1
|
Luciani M, Garsia C, Beretta S, Cifola I, Peano C, Merelli I, Petiti L, Miccio A, Meneghini V, Gritti A. Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice. Nat Commun 2024; 15:9433. [PMID: 39487141 PMCID: PMC11530573 DOI: 10.1038/s41467-024-53613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NSCs) hold promise for treating neurodegenerative and demyelinating disorders. However, comprehensive studies on their identity and safety remain limited. In this study, we demonstrate that hiPSC-NSCs adopt a radial glia-associated signature, sharing key epigenetic and transcriptional characteristics with human fetal neural stem cells (hfNSCs) while exhibiting divergent profiles from glioblastoma stem cells. Long-term transplantation studies in mice showed robust and stable engraftment of hiPSC-NSCs, with predominant differentiation into glial cells and no evidence of tumor formation. Additionally, we identified the Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) as a regulator of astroglial differentiation in hiPSC-NSCs. These findings provide valuable transcriptional and epigenetic reference datasets to prospectively define the maturation stage of NSCs derived from different hiPSC sources and demonstrate the long-term safety of hiPSC-NSCs, reinforcing their potential as a viable alternative to hfNSCs for clinical applications.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Garsia
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
- Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Luca Petiti
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Annarita Miccio
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
2
|
Todorov H, Weißbach S, Schlichtholz L, Mueller H, Hartwich D, Gerber S, Winter J. Stage-specific expression patterns and co-targeting relationships among miRNAs in the developing mouse cerebral cortex. Commun Biol 2024; 7:1366. [PMID: 39433948 PMCID: PMC11493953 DOI: 10.1038/s42003-024-07092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
microRNAs are crucial regulators of brain development, however, miRNA regulatory networks are not sufficiently well characterized. By performing small RNA-seq of the mouse embryonic cortex at E14, E17, and P0 as well as in neural progenitor cells and neurons, here we detected clusters of miRNAs that were co-regulated at distinct developmental stages. miRNAs such as miR-92a/b acted as hubs during early, and miR-124 and miR-137 during late neurogenesis. Notably, validated targets of P0 hub miRNAs were enriched for downregulated genes related to stem cell proliferation, negative regulation of neuronal differentiation and RNA splicing, among others, suggesting that miRNAs are particularly important for modulating transcriptional programs of crucial factors that guide the switch to neuronal differentiation. As most genes contain binding sites for more than one miRNA, we furthermore constructed a co-targeting network where numerous miRNAs shared more targets than expected by chance. Using luciferase reporter assays, we demonstrated that simultaneous binding of miRNA pairs to neurodevelopmentally relevant genes exerted an enhanced transcriptional silencing effect compared to single miRNAs. Taken together, we provide a comprehensive resource of miRNA longitudinal expression changes during murine corticogenesis. Furthermore, we highlight several potential mechanisms through which miRNA regulatory networks can shape embryonic brain development.
Collapse
Affiliation(s)
- Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephan Weißbach
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Schlichtholz
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany
| | - Hanna Mueller
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dewi Hartwich
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
4
|
Gordillo-Sampedro S, Antounians L, Wei W, Mufteev M, Lendemeijer B, Kushner SA, de Vrij FMS, Zani A, Ellis J. iPSC-derived healthy human astrocytes selectively load miRNAs targeting neuronal genes into extracellular vesicles. Mol Cell Neurosci 2024; 129:103933. [PMID: 38663691 DOI: 10.1016/j.mcn.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/31/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Astrocytes are in constant communication with neurons during the establishment and maturation of functional networks in the developing brain. Astrocytes release extracellular vesicles (EVs) containing microRNA (miRNA) cargo that regulates transcript stability in recipient cells. Astrocyte released factors are thought to be involved in neurodevelopmental disorders. Healthy astrocytes partially rescue Rett Syndrome (RTT) neuron function. EVs isolated from stem cell progeny also correct aspects of RTT. EVs cross the blood-brain barrier (BBB) and their cargo is found in peripheral blood which may allow non-invasive detection of EV cargo as biomarkers produced by healthy astrocytes. Here we characterize miRNA cargo and sequence motifs in healthy human astrocyte derived EVs (ADEVs). First, human induced Pluripotent Stem Cells (iPSC) were differentiated into Neural Progenitor Cells (NPCs) and subsequently into astrocytes using a rapid differentiation protocol. iPSC derived astrocytes expressed specific markers, displayed intracellular calcium transients and secreted ADEVs. miRNAs were identified by RNA-Seq on astrocytes and ADEVs and target gene pathway analysis detected brain and immune related terms. The miRNA profile was consistent with astrocyte identity, and included approximately 80 miRNAs found in astrocytes that were relatively depleted in ADEVs suggestive of passive loading. About 120 miRNAs were relatively enriched in ADEVs and motif analysis discovered binding sites for RNA binding proteins FUS, SRSF7 and CELF5. miR-483-5p was the most significantly enriched in ADEVs. This miRNA regulates MECP2 expression in neurons and has been found differentially expressed in blood samples from RTT patients. Our results identify potential miRNA biomarkers selectively sorted into ADEVs and implicate RNA binding protein sequence dependent mechanisms for miRNA cargo loading.
