1
|
Georgakopoulos I, Kouloulias V, Ntoumas GN, Desse D, Koukourakis I, Kougioumtzopoulou A, Kanakis G, Zygogianni A. Radiotherapy and Testicular Function: A Comprehensive Review of the Radiation-Induced Effects with an Emphasis on Spermatogenesis. Biomedicines 2024; 12:1492. [PMID: 39062064 PMCID: PMC11274587 DOI: 10.3390/biomedicines12071492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This comprehensive review explores the existing literature on the effects of radiotherapy on testicular function, focusing mainly on spermatogenic effects, but also with a brief report on endocrine abnormalities. Data from animal experiments as well as results on humans either from clinical studies or from accidental radiation exposure are included to demonstrate a complete perspective on the level of vulnerability of the testes and their various cellular components to irradiation. Even relatively low doses of radiation, produced either from direct testicular irradiation or more commonly from scattered doses, may often lead to detrimental effects on sperm count and quality. Leydig cells are more radioresistant; however, they can still be influenced by the doses used in clinical practice. The potential resultant fertility complications of cancer radiotherapy should be always discussed with the patient before treatment initiation, and all available and appropriate fertility preservation measures should be taken to ensure the future reproductive potential of the patient. The topic of potential hereditary effects of germ cell irradiation remains a controversial field with ethical implications, requiring future research.
Collapse
Affiliation(s)
- Ioannis Georgakopoulos
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| | - Vassilios Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Rimini 1, 124 62 Athens, Greece; (V.K.); (A.K.)
| | - Georgios-Nikiforos Ntoumas
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| | - Dimitra Desse
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| | - Ioannis Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| | - Andromachi Kougioumtzopoulou
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Rimini 1, 124 62 Athens, Greece; (V.K.); (A.K.)
| | - George Kanakis
- Department of Endocrinology, Athens Naval & VA Hospital, 115 21 Athens, Greece;
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynaecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| |
Collapse
|
2
|
Morimoto H, Ogonuki N, Matoba S, Kanatsu-Shinohara M, Ogura A, Shinohara T. Restoration of fertility in nonablated recipient mice after spermatogonial stem cell transplantation. Stem Cell Reports 2024; 19:443-455. [PMID: 38458191 PMCID: PMC11096438 DOI: 10.1016/j.stemcr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024] Open
Abstract
Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Malatesta P, Kyriakidis K, Hada M, Ikeda H, Takahashi A, Saganti PB, Georgakilas AG, Michalopoulos I. Differential Gene Expression in Human Fibroblasts Simultaneously Exposed to Ionizing Radiation and Simulated Microgravity. Biomolecules 2024; 14:88. [PMID: 38254688 PMCID: PMC10812944 DOI: 10.3390/biom14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
During future space missions, astronauts will be exposed to cosmic radiation and microgravity (μG), which are known to be health risk factors. To examine the differentially expressed genes (DEG) and their prevalent biological processes and pathways as a response to these two risk factors simultaneously, 1BR-hTERT human fibroblast cells were cultured under 1 gravity (1G) or simulated μG for 48 h in total and collected at 0 (sham irradiated), 3 or 24 h after 1 Gy of X-ray or Carbon-ion (C-ion) irradiation. A three-dimensional clinostat was used for the simulation of μG and the simultaneous radiation exposure of the samples. The RNA-seq method was used to produce lists of differentially expressed genes between different environmental conditions. Over-representation analyses were performed and the enriched biological pathways and targeting transcription factors were identified. Comparing sham-irradiated cells under simulated μG and 1G conditions, terms related to response to oxygen levels and muscle contraction were identified. After irradiation with X-rays or C-ions under 1G, identified DEGs were found to be involved in DNA damage repair, signal transduction by p53 class mediator, cell cycle arrest and apoptosis pathways. The same enriched pathways emerged when cells were irradiated under simulated μG condition. Nevertheless, the combined effect attenuated the transcriptional response to irradiation which may pose a subtle risk in space flights.
