio-Lopez L, Bischof J, LaPalme JV, Levin M. The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis. Interface Focus 2023; 13:20220072. [PMID: 37065270 PMCID: PMC10102734 DOI: 10.1098/rsfs.2022.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal in silico system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour. Our system showed the evolution of the much more complex setpoints of cell collectives (tissues) that solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French flag problem in developmental biology). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve the target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed an unexpected behaviour of sudden remodelling long after the system stabilizes. We tested this prediction in a biological system-regenerating planaria-and observed a very similar phenomenon. We propose that this system is a first step towards a quantitative understanding of how evolution scales minimal goal-directed behaviour (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Walters HE, Troyanovskiy KE, Graf AM, Yun MH. Senescent cells enhance newt limb regeneration by promoting muscle dedifferentiation. Aging Cell 2023; 22:e13826. [PMID: 37025070 PMCID: PMC10265169 DOI: 10.1111/acel.13826] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Salamanders are able to regenerate their entire limbs throughout lifespan, through a process that involves significant modulation of cellular plasticity. Limb regeneration is accompanied by the endogenous induction of cellular senescence, a state of irreversible cell cycle arrest associated with profound non-cell-autonomous consequences. While traditionally associated with detrimental physiological effects, here, we show that senescent cells can enhance newt limb regeneration. Through a lineage tracing approach, we demonstrate that exogenously derived senescent cells promote dedifferentiation of mature muscle tissue to generate regenerative progenitors. In a paradigm of newt myotube dedifferentiation, we uncover that senescent cells promote myotube cell cycle re-entry and reversal of muscle identity via secreted factors. Transcriptomic profiling and loss of function approaches identify the FGF-ERK signalling axis as a critical mediator of senescence-induced muscle dedifferentiation. While chronic senescence constrains muscle regeneration in physiological mammalian contexts, we thus highlight a beneficial role for cellular senescence as an important modulator of dedifferentiation, a key mechanism for regeneration of complex structures.
Collapse
Affiliation(s)
- Hannah E. Walters
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies DresdenDresdenGermany
| | - Konstantin E. Troyanovskiy
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies DresdenDresdenGermany
- Freie Universität BerlinBerlinGermany
| | - Alwin M. Graf
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies DresdenDresdenGermany
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies DresdenDresdenGermany
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
| |
Collapse
|
9
|
Tomasso A, Koopmans T, Lijnzaad P, Bartscherer K, Seifert AW. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys). SCIENCE ADVANCES 2023; 9:eadf2331. [PMID: 37126559 PMCID: PMC10132760 DOI: 10.1126/sciadv.adf2331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although most mammals heal injured tissues and organs with scarring, spiny mice (Acomys) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring (Mus) and regenerating (Acomys) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in Acomys shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.
Collapse
Affiliation(s)
- Antonio Tomasso
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| | - Tim Koopmans
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, Netherlands
| | - Kerstin Bartscherer
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
10
|
Tursch A, Holstein TW. From injury to patterning—MAPKs and Wnt signaling in Hydra. Curr Top Dev Biol 2023; 153:381-417. [PMID: 36967201 DOI: 10.1016/bs.ctdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, β-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.
Collapse
|
11
|
Injury-induced MAPK activation triggers body axis formation in Hydra by default Wnt signaling. Proc Natl Acad Sci U S A 2022; 119:e2204122119. [PMID: 35994642 PMCID: PMC9436372 DOI: 10.1073/pnas.2204122119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydra's almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in Hydra head regeneration. Here, we show that three MAPKs-p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)-are essential to initiate regeneration in Hydra, independent of the wound position. Their activation occurs in response to any injury and requires calcium and reactive oxygen species (ROS) signaling. Phosphorylated MAPKs hereby exhibit cross talk with mutual antagonism between the ERK pathway and stress-induced MAPKs, orchestrating a balance between cell survival and apoptosis. Importantly, Wnt3 and Wnt9/10c, which are induced by MAPK signaling, can partially rescue regeneration in tissues treated with MAPK inhibitors. Also, foot regenerates can be reverted to form head tissue by a pharmacological increase of β-catenin signaling or the application of recombinant Wnts. We propose a model in which a β-catenin-based stable gradient of head-forming capacity along the primary body axis, by differentially integrating an indiscriminate injury response, determines the fate of the regenerating tissue. Hereby, Wnt signaling acquires sustained activation in the head regenerate, while it is transient in the presumptive foot tissue. Given the high level of evolutionary conservation of MAPKs and Wnts, we assume that this mechanism is deeply embedded in our genome.