Collapse
Affiliation(s)
- Sara Gordillo-Sampedro
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lina Antounians
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Wei Wei
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Marat Mufteev
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Augusto Zani
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
6
|
Cremisi F, Vignali R. Translational control in cortical development. Front Neuroanat 2023; 16:1087949. [PMID: 36699134 PMCID: PMC9868627 DOI: 10.3389/fnana.2022.1087949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Differentiation of specific neuronal types in the nervous system is worked out through a complex series of gene regulation events. Within the mammalian neocortex, the appropriate expression of key transcription factors allocates neurons to different cortical layers according to an inside-out model and endows them with specific properties. Precise timing is required to ensure the proper sequential appearance of key transcription factors that dictate the identity of neurons within the different cortical layers. Recent evidence suggests that aspects of this time-controlled regulation of gene products rely on post-transcriptional control, and point at micro-RNAs (miRs) and RNA-binding proteins as important players in cortical development. Being able to simultaneously target many different mRNAs, these players may be involved in controlling the global expression of gene products in progenitors and post-mitotic cells, in a gene expression framework where parallel to transcriptional gene regulation, a further level of control is provided to refine and coordinate the appearance of the final protein products. miRs and RNA-binding proteins (RBPs), by delaying protein appearance, may play heterochronic effects that have recently been shown to be relevant for the full differentiation of cortical neurons and for their projection abilities. Such heterochronies may be the base for evolutionary novelties that have enriched the spectrum of cortical cell types within the mammalian clade.
Collapse
Affiliation(s)
- Federico Cremisi
- Laboratory of Biology, Department of Sciences, Scuola Normale Superiore, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| |
Collapse
|
7
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|
8
|
Chakraborty S, Woldemariam NT, Visnovska T, Rise ML, Boyce D, Santander J, Andreassen R. Characterization of miRNAs in Embryonic, Larval, and Adult Lumpfish Provides a Reference miRNAome for Cyclopterus lumpus. BIOLOGY 2022; 11:biology11010130. [PMID: 35053128 PMCID: PMC8773022 DOI: 10.3390/biology11010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Lumpfish (Cyclopterus lumpus) is an emergent aquaculture species, and its miRNA repertoire is still unknown. miRNAs are critical post-transcriptional modulators of teleost gene expression. Therefore, a lumpfish reference miRNAome was characterized by small RNA sequencing and miRDeep analysis of samples from different organs and developmental stages. The resulting miRNAome, an essential reference for future expression analyses, consists of 443 unique mature miRNAs from 391 conserved and eight novel miRNA genes. Enrichment of specific miRNAs in particular organs and developmental stages indicates that some conserved lumpfish miRNAs regulate organ and developmental stage-specific functions reported in other teleosts. Abstract MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway;
| | - Matthew L. Rise
- Department of Ocean Sciences, Faculty of Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
- Correspondence: (J.S.); (R.A.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
- Correspondence: (J.S.); (R.A.)
| |
Collapse
|
9
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
10
|
Wu J, Yu H, Huang H, Shu P, Peng X. Functions of noncoding RNAs in glial development. Dev Neurobiol 2021; 81:877-891. [PMID: 34402590 DOI: 10.1002/dneu.22848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Glia are widely distributed in the central nervous system and are closely related to cell metabolism, signal transduction, support, cell migration, and other nervous system development processes and functions. Glial development is complex and essential, including the processes of proliferation, differentiation, and migration, and requires precise regulatory networks. Noncoding RNAs (ncRNAs) can be deeply involved in glial development through gene regulation. Here, we review the regulatory roles of ncRNAs in glial development. We briefly describe the classification and functions of noncoding RNAs and focus on microRNAs (miRNAs) and long ncRNAs (lncRNAs), which have been reported to participate extensively during glial formation. The highlight of this summary is that miRNAs and lncRNAs can participate in and regulate the signaling pathways of glial development. The review not only describes how noncoding RNAs participate in nervous system development but also explains the processes of glial development, providing a foundation for subsequent studies on glial development and new insights into the pathogeneses of related neurological diseases.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
11
|
Dai J, Jiang M, Hu Y, Xiao J, Hu B, Xu J, Han X, Shen S, Li B, Wu Z, He Y, Ren Y, Wen L, Wang X, Hu G. Dysregulated SREBP1c/miR-153 signaling induced by hypertriglyceridemia worsens acute pancreatitis and delays tissue repair. JCI Insight 2021; 6:138584. [PMID: 33491670 PMCID: PMC7934861 DOI: 10.1172/jci.insight.138584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Severe acute pancreatitis (AP) is a life-threatening disease with up to 30% mortality. Therefore, prevention of AP aggravation and promotion of pancreatic regeneration are critical during the course and treatment of AP. Hypertriglyceridemia (HTG) is an established aggravating factor for AP that hinders pancreatic regeneration; however, its exact mechanism remains unclear. Using miRNA sequencing and further verification, we found that miRNA-153 (miR-153) was upregulated in the pancreas of HTG animal models and in the plasma of patients with HTG-AP. Increased miR-153 aggravated HTG-AP and delayed pancreatic repair via targeting TRAF3. Furthermore, miR-153 was transcriptionally suppressed by sterol regulatory element-binding transcription factor 1c (SREBP1c), which was suppressed by lipoprotein lipase malfunction-induced HTG. Overexpressing SREBP1c suppressed miR-153 expression, alleviated the severity of AP, and facilitated tissue regeneration in vivo. Finally, therapeutic administration of insulin also protected against HTG-AP via upregulating SREBP1c. Collectively, our results not only provide evidence that HTG leads to the development of more severe AP and hinders pancreatic regeneration via inducing persistent dysregulation of SREBP1c/miR-153 signaling, but also demonstrate that SREBP1c activators, including insulin, might be used to treat HTG-AP in patients.