Collapse
Affiliation(s)
- Polina Malatesta
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Konstantinos Kyriakidis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- UC Santa Cruz Genomics Institute, Santa Cruz, CA 95060, USA
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (M.H.); (P.B.S.)
| | - Hiroko Ikeda
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan;
| | - Premkumar B. Saganti
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (M.H.); (P.B.S.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
| |
Collapse
|
4
|
Miyazaki T, Kanatsu-Shinohara M, Ogonuki N, Matoba S, Ogura A, Yabe-Nishimura C, Zhang H, Pommier Y, Trumpp A, Shinohara T. Glutamine protects mouse spermatogonial stem cells against NOX1-derived ROS for sustaining self-renewal division in vitro. Development 2023; 150:dev201157. [PMID: 36897562 PMCID: PMC10698750 DOI: 10.1242/dev.201157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
Reactive oxygen species (ROS) are generated from NADPH oxidases and mitochondria; they are generally harmful for stem cells. Spermatogonial stem cells (SSCs) are unique among tissue-stem cells because they undergo ROS-dependent self-renewal via NOX1 activation. However, the mechanism by which SSCs are protected from ROS remains unknown. Here, we demonstrate a crucial role for Gln in ROS protection using cultured SSCs derived from immature testes. Measurements of amino acids required for SSC cultures revealed the indispensable role of Gln in SSC survival. Gln induced Myc expression to drive SSC self-renewal in vitro, whereas Gln deprivation triggered Trp53-dependent apoptosis and impaired SSC activity. However, apoptosis was attenuated in cultured SSCs that lacked NOX1. In contrast, cultured SSCs lacking Top1mt mitochondria-specific topoisomerase exhibited poor mitochondrial ROS production and underwent apoptosis. Gln deprivation reduced glutathione production; supra-molar Asn supplementation allowed offspring production from SSCs cultured without Gln. Therefore, Gln ensures ROS-dependent SSC-self-renewal by providing protection against NOX1 and inducing Myc.
Collapse
Affiliation(s)
- Takehiro Miyazaki
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Narumi Ogonuki
- RIKEN, Bioresource Research Center, Tsukuba 305-0074, Japan
| | - Shogo Matoba
- RIKEN, Bioresource Research Center, Tsukuba 305-0074, Japan
| | - Atsuo Ogura
- RIKEN, Bioresource Research Center, Tsukuba 305-0074, Japan
| | - Chihiro Yabe-Nishimura
- Deparment of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 606-8566, Japan
| | - Hongliang Zhang
- Deveopmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Deveopmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforshungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Stavast CJ, van Zuijen I, Karkoulia E, Özçelik A, van Hoven-Beijen A, Leon LG, Voerman JSA, Janssen GMC, van Veelen PA, Burocziova M, Brouwer RWW, van IJcken WFJ, Maas A, Bindels EM, van der Velden VHJ, Schliehe C, Katsikis PD, Alberich-Jorda M, Erkeland SJ. The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis. Leukemia 2022; 36:687-700. [PMID: 34741119 PMCID: PMC8885418 DOI: 10.1038/s41375-021-01461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.
Collapse
Affiliation(s)
- Christiaan J Stavast
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Iris van Zuijen
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Elena Karkoulia
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Arman Özçelik
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | | | - Leticia G Leon
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Jane S A Voerman
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Monika Burocziova
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rutger W W Brouwer
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Alex Maas
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Eric M Bindels
- Erasmus MC, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands
| | | | - Christopher Schliehe
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Peter D Katsikis
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Meritxell Alberich-Jorda
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Stefan J Erkeland
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Genomic stability of mouse spermatogonial stem cells in vitro. Sci Rep 2021; 11:24199. [PMID: 34921203 PMCID: PMC8683475 DOI: 10.1038/s41598-021-03658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
Germline mutations underlie genetic diversity and species evolution. Previous studies have assessed the theoretical mutation rates and spectra in germ cells mostly by analyzing genetic markers and reporter genes in populations and pedigrees. This study reported the direct measurement of germline mutations by whole-genome sequencing of cultured spermatogonial stem cells in mice, namely germline stem (GS) cells, together with multipotent GS (mGS) cells that spontaneously dedifferentiated from GS cells. GS cells produce functional sperm that can generate offspring by transplantation into seminiferous tubules, whereas mGS cells contribute to germline chimeras by microinjection into blastocysts in a manner similar to embryonic stem cells. The estimated mutation rate of GS and mGS cells was approximately 0.22 × 10-9 and 1.0 × 10-9 per base per cell population doubling, respectively, indicating that GS cells have a lower mutation rate compared to mGS cells. GS and mGS cells also showed distinct mutation patterns, with C-to-T transition as the most frequent in GS cells and C-to-A transversion as the most predominant in mGS cells. By karyotype analysis, GS cells showed recurrent trisomy of chromosomes 15 and 16, whereas mGS cells frequently exhibited chromosomes 1, 6, 8, and 11 amplifications, suggesting that distinct chromosomal abnormalities confer a selective growth advantage for each cell type in vitro. These data provide the basis for studying germline mutations and a foundation for the future utilization of GS cells for reproductive technology and clinical applications.