Collapse
|
12
|
Scimone ML, Cloutier JK, Maybrun CL, Reddien PW. The planarian wound epidermis gene equinox is required for blastema formation in regeneration. Nat Commun 2022; 13:2726. [PMID: 35585061 PMCID: PMC9117669 DOI: 10.1038/s41467-022-30412-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/09/2022] [Indexed: 11/25/2022] Open
Abstract
Regeneration often involves the formation of a blastema, an outgrowth or regenerative bud formed at the plane of injury where missing tissues are produced. The mechanisms that trigger blastema formation are therefore fundamental for regeneration. Here, we identify a gene, which we named equinox, that is expressed within hours of injury in the planarian wound epidermis. equinox encodes a predicted secreted protein that is conserved in many animal phyla. Following equinox inhibition, amputated planarians fail to maintain wound-induced gene expression and to subsequently undergo blastema outgrowth. Associated with these defects is an inability to reestablish lost positional information needed for missing tissue specification. Our findings link the planarian wound epidermis, through equinox, to regeneration of positional information and blastema formation, indicating a broad regulatory role of the wound epidermis in diverse regenerative contexts.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Jennifer K Cloutier
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard/MIT MD-PhD, Harvard Medical School, Boston, MA, 02115, USA
| | - Chloe L Maybrun
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
13
|
Oliveira CR, Knapp D, Elewa A, Gerber T, Gonzalez Malagon SG, Gates PB, Walters HE, Petzold A, Arce H, Cordoba RC, Subramanian E, Chara O, Tanaka EM, Simon A, Yun MH. Tig1 regulates proximo-distal identity during salamander limb regeneration. Nat Commun 2022; 13:1141. [PMID: 35241664 PMCID: PMC8894484 DOI: 10.1038/s41467-022-28755-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
Salamander limb regeneration is an accurate process which gives rise exclusively to the missing structures, irrespective of the amputation level. This suggests that cells in the stump have an awareness of their spatial location, a property termed positional identity. Little is known about how positional identity is encoded, in salamanders or other biological systems. Through single-cell RNAseq analysis, we identified Tig1/Rarres1 as a potential determinant of proximal identity. Tig1 encodes a conserved cell surface molecule, is regulated by retinoic acid and exhibits a graded expression along the proximo-distal axis of the limb. Its overexpression leads to regeneration defects in the distal elements and elicits proximal displacement of blastema cells, while its neutralisation blocks proximo-distal cell surface interactions. Critically, Tig1 reprogrammes distal cells to a proximal identity, upregulating Prod1 and inhibiting Hoxa13 and distal transcriptional networks. Thus, Tig1 is a central cell surface determinant of proximal identity in the salamander limb. The mechanisms by which cells determine their position within the 3D space are poorly understood. Research in salamanders offers fresh insights into this question, uncovering Tig1 as a central determinant of proximo-distal identity in regeneration.
Collapse
Affiliation(s)
- Catarina R Oliveira
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Dunja Knapp
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany.
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Tobias Gerber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sandra G Gonzalez Malagon
- Institute of Structural and Molecular Biology, University College London, London, UK.,Biomedical Research Institute, Foundation for Research and Technology, University of Ioannina Campus, 45115, Ioannina, Greece
| | - Phillip B Gates
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Hannah E Walters
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Andreas Petzold
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Hernan Arce
- Systems Biology Group, Institute of Physics of Liquids and Biological Systems, National Scientific and Technical Research Council (CONICET) and University of La Plata, La Plata, Argentina.,Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Rodrigo C Cordoba
- Systems Biology Group, Institute of Physics of Liquids and Biological Systems, National Scientific and Technical Research Council (CONICET) and University of La Plata, La Plata, Argentina
| | | | - Osvaldo Chara
- Systems Biology Group, Institute of Physics of Liquids and Biological Systems, National Scientific and Technical Research Council (CONICET) and University of La Plata, La Plata, Argentina.,Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina.,Technische Universität Dresden, Center for Information Services and High Performance Computing ZIH, Dresden, Germany
| | - Elly M Tanaka
- Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany. .,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
14
|
Wen X, Jiao L, Tan H. MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration. Int J Mol Sci 2022; 23:ijms23031464. [PMID: 35163418 PMCID: PMC8835994 DOI: 10.3390/ijms23031464] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Damage to organs by trauma, infection, diseases, congenital defects, aging, and other injuries causes organ malfunction and is life-threatening under serious conditions. Some of the lower order vertebrates such as zebrafish, salamanders, and chicks possess superior organ regenerative capacity over mammals. The extracellular signal-regulated kinases 1 and 2 (ERK1/2), as key members of the mitogen-activated protein kinase (MAPK) family, are serine/threonine protein kinases that are phylogenetically conserved among vertebrate taxa. MAPK/ERK signaling is an irreplaceable player participating in diverse biological activities through phosphorylating a broad variety of substrates in the cytoplasm as well as inside the nucleus. Current evidence supports a central role of the MAPK/ERK pathway during organ regeneration processes. MAPK/ERK signaling is rapidly excited in response to injury stimuli and coordinates essential pro-regenerative cellular events including cell survival, cell fate turnover, migration, proliferation, growth, and transcriptional and translational activities. In this literature review, we recapitulated the multifaceted MAPK/ERK signaling regulations, its dynamic spatio-temporal activities, and the profound roles during multiple organ regeneration, including appendages, heart, liver, eye, and peripheral/central nervous system, illuminating the possibility of MAPK/ERK signaling as a critical mechanism underlying the vastly differential regenerative capacities among vertebrate species, as well as its potential applications in tissue engineering and regenerative medicine.