Collapse
|
7
|
Bowen ME, Mulligan AS, Sorayya A, Attardi LD. Puma- and Caspase9-mediated apoptosis is dispensable for p53-driven neural crest-based developmental defects. Cell Death Differ 2021; 28:2083-2094. [PMID: 33574585 PMCID: PMC8257737 DOI: 10.1038/s41418-021-00738-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/20/2023] Open
Abstract
Inappropriate activation of the p53 transcription factor is thought to contribute to the developmental phenotypes in a range of genetic syndromes. Whether p53 activation drives these developmental phenotypes by triggering apoptosis, cell cycle arrest, or other p53 cellular responses, however, has remained elusive. As p53 hyperactivation in embryonic neural crest cells (NCCs) drives a number of phenotypes, including abnormal craniofacial and neuronal development, we investigate the basis for p53 action in this context. We show that p53-driven developmental defects are associated with the induction of a robust pro-apoptotic transcriptional signature. Intriguingly, however, deleting Puma or Caspase9, which encode key components of the intrinsic apoptotic pathway, does not rescue craniofacial, neuronal or pigmentation defects triggered by p53 hyperactivation in NCCs. Immunostaining analyses for two key apoptosis markers confirm that deleting Puma or Caspase9 does indeed impair p53-hyperactivation-induced apoptosis in NCCs. Furthermore, we demonstrate that p53 hyperactivation does not trigger a compensatory dampening of cell cycle progression in NCCs upon inactivation of apoptotic pathways. Together, our results indicate that p53-driven craniofacial, neuronal and pigmentation defects can arise in the absence of apoptosis and cell cycle arrest, suggesting that p53 hyperactivation can act via alternative pathways to trigger developmental phenotypes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abigail S Mulligan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aryo Sorayya
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Mori Y, Ogonuki N, Hasegawa A, Kanatsu-Shinohara M, Ogura A, Wang Y, McCarrey JR, Shinohara T. OGG1 protects mouse spermatogonial stem cells from reactive oxygen species in culture†. Biol Reprod 2020; 104:706-716. [PMID: 33252132 DOI: 10.1093/biolre/ioaa216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
Although reactive oxygen species (ROS) are required for spermatogonial stem cell (SSC) self-renewal, they induce DNA damage and are harmful to SSCs. However, little is known about how SSCs protect their genome during self-renewal. Here, we report that Ogg1 is essential for SSC protection against ROS. While cultured SSCs exhibited homologous recombination-based DNA double-strand break repair at levels comparable with those in pluripotent stem cells, they were significantly more resistant to hydrogen peroxide than pluripotent stem cells or mouse embryonic fibroblasts, suggesting that they exhibit high levels of base excision repair (BER) activity. Consistent with this observation, cultured SSCs showed significantly lower levels of point mutations than somatic cells, and showed strong expression of BER-related genes. Functional screening revealed that Ogg1 depletion significantly impairs survival of cultured SSCs upon hydrogen peroxide exposure. Thus, our results suggest increased expression of BER-related genes, including Ogg1, protects SSCs from ROS-induced damage.
Collapse
Affiliation(s)
- Yoshifumi Mori
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Narumi Ogonuki
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Ayumi Hasegawa
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Atsuo Ogura
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
10
|
DNA damage in aging, the stem cell perspective. Hum Genet 2019; 139:309-331. [PMID: 31324975 DOI: 10.1007/s00439-019-02047-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.
Collapse
|
11
|
Zhang X, Xia Q, Wei R, Song H, Mi J, Lin Z, Yang Y, Sun Z, Zou K. Melatonin protects spermatogonia from the stress of chemotherapy and oxidation via eliminating reactive oxidative species. Free Radic Biol Med 2019; 137:74-86. [PMID: 30986493 DOI: 10.1016/j.freeradbiomed.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
Busulfan is a widely used chemotherapeutic drug for chronic myelogenous leukemia and bone marrow transplantation. As a cell cycle nonspecific alkylation agent, busulfan has a severe side effect on germ cells, especially on spermatogonia before meiosis. Studies have revealed that busulfan causes DNA strand crosslinks in spermatogonia and induces apoptosis, and many corresponding strategies have been developed to ameliorate the side effects. However, fertility maintenance after busulfan treatment is still a challenging project in the clinic. Here, we demonstrated that continuous injection of melatonin effectively alleviated germline cytotoxicity both in recipient mice and cultured spermatogonia, and busulfan/melatonin recipient mice produced normal litters. We further revealed that melatonin rescues spermatogonia from apoptosis by neutralizing reactive oxidative species (ROS) induced by busulfan and recovered the phosphorylation of ATM and p53 to normal levels, and as a result apoptosis in spermatogonial progenitor cells was avoided. This study reports that pineal gland hormone melatonin effectively protects spermatogonia from the stress of chemotherapy and oxidation and reveals the underlying molecular mechanisms, which will provide an important hint for fertility protection in clinic.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongfei Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqi Mi
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 91010, CA, USA
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Yang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 91010, CA, USA
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Bloom JC, Loehr AR, Schimenti JC, Weiss RS. Germline genome protection: implications for gamete quality and germ cell tumorigenesis. Andrology 2019; 7:516-526. [PMID: 31119900 DOI: 10.1111/andr.12651] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Germ cells have a unique and critical role as the conduit for hereditary information and therefore employ multiple strategies to protect genomic integrity and avoid mutations. Unlike somatic cells, which often respond to DNA damage by arresting the cell cycle and conducting DNA repair, germ cells as well as long-lived pluripotent stem cells typically avoid the use of error-prone repair mechanisms and favor apoptosis, reducing the risk of genetic alterations. Testicular germ cell tumors, the most common cancers of young men, arise from pre-natal germ cells. OBJECTIVES To summarize the current understanding of DNA damage response mechanisms in pre-meiotic germ cells and to discuss how they impact both the origins of testicular germ cell tumors and their remarkable responsiveness to genotoxic chemotherapy. MATERIALS AND METHODS We conducted a review of literature gathered from PubMed regarding the DNA damage response properties of testicular germ cell tumors and the germ cells from which they arise, as well as the influence of these mechanisms on therapeutic responses by testicular germ cell tumors. RESULTS AND DISCUSSION This review provides a comprehensive evaluation of how the developmental origins of male germ cells and their inherent germ cell-like DNA damage response directly impact the development and therapeutic sensitivity of testicular germ cell tumors. CONCLUSIONS The DNA damage response of germ cells directly impacts the development and therapeutic sensitivity of testicular germ cell tumors. Recent advances in the study of primordial germ cells, post-natal mitotically dividing germ cells, and pluripotent stem cells will allow for new investigations into the initiation, progression, and treatment of testicular germ cell tumors.