Collapse
|
15
|
Bohr TE, Shiroor DA, Adler CE. Planarian stem cells sense the identity of the missing pharynx to launch its targeted regeneration. eLife 2021; 10:e68830. [PMID: 34156924 PMCID: PMC8219383 DOI: 10.7554/elife.68830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/22/2021] [Indexed: 12/25/2022] Open
Abstract
In order to regenerate tissues successfully, stem cells must detect injuries and restore missing cell types through largely unknown mechanisms. Planarian flatworms have an extensive stem cell population responsible for regenerating any organ after amputation. Here, we compare planarian stem cell responses to different injuries by either amputation of a single organ, the pharynx, or removal of tissues from other organs by decapitation. We find that planarian stem cells adopt distinct behaviors depending on what tissue is missing to target progenitor and tissue production towards missing tissues. Loss of non-pharyngeal tissues only increases non-pharyngeal progenitors, while pharynx removal selectively triggers division and expansion of pharynx progenitors. By pharmacologically inhibiting either mitosis or activation of the MAP kinase ERK, we identify a narrow window of time during which stem cell division and ERK signaling produces pharynx progenitors necessary for regeneration. These results indicate that planarian stem cells can tailor their output to match the regenerative needs of the animal.
Collapse
Affiliation(s)
- Tisha E Bohr
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| | - Divya A Shiroor
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| | - Carolyn E Adler
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| |
Collapse
|
16
|
Yun MH. Salamander Insights Into Ageing and Rejuvenation. Front Cell Dev Biol 2021; 9:689062. [PMID: 34164403 PMCID: PMC8215543 DOI: 10.3389/fcell.2021.689062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 02/01/2023] Open
Abstract
Exhibiting extreme regenerative abilities which extend to complex organs and entire limbs, salamanders have long served as research models for understanding the basis of vertebrate regeneration. Yet these organisms display additional noteworthy traits, namely extraordinary longevity, indefinite regenerative potential and apparent lack of traditional signs of age-related decay or “negligible senescence.” Here, I examine existing studies addressing these features, highlight outstanding questions, and argue that salamanders constitute valuable models for addressing the nature of organismal senescence and the interplay between regeneration and ageing.
Collapse
Affiliation(s)
- Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
17
|
Hayden LD, Poss KD, De Simone A, Di Talia S. Mathematical modeling of Erk activity waves in regenerating zebrafish scales. Biophys J 2021; 120:4287-4297. [PMID: 34022234 DOI: 10.1016/j.bpj.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022] Open
Abstract
Erk signaling regulates cellular decisions in many biological contexts. Recently, we have reported a series of Erk activity traveling waves that coordinate regeneration of osteoblast tissue in zebrafish scales. These waves originate from a central source region, propagate as expanding rings, and impart cell growth, thus controlling tissue morphogenesis. Here, we present a minimal reaction-diffusion model for Erk activity waves. The model considers three components: Erk, a diffusible Erk activator, and an Erk inhibitor. Erk stimulates both its activator and inhibitor, forming a positive and negative feedback loop, respectively. Our model shows that this system can be excitable and propagate Erk activity waves. Waves originate from a pulsatile source that is modeled by adding a localized basal production of the activator, which turns the source region from an excitable to an oscillatory state. As Erk activity periodically rises in the source, it can trigger an excitable wave that travels across the entire tissue. Analysis of the model finds that positive feedback controls the properties of the traveling wavefront and that negative feedback controls the duration of Erk activity peak and the period of Erk activity waves. The geometrical properties of the waves facilitate constraints on the effective diffusivity of the activator, indicating that waves are an efficient mechanism to transfer growth factor signaling rapidly across a large tissue.
Collapse
Affiliation(s)
- Luke D Hayden
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Alessandro De Simone
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
18
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
19
|
Ye G, Feng Y, Mi Z, Wang D, Lin S, Chen F, Cui J, Yu Y. Expression and Functional Characterization of c-Fos Gene in Chinese Fire-Bellied Newt Cynops Orientalis. Genes (Basel) 2021; 12:genes12020205. [PMID: 33573315 PMCID: PMC7912203 DOI: 10.3390/genes12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
c-Fos is an immediate-early gene that modulates cellular responses to a wide variety of stimuli and also plays an important role in tissue regeneration. However, the sequence and functions of c-Fos are still poorly understood in newts. This study describes the molecular cloning and characterization of the c-Fos gene (Co-c-Fos) of the Chinese fire-bellied newt, Cynops orientalis. The full-length Co-c-Fos cDNA sequence consists of a 1290 bp coding sequence that encoded 429 amino acids. The alignment and phylogenetic analyses reveal that the amino acid sequence of Co-c-Fos shared a conserved basic leucine zipper domain, including a nuclear localization sequence and a leucine heptad repeat. The Co-c-Fos mRNA is widely expressed in various tissues and is highly and uniformly expressed along the newt limb. After limb amputation, the expression of Co-c-Fos mRNA was immediately upregulated, but rapidly declined. However, the significant upregulation of Co-c-Fos protein expression was sustained for 24 h, overlapping with the wound healing stage of C. orientalis limb regeneration. To investigate if Co-c-Fos participate in newt wound healing, a skin wound healing model is employed. The results show that the treatment of T-5224, a selective c-Fos inhibitor, could largely impair the healing process of newt’s skin wound, as well as the injury-induced matrix metalloproteinase-3 upregulation, which is fundamental to wound epithelium formation. These data suggest that Co-c-Fos might participate in wound healing by modulating the expression of its potential target gene matrix metalloproteinase-3. Our study provides important insights into mechanisms that are responsible for the initiation of newt limb regeneration.
Collapse
Affiliation(s)
- Gang Ye
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Yalong Feng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Zhaoxiang Mi
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Du Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Shuai Lin
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
20
|
Wang C, Peng R, Yuan X, Liu S, Xu S, Li Y, Zhang Z, Zeng M, Hu L, Zou F. Cellular and molecular responses-mediated by DjMEK1/2 are necessary for planarian regeneration. Int J Biol Macromol 2020; 164:3751-3761. [PMID: 32888997 DOI: 10.1016/j.ijbiomac.2020.08.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/23/2023]
Abstract
The planarian flatworm is an ideal model to study the regeneration due to its robust regenerative ability. A variety of cellular response activities have been reported to be involved in the regeneration process, including the mitogen-activated protein kinase (MAPK) signaling. However, the mechanism of MAPK pathway in regenerative responses is still unclear. In this study, we employed the planarian, Dugesia japonica, as the model to investigate the function of MAP-extracellular signal-regulated kinase (MEK), an important component of MAPK signaling pathway, in the regeneration process. We found that MEK was required for the missing tissue response after several amputation and subsequent regeneration. MEK not only affected the size of blastema in the early stage of regeneration by regulating stem cell proliferation, but also determined the planarian's regeneration through balancing cell proliferation and apoptosis. In addition, the activation of Wnt pathway partially rescued regenerative defects induced by inhibition of MEK. Taken together, our results highlight a crucial role of MEK signaling in the planarian regeneration.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Rui Peng
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Xieyong Yuan
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Shengpeng Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Shutao Xu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Yan Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Zhenhua Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Min Zeng
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Lanlin Hu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Fangdong Zou
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China.
| |
Collapse
|
21
|
Shiroor DA, Bohr TE, Adler CE. Injury Delays Stem Cell Apoptosis after Radiation in Planarians. Curr Biol 2020; 30:2166-2174.e3. [PMID: 32386527 DOI: 10.1016/j.cub.2020.03.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 12/31/2022]
Abstract
Stem cells are continuously exposed to multiple stresses, including radiation and tissue injury. As central drivers of tissue repair and regeneration, it is necessary to understand how their behavior is influenced by these stressors. Planarians have an abundant population of stem cells that are rapidly eliminated after radiation exposure via apoptosis. Low doses of radiation eliminate the majority of these stem cells, allowing a few to remain [1]. Here, we combine radiation with injury to define how stem cells respond to tissue damage. We find that a variety of injuries induced within a defined window of time surrounding radiation cause stem cells to outlast those in uninjured animals. Injury stimulates localized cell death adjacent to wounds [2], in the same regions where stem cells persist. This persistence occurs in the absence of proliferation. Instead, stem cells are retained near the wound due to delayed apoptosis, which we quantify by combining fluorescence-activated cell sorting (FACS) with annexin V staining. Pharmacological inhibition of the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (ERK) prevents stem cell persistence after injury, implicating wound-induced ERK activity in this response. By combining radiation with injury, our work reveals a novel connection between dying cells and stem cells that remain. Furthermore, the ability to induce stem cell persistence after radiation provides a paradigm to study mechanisms that may contribute to unanticipated consequences of injury, such as tumorigenesis.
Collapse
Affiliation(s)
- Divya A Shiroor
- Department of Molecular Medicine, Cornell University of Veterinary Medicine, 930 Campus Road, Ithaca, NY 14853, USA
| | - Tisha E Bohr
- Department of Molecular Medicine, Cornell University of Veterinary Medicine, 930 Campus Road, Ithaca, NY 14853, USA
| | - Carolyn E Adler
- Department of Molecular Medicine, Cornell University of Veterinary Medicine, 930 Campus Road, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Cox BD, Yun MH, Poss KD. Can laboratory model systems instruct human limb regeneration? Development 2019; 146:146/20/dev181016. [PMID: 31578190 DOI: 10.1242/dev.181016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration has fascinated scientists since well before the 20th century revolutions in genetics and molecular biology. The field of regenerative biology has grown steadily over the past decade, incorporating advances in imaging, genomics and genome editing to identify key cell types and molecules involved across many model organisms. Yet for many or most tissues, it can be difficult to predict when and how findings from these studies will advance regenerative medicine. Establishing technologies to stimulate regrowth of a lost or amputated limb with a patterned replicate, as salamanders do routinely, is one of the most challenging directives of tissue regeneration research. Here, we speculate upon what research avenues the field must explore to move closer to this capstone achievement.