Collapse
Affiliation(s)
- J C Bloom
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - A R Loehr
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - J C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - R S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Zheng Y, Lei Q, Jongejan A, Mulder CL, van Daalen SKM, Mastenbroek S, Hwang G, Jordan PW, Repping S, Hamer G. The influence of retinoic acid-induced differentiation on the radiation response of male germline stem cells. DNA Repair (Amst) 2018; 70:55-66. [PMID: 30179733 PMCID: PMC6237089 DOI: 10.1016/j.dnarep.2018.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Lifelong mammalian male fertility is maintained through an intricate balance between spermatogonial proliferation and differentiation. DNA damage in spermatogonia, for instance caused by chemo- or radiotherapy, can induce cell cycle arrest or germ cell apoptosis, possibly resulting in male infertility. Spermatogonia are generally more radiosensitive and prone to undergo apoptosis than somatic cells. Among spermatogonial subtypes the response to DNA damage is differentially modulated; undifferentiated spermatogonia, including the spermatogonial stem cells (SSCs), are relatively radio-resistant, whereas differentiating spermatogonia are very radiosensitive. To investigate the molecular mechanisms underlying this difference, we used an in vitro system consisting of mouse male germline stem (GS) cells that can be induced to differentiate. Using RNA-sequencing analysis, we analyzed the response of undifferentiated and differentiating GS cells to ionizing radiation (IR). At the RNA expression level, both undifferentiated and differentiating GS cells showed a very similar response to IR. Protein localization of several genes found to be involved in either spermatogonial differentiation or radiation response was investigated using mouse testis sections. For instance, we found that the transcription factor PDX1 was specifically expressed in undifferentiated spermatogonia and thus may be a novel marker for these cells. Interestingly, also at the protein level, undifferentiated GS cells showed a more pronounced upregulation of p53 in response to IR than differentiating GS cells. The higher p53 protein level in undifferentiated spermatogonia may preferentially induce cell cycle arrest, thereby giving these cells more time to repair inflicted DNA damage and increase their radio-resistance.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China; Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Center Amsterdam, The Netherlands
| | - Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Grace Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Takashima S, Shinohara T. Culture and transplantation of spermatogonial stem cells. Stem Cell Res 2018; 29:46-55. [DOI: 10.1016/j.scr.2018.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/24/2018] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
|
15
|
Germline Stem Cell Activity Is Sustained by SALL4-Dependent Silencing of Distinct Tumor Suppressor Genes. Stem Cell Reports 2017; 9:956-971. [PMID: 28867346 PMCID: PMC5599261 DOI: 10.1016/j.stemcr.2017.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023] Open
Abstract
Sustained spermatogenesis in adult males and fertility recovery following germ cell depletion are dependent on undifferentiated spermatogonia. We previously demonstrated a key role for the transcription factor SALL4 in spermatogonial differentiation. However, whether SALL4 has broader roles within spermatogonia remains unclear despite its ability to co-regulate genes with PLZF, a transcription factor required for undifferentiated cell maintenance. Through development of inducible knockout models, we show that short-term integrity of differentiating but not undifferentiated populations requires SALL4. However, SALL4 loss was associated with long-term functional decline of undifferentiated spermatogonia and disrupted stem cell-driven regeneration. Mechanistically, SALL4 associated with the NuRD co-repressor and repressed expression of the tumor suppressor genes Foxl1 and Dusp4. Aberrant Foxl1 activation inhibited undifferentiated cell growth and survival, while DUSP4 suppressed self-renewal pathways. We therefore uncover an essential role for SALL4 in maintenance of undifferentiated spermatogonial activity and identify regulatory pathways critical for germline stem cell function.
Collapse
|
16
|
Ghadimi F, Shakeri M, Zhandi M, Zaghari M, Piryaei A, Moslehifar P, Rajabinejad A. Different approaches to establish infertile rooster. Anim Reprod Sci 2017; 186:31-36. [PMID: 28919176 DOI: 10.1016/j.anireprosci.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/13/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023]
Abstract
Several methods have been developed to suppress spermatogenesis in recipient males before spermatogonial stem cells (SSCs) transplantation. The aim of this study was to compare two different methods of depleting endogenous spermatogenesis in recipient ROSS 308 strain adult roosters. Gamma-radiation and alkylating agent busulfan were utilized to infertilize adult roosters (ROSS 308 strain). Two radiation therapy regimes (based on 60co isotope) were conducted locally to testes using 40Gy (5×8Gy with three-day intervals) and 30Gy (3×10Gy with three-day intervals). And two different levels of busulfan 60mg(40+20) and 50mg(30+20) with 10-day intervals were injected intraperitoneally. The results showed that both radiation therapy regimes and both busulfan levels reduced sperm motility and sperm concentration significantly compared with control group. Moreover, there were no significant differences between gamma radiation and busulfan treatments in progressive and total motility of sperm reduction. Sperm concentration reached to zero at the end of the 4th week of experiment in all treatment groups. Also histological examinations revealed that both treatments could significantly reduce the diameter of seminiferous tubules and thickness of epithelium. None of the treatments had significant effect on body weight in comparison with control group and the health status of experimental roosters remained good throughout the study. Given that, the risk probability of high doses of radiation exposure and busulfan, it can be concluded that the 30Gy (3×10Gy) and 50mg (30+20) are appropriate for suppression of endogenous spermatogenesis in mature roosters.