Collapse
Affiliation(s)
- Ben D Cox
- Regeneration Next, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden 01307, Germany .,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Kenneth D Poss
- Regeneration Next, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
23
|
Hale AJ, den Hertog J. Shp2-Mitogen-Activated Protein Kinase Signaling Drives Proliferation during Zebrafish Embryo Caudal Fin Fold Regeneration. Mol Cell Biol 2018; 38:e00515-17. [PMID: 29203641 PMCID: PMC5789028 DOI: 10.1128/mcb.00515-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022] Open
Abstract
Regeneration of the zebrafish caudal fin following amputation occurs through wound healing, followed by formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. We show that ptpn11a-/- ptpn11b-/- zebrafish embryos, lacking functional Shp2, fail to regenerate their caudal fin folds. Rescue experiments indicated that Shp2a has a functional signaling role, requiring its catalytic activity and SH2 domains but not the two C-terminal tyrosine phosphorylation sites. Surprisingly, expression of Shp2a variants with increased and reduced catalytic activity, respectively, rescued caudal fin fold regeneration to similar extents. Expression of mmp9 and junbb, indicative of formation of the wound epidermis and distal blastema, respectively, suggested that these processes occurred in ptpn11a-/- ptpn11b-/- zebrafish embryos. However, cell proliferation and MAPK phosphorylation were reduced. Pharmacological inhibition of MEK1 in wild-type zebrafish embryos phenocopied loss of Shp2. Our results suggest an essential role for Shp2a-mitogen-activated protein kinase (MAPK) signaling in promoting cell proliferation during zebrafish embryo caudal fin fold regeneration.
Collapse
Affiliation(s)
- Alexander James Hale
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute Biology Leiden, Leiden University, Leiden, the Netherlands
| |
Collapse
|
24
|
Generic wound signals initiate regeneration in missing-tissue contexts. Nat Commun 2017; 8:2282. [PMID: 29273738 PMCID: PMC5741630 DOI: 10.1038/s41467-017-02338-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Despite the identification of numerous regulators of regeneration in different animal models, a fundamental question remains: why do some wounds trigger the full regeneration of lost body parts, whereas others resolve by mere healing? By selectively inhibiting regeneration initiation, but not the formation of a wound epidermis, here we create headless planarians and finless zebrafish. Strikingly, in both missing-tissue contexts, injuries that normally do not trigger regeneration activate complete restoration of heads and fin rays. Our results demonstrate that generic wound signals have regeneration-inducing power. However, they are interpreted as regeneration triggers only in a permissive tissue context: when body parts are missing, or when tissue-resident polarity signals, such as Wnt activity in planarians, are modified. Hence, the ability to decode generic wound-induced signals as regeneration-initiating cues may be the crucial difference that distinguishes animals that regenerate from those that cannot. Some wounds trigger regeneration, while others simply heal but how this is regulated is unclear. Here, by manipulating ERK and Wnt signalling pathways, the authors create headless planarians and finless zebrafish and show that wounds that normally only trigger wound healing can activate regeneration of heads and bones.
Collapse
|
25
|
Retinal cell death dependent reactive proliferative gliosis in the mouse retina. Sci Rep 2017; 7:9517. [PMID: 28842607 PMCID: PMC5572737 DOI: 10.1038/s41598-017-09743-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration is a common starting point of reactive gliosis, which may have beneficial and detrimental consequences. It remains incompletely understood how distinctive pathologies and cell death processes differentially regulate glial responses. Müller glia (MG) in the retina are a prime model: Neurons are regenerated in some species, but in mammals there may be proliferative disorders and scarring. Here, we investigated the relationship between retinal damage and MG proliferation, which are both induced in a reproducible and temporal order in organotypic culture of EGF-treated mouse retina: Hypothermia pretreatment during eye dissection reduced neuronal cell death and MG proliferation; stab wounds increased both. Combined (but not separate) application of defined cell death signaling pathway inhibitors diminished neuronal cell death and maintained MG mitotically quiescent. The level of neuronal cell death determined MG activity, indicated by extracellular signal-regulated kinase (ERK) phosphorylation, and proliferation, both of which were abolished by EGFR inhibition. Our data suggest that retinal cell death, possibly either by programmed apoptosis or necrosis, primes MG to be able to transduce the EGFR–ERK activity required for cell proliferation. These results imply that cell death signaling pathways are potential targets for future therapies to prevent the proliferative gliosis frequently associated with certain neurodegenerative conditions.
Collapse
|
26
|
Stocum DL. Mechanisms of urodele limb regeneration. REGENERATION (OXFORD, ENGLAND) 2017; 4:159-200. [PMID: 29299322 PMCID: PMC5743758 DOI: 10.1002/reg2.92] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb?
Collapse
Affiliation(s)
- David L. Stocum
- Department of BiologyIndiana University−Purdue University Indianapolis723 W. Michigan StIndianapolisIN 46202USA
| |
Collapse
|
27
|
Tanaka EM. The Molecular and Cellular Choreography of Appendage Regeneration. Cell 2017; 165:1598-1608. [PMID: 27315477 DOI: 10.1016/j.cell.2016.05.038] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Recent advances in limb regeneration are revealing the molecular events that integrate growth control, cell fate programming, and positional information to yield the exquisite replacement of the amputated limb. Parallel progress in several invertebrate and vertebrate models has provided a broader context for understanding the mechanisms and the evolution of regeneration. Together, these discoveries provide a foundation for describing the principles underlying regeneration of complex, multi-tissue structures. As such these findings should provide a wealth of ideas for engineers seeking to reconstitute regeneration from constituent parts or to elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Elly M Tanaka
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden Fetscherstrasse 105, 01307 Dresden, GERMANY.
| |
Collapse
|
28
|
Davaapil H, Brockes JP, Yun MH. Conserved and novel functions of programmed cellular senescence during vertebrate development. Development 2017; 144:106-114. [PMID: 27888193 PMCID: PMC5278627 DOI: 10.1242/dev.138222] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
Abstract
Cellular senescence, a form of stable cell cycle arrest that is traditionally associated with tumour suppression, has been recently found to occur during mammalian development. Here, we show that cell senescence is an intrinsic part of the developmental programme in amphibians. Programmed senescence occurs in specific structures during defined time windows during amphibian development. It contributes to the physiological degeneration of the amphibian pronephros and to the development of the cement gland and oral cavity. In both contexts, senescence depends on TGFβ but is independent of ERK/MAPK activation. Furthermore, elimination of senescent cells through temporary TGFβ inhibition leads to developmental defects. Our findings uncover conserved and new roles of senescence in vertebrate organogenesis and support the view that cellular senescence may have arisen in evolution as a developmental mechanism.
Collapse
Affiliation(s)
- Hongorzul Davaapil
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Jeremy P Brockes
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Maximina H Yun
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
29
|
Grigoryan EN, Markitantova YV. Cellular and Molecular Preconditions for Retinal Pigment Epithelium (RPE) Natural Reprogramming during Retinal Regeneration in Urodela. Biomedicines 2016; 4:E28. [PMID: 28536395 PMCID: PMC5344269 DOI: 10.3390/biomedicines4040028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 12/25/2022] Open
Abstract
Many regeneration processes in animals are based on the phenomenon of cell reprogramming followed by proliferation and differentiation in a different specialization direction. An insight into what makes natural (in vivo) cell reprogramming possible can help to solve a number of biomedical problems. In particular, the first problem is to reveal the intrinsic properties of the cells that are necessary and sufficient for reprogramming; the second, to evaluate these properties and, on this basis, to reveal potential endogenous sources for cell substitution in damaged tissues; and the third, to use the acquired data for developing approaches to in vitro cell reprogramming in order to obtain a cell reserve for damaged tissue repair. Normal cells of the retinal pigment epithelium (RPE) in newts (Urodela) can change their specialization and transform into retinal neurons and ganglion cells (i.e., actualize their retinogenic potential). Therefore, they can serve as a model that provides the possibility to identify factors of the initial competence of vertebrate cells for reprogramming in vivo. This review deals mainly with the endogenous properties of native newt RPE cells themselves and, to a lesser extent, with exogenous mechanisms regulating the process of reprogramming, which are actively discussed.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Yuliya V Markitantova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
30
|
Neural stem cells secrete factors facilitating brain regeneration upon constitutive Raf-Erk activation. Sci Rep 2016; 6:32025. [PMID: 27554447 PMCID: PMC4995508 DOI: 10.1038/srep32025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
The intracellular Raf-Erk signaling pathway is activated during neural stem cell (NSC) proliferation, and neuronal and astrocytic differentiation. A key question is how this signal can evoke multiple and even opposing NSC behaviors. We show here, using a constitutively active Raf (ca-Raf), that Raf-Erk activation in NSCs induces neuronal differentiation in a cell-autonomous manner. By contrast, it causes NSC proliferation and the formation of astrocytes in an extrinsic autocrine/paracrine manner. Thus, treatment of NSCs with medium (CM) conditioned in ca-Raf-transduced NSCs (Raf-CM; RCM) became activated to form proliferating astrocytes resembling radial glial cells (RGCs) or adult-type NSCs. Infusion of Raf-CM into injured mouse brains caused expansion of the NSC population in the subventricular zone, followed by the formation of new neurons that migrated to the damaged site. Our study shows an example how molecular mechanisms dissecting NSC behaviors can be utilized to develop regenerative therapies in brain disorders.
Collapse
|
31
|
Liu LS, Zhao LY, Wang SH, Jiang JP. Research proceedings on amphibian model organisms. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 37:237-45. [PMID: 27469255 PMCID: PMC4980064 DOI: 10.13918/j.issn.2095-8137.2016.4.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022]
Abstract
Model organisms have long been important in biology and medicine due to their specific characteristics. Amphibians, especially Xenopus, play key roles in answering fundamental questions on developmental biology, regeneration, genetics, and toxicology due to their large and abundant eggs, as well as their versatile embryos, which can be readily manipulated and developed in vivo. Furthermore, amphibians have also proven to be of considerable benefit in human disease research due to their conserved cellular developmental and genomic organization. This review gives a brief introduction on the progress and limitations of these animal models in biology and human disease research, and discusses the potential and challenge of Microhyla fissipes as a new model organism.
Collapse
Affiliation(s)
- Lu-Sha Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lan-Ying Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Hong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Ping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
32
|
Wang H, Simon A. Skeletal muscle dedifferentiation during salamander limb regeneration. Curr Opin Genet Dev 2016; 40:108-112. [PMID: 27399887 DOI: 10.1016/j.gde.2016.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 10/25/2022]
Abstract
Salamanders can regenerate entire limbs throughout their life. A critical step during limb regeneration is formation of a blastema, which gives rise to the new extremity. Salamander limb regeneration has historically been tightly linked to the term dedifferentiation, however, with refined research tools it is important to revisit the definition of dedifferentiation in the context. To what extent do differentiated cells revert their differentiated phenotypes? To what extent do progeny from differentiated cells cross lineage boundaries during regeneration? How do cell cycle plasticity and lineage plasticity relate to each other? What is the relationship between dedifferentiation of specialized cells and activation of tissue resident stem cells in terms of their contribution to the new limb? Here we highlight these problems through the case of skeletal muscle.