Collapse
Affiliation(s)
- Fereshteh Ghadimi
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Malak Shakeri
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Mahdi Zhandi
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Mojtaba Zaghari
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences
| | - Parham Moslehifar
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Alireza Rajabinejad
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| |
Collapse
|
17
|
Dai MS, Hall SJ, Vantangoli Policelli MM, Boekelheide K, Spade DJ. Spontaneous testicular atrophy occurs despite normal spermatogonial proliferation in a Tp53 knockout rat. Andrology 2017; 5:1141-1152. [PMID: 28834365 DOI: 10.1111/andr.12409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
The tumor suppressor protein p53 (TP53) has many functions in cell cycle regulation, apoptosis, and DNA damage repair and is also involved in spermatogenesis in the mouse. To evaluate the role of p53 in spermatogenesis in the rat, we characterized testis biology in adult males of a novel p53 knockout rat (SD-Tp53tm1sage ). p53 knockout rats exhibited variable levels of testicular atrophy, including significantly decreased testis weights, atrophic seminiferous tubules, decreased seminiferous tubule diameter, and elevated spermatocyte TUNEL labeling rates, indicating a dysfunction in spermatogenesis. Phosphorylated histone H2AX protein levels and distribution were similar in the non-atrophic seminiferous tubules of both genotypes, showing evidence of pre-synaptic DNA double-strand breaks in leptotene and zygotene spermatocytes, preceding cell death in p53 knockout rat testes. Quantification of the spermatogonial stem cell (SSC) proliferation rate with bromodeoxyuridine (BrdU) labeling, in addition to staining with the undifferentiated type A spermatogonial marker GDNF family receptor alpha-1 (GFRA1), indicated that the undifferentiated spermatogonial population was normal in p53 knockout rats. Following exposure to 0.5 or 5 Gy X-ray, p53 knockout rats exhibited no germ cell apoptotic response beyond their unirradiated phenotype, while germ cell death in wild-type rat testes was elevated to a level similar to the unexposed p53 knockout rats. This study indicates that seminiferous tubule atrophy occurs following spontaneous, elevated levels of spermatocyte death in the p53 knockout rat. This phenomenon is variable across individual rats. These results indicate a critical role for p53 in rat germ cell survival and spermatogenesis.
Collapse
Affiliation(s)
- Matthew S Dai
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
18
|
Marjault HB, Allemand I. Consequences of irradiation on adult spermatogenesis: Between infertility and hereditary risk. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:340-348. [DOI: 10.1016/j.mrrev.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
|
19
|
Saadi H, Seillier M, Carrier A. The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 2015. [PMID: 26225460 DOI: 10.1016/j.biochi.2015.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.
Collapse
Affiliation(s)
- Houda Saadi
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Marion Seillier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France.
| |
Collapse
|
20
|
Niche signaling promotes stem cell survival in the Drosophila testis via the JAK-STAT target DIAP1. Dev Biol 2015; 404:27-39. [PMID: 25941003 DOI: 10.1016/j.ydbio.2015.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 11/22/2022]
Abstract
Tissue-specific stem cells are thought to resist environmental insults better than their differentiating progeny, but this resistance varies from one tissue to another, and the underlying mechanisms are not well-understood. Here, we use the Drosophila testis as a model system to study the regulation of cell death within an intact niche. This niche contains sperm-producing germline stem cells (GSCs) and accompanying somatic cyst stem cells (or CySCs). Although many signals are known to promote stem cell self-renewal in this tissue, including the highly conserved JAK-STAT pathway, the response of these stem cells to potential death-inducing signals, and factors promoting stem cell survival, have not been characterized. Here we find that both GSCs and CySCs resist cell death better than their differentiating progeny, under normal laboratory conditions and in response to potential death-inducing stimuli such as irradiation or starvation. To ask what might be promoting stem cell survival, we characterized the role of the anti-apoptotic gene Drosophila inhibitor of apoptosis 1 (diap1) in testis stem cells. DIAP1 protein is enriched in the GSCs and CySCs and is a JAK-STAT target. diap1 is necessary for survival of both GSCs and CySCs, and ectopic up-regulation of DIAP1 in somatic cyst cells is sufficient to non-autonomously rescue stress-induced cell death in adjacent differentiating germ cells (spermatogonia). Altogether, our results show that niche signals can promote stem cell survival by up-regulation of highly conserved anti-apoptotic proteins, and suggest that this strategy may underlie the ability of stem cells to resist death more generally.
Collapse
|