Collapse
Affiliation(s)
- Heng Wang
- Karolinska Institute, Department of Cell and Molecular Biology, Berzelius väg 35, 17177 Stockholm, Sweden
| | - András Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Berzelius väg 35, 17177 Stockholm, Sweden.
| |
Collapse
|
33
|
|
34
|
Heme oxygenase-1 attenuates IL-1β induced alteration of anabolic and catabolic activities in intervertebral disc degeneration. Sci Rep 2016; 6:21190. [PMID: 26877238 PMCID: PMC4753421 DOI: 10.1038/srep21190] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is characterized by disordered extracellular matrix (ECM) metabolism, implicating subdued anabolism and enhanced catabolic activities in the nucleus pulposus (NP) of discs. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) are considered to be potent mediators of ECM breakdown. Hemeoxygenase-1 (HO-1) has been reported to participate in cellular anti-inflammatory processes. The purpose of this study was to investigate HO-1 modulation of ECM metabolism in human NP cells under IL-1β stimulation. Our results revealed that expression of HO-1 decreased considerably during IDD progression. Induction of HO-1 by cobalt protoporphyrin IX attenuated the inhibition of sulfate glycosaminoglycan and collagen type II (COL-II) synthesis and ameliorated the reduced expressions of aggrecan, COL-II, SOX-6 and SOX-9 mediated by IL-1β. Induction of HO-1 also reversed the effect of IL-1β on expression of the catabolic markers matrix metalloproteinases-1, 3, 9 and 13. This was combined with inhibition of the activation of mitogen-activated protein kinase signaling. These findings suggest that HO-1 might play a pivotal role in IDD, and that manipulating HO-1 expression might mitigate the impairment of ECM metabolism in NP, thus potentially offering a novel therapeutic approach to the treatment of IDD.
Collapse
|
35
|
Frasch M. Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Curr Top Dev Biol 2016; 116:331-55. [PMID: 26970627 DOI: 10.1016/bs.ctdb.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In some rare and striking cases, striated muscle fibers of the skeleton or body wall, which consist of terminally differentiated syncytia with complex ultrastructures, were found to be capable of dedifferentiating and fragmenting into mononucleate cells. Examples of such events will be discussed in which the dedifferentiated cells reenter the cell cycle, proliferate, and rebuilt damaged muscle fibers during limb regeneration or transdifferentiate to generate new types of muscles during normal development.
Collapse
Affiliation(s)
- Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
36
|
Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation. Stem Cell Res 2015; 15:542-553. [DOI: 10.1016/j.scr.2015.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 11/20/2022] Open
|
37
|
Yun MH. Changes in Regenerative Capacity through Lifespan. Int J Mol Sci 2015; 16:25392-432. [PMID: 26512653 PMCID: PMC4632807 DOI: 10.3390/ijms161025392] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022] Open
Abstract
Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging.
Collapse
Affiliation(s)
- Maximina H Yun
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
38
|
Wang H, Lööf S, Borg P, Nader GA, Blau HM, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun 2015; 6:7916. [PMID: 26243583 PMCID: PMC4765497 DOI: 10.1038/ncomms8916] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/24/2015] [Indexed: 01/09/2023] Open
Abstract
The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of ‘undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation. Newts can regenerate amputated limbs via unknown mechanism involving dedifferentiation of cells in the stump into progenitors that contribute to the new appendages. Here the authors show that skeletal muscle dedifferentiation in regenerating newt limbs relies on a diverted programmed cell death response by myofibers.
Collapse
Affiliation(s)
- Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Sara Lööf
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Paula Borg
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Gustavo A Nader
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, California 94305, United States
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
39
|
Santos LJ, Reis RL, Gomes ME. Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol 2015; 33:471-9. [DOI: 10.1016/j.tibtech.2015.06.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
|
40
|
Kawesa S, Vanstone J, Tsilfidis C. A differential response to newt regeneration extract by C2C12 and primary mammalian muscle cells. Skelet Muscle 2015; 5:19. [PMID: 26090089 PMCID: PMC4471912 DOI: 10.1186/s13395-015-0044-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Background Dedifferentiation, a process whereby differentiated cells lose their specialized characteristics and revert to a less differentiated state, plays a key role in the regeneration process in urodele amphibians such as the red spotted newt, Notophthalmus viridescens. Dedifferentiation of fully mature tissues is generally absent in mammalian cells. Previous studies have shown that mouse C2C12 multinucleated myotubes treated with extract derived from regenerating newt forelimbs can re-enter the cell cycle, fragment into mononucleated cells, and proliferate. However, this response has been difficult to replicate. Methods We isolated extract from early newt forelimb regenerates and assessed its effects on differentiation of proliferating primary and C2C12 myoblasts. We also treated fully differentiated primary and C2C12 myotube cultures with extract and assessed cell cycle re-entry and myotube fragmentation. Results We have confirmed the results obtained in C2C12 cells and expanded these studies to also examine the effects of newt regeneration extracts on primary muscle cells. Newt extract can block differentiation of both C2C12 and primary myoblasts. Once differentiation is induced, treatment with newt extract causes cell cycle re-entry and fragmentation of C2C12 myotubes. Downregulation of p21 and muscle-specific markers is also induced. Primary myotubes also fragment in response to extract treatment, and the fragmented cells remain viable for long periods of time in culture. However, unlike C2C12 cells, primary muscle cells do not re-enter the cell cycle in response to treatment with newt extracts. Conclusions Dedifferentiation of fully mature muscle occurs during regeneration in the newt forelimb to contribute cells to the regeneration process. Our study shows that extracts derived from regenerating newt forelimbs can induce dedifferentiation, cell cycle re-entry, and fragmentation of mouse C2C12 cells but can only induce fragmentation in primary muscle cells. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Kawesa
- Ottawa Hospital Research Institute, Vision Research/Regenerative Medicine Program, 501 Smyth Road, Box 307, Ottawa, Ontario K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
| | - Jason Vanstone
- Ottawa Hospital Research Institute, Vision Research/Regenerative Medicine Program, 501 Smyth Road, Box 307, Ottawa, Ontario K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada ; Current address: Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1 Canada
| | - Catherine Tsilfidis
- Ottawa Hospital Research Institute, Vision Research/Regenerative Medicine Program, 501 Smyth Road, Box 307, Ottawa, Ontario K1H 8L6 Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
| |
Collapse
|
41
|
Yun MH, Davaapil H, Brockes JP. Recurrent turnover of senescent cells during regeneration of a complex structure. eLife 2015; 4. [PMID: 25942455 PMCID: PMC4434796 DOI: 10.7554/elife.05505] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/03/2015] [Indexed: 01/01/2023] Open
Abstract
Cellular senescence has been recently linked to the promotion of age-related pathologies, including a decline in regenerative capacity. While such capacity deteriorates with age in mammals, it remains intact in species such as salamanders, which have an extensive repertoire of regeneration and can undergo multiple episodes through their lifespan. Here we show that, surprisingly, there is a significant induction of cellular senescence during salamander limb regeneration, but that rapid and effective mechanisms of senescent cell clearance operate in normal and regenerating tissues. Furthermore, the number of senescent cells does not increase upon repetitive amputation or ageing, in contrast to mammals. Finally, we identify the macrophage as a critical player in this efficient senescent cell clearance mechanism. We propose that effective immunosurveillance of senescent cells in salamanders supports their ability to undergo regeneration throughout their lifespan. DOI:http://dx.doi.org/10.7554/eLife.05505.001 As humans and other mammals get older, they become less able to recover from injury or repair damage to their tissues. This happens because mammalian cells gradually lose the ability to divide to produce new cells. This process is called senescence and it helps to prevent cancer by stopping old cells that are more likely to carry harmful mutations from replicating. However the link between senescence and many age-related declines in human health has led scientists to ask whether targeting senescent cells might be one way to treat age-related conditions. Some organisms can regenerate their tissues throughout their lives; and creatures like salamanders are even able to re-grow limbs and organs if they are lost. Scientists are eager to learn how these animals are able to do this when humans are not, and answering this and related questions might help us to develop therapies that boost our ability to recover from injury or age-related diseases. Yun et al. took a closer look at senescence in salamanders and unexpectedly found that a large number of senescent cells appeared in a salamander limb as it regenerates. But, by the time the limb had completely regrown, these senescent cells had disappeared. Further experiments revealed that when normal and senescent cells are implanted into a salamander the senescent cells also quickly disappear. These findings suggest that senescent cells may possibly play a role in the regeneration process, and that salamanders have a system that can efficiently destroy these cells. Previous research had suggested that parts of the immune system, in particular cells called macrophages, help to eliminate senescent cells in some tissues. Yun et al. found that macrophages did accumulate around senescent cells in the regenerating limbs of living salamanders. And when a toxin was used to destroy the macrophages in some salamanders, the senescent cells were not cleared in the way they were in salamanders with active macrophages. Hence, macrophages are an essential part of the mechanism that eliminates senescent cells from salamander tissues. This efficient mechanism for the elimination of senescent cells could explain how salamanders are able to maintain their ability to regenerate in spite of ageing. These findings also reveal the salamander as a model system that could be used to find new ways to target senescent cells, which could be eventually used in anti-ageing therapies. DOI:http://dx.doi.org/10.7554/eLife.05505.002
Collapse
Affiliation(s)
- Maximina H Yun
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Hongorzul Davaapil
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jeremy P Brockes
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
42
|
Ferretti P, Kumar A. Derivation and long-term culture of cells from newt adult limbs and limb blastemas. Methods Mol Biol 2015; 1290:171-85. [PMID: 25740486 DOI: 10.1007/978-1-4939-2495-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Notwithstanding the key importance of in vivo models for understanding patterning and cellular interactions in the regenerating tailed amphibian (salamander) limb, dissection of molecular mechanisms, as in other species, can be greatly aided by robust in vitro models. This chapter focuses on derivation and maintenance of cell lines from adult post-metamorphic salamanders and in particular cells derived from normal and regenerating limbs. We also describe a protocol for nucleofecting newt cells that can be used both to investigate the gene function in short-term studies and to establish stable cell lines.
Collapse
Affiliation(s)
- Patrizia Ferretti
- UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK,
| | | |
Collapse
|