Collapse
Affiliation(s)
- Juanjuan Dai
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingjie Jiang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yangyang Hu
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingbo Xiao
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Hu
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiyao Xu
- Department of Emergency, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuangjun Shen
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan He
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingchun Ren
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Pruvost M, Moyon S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life (Basel) 2021; 11:62. [PMID: 33467699 PMCID: PMC7830029 DOI: 10.3390/life11010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology.
Collapse
|
13
|
Jiang H, Jia P. MiR-153-3p inhibits osteogenic differentiation of periodontal ligament stem cells through KDM6A-induced demethylation of H3K27me3. J Periodontal Res 2020; 56:379-387. [PMID: 33368310 DOI: 10.1111/jre.12830] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament stem cells (PDLSCs) have potential for osteogenic differentiation and show a great foreground in treating bone diseases. Histone three lysine 27 (H3K27) demethylase lysine demethylase 6A (KDM6A) is a critical epigenetic modifier and plays an important role in regulating osteogenic differentiation. Multiple microRNAs have been found to play important roles in osteogenesis. The aim of this study was to explore the mechanisms underlying the roles of miR-153-3p and KDM6A in PDLSC osteogenesis. METHODS The levels of the osteogenic markers alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin (OPN) were measured by western blotting. Osteoblast activity and mineral deposition were detected by ALP and Alizarin red S (ARS) staining. The levels of miR-153-3p and KDM6A were measured by quantitative real-time PCR (qRT-PCR). A luciferase reporter assay was used to confirm the interaction between KDM6A and miR-153-3p. Gain-of-function and loss-of-function assays were performed to identify the roles of miR-153-3p and KDM6A in the osteogenic differentiation of PDLSCs. RESULTS In osteogenic PDLSCs, the expression of KDM6A, ALP, Runx2, and OPN was upregulated, whereas that of miR-153-3p was downregulated. miR-153-3p downregulation or KDM6A overexpression promoted the osteogenic differentiation of PDLSCs, as demonstrated by increases in ALP activity, matrix mineralization, and ALP, Runx2, and OPN expression. KDM6A was confirmed to be a target of miR-153-3p, and KDM6A overexpression reversed the inhibitory effect of miR-153-3p mimic on PDLSC osteogenesis. KDM6A promoted ALP, Runx2, and OPN expression through the demethylation of H3K27me3 on the promoter regions of these genes. CONCLUSION miR-153-3p inhibited PDLSC osteogenesis by targeting KDM6A and inhibiting ALP, Runx2, and OPN transcription. These findings provide latent hope for PDLSCs application in periodontal therapy.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Stomatology, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Peizeng Jia
- Department of Orthodontics, Peking University School of Stomatology, Beijing, China
| |
Collapse
|
14
|
Ning W, Li S, Yang W, Yang B, Xin C, Ping X, Huang C, Gu Y, Guo L. Blocking exosomal miRNA-153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia-induced myocardial and microvascular damage by targeting the ANGPT1-mediated VEGF/PI3k/Akt/eNOS pathway. Cell Signal 2020; 77:109812. [PMID: 33164880 DOI: 10.1016/j.cellsig.2020.109812] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/18/2023]
Abstract
It has been widely reported that exosomes derived from mesenchymal stem cells (MSCs) have a protective effect on myocardial infarction (MI). However, the specific molecules which play a damaging role in MSCs shuttled miRNAs are much less explored. MiRNA-153-3p (miR-153-3p) is a vital miRNA which has been proved to modulate cell proliferation, apoptosis, angiogenesis, peritoneal fibrosis and aortic calcification. Here, we aim to study the effect and mechanism of miR-153-3p in MSC-derived exosomes on hypoxia-induced myocardial and microvascular damage. The exosomes of MSCs were isolated and identified, and the MSCs-exosomes with low expression of miR-153-3p (exo-miR-153-3p-) were constructed to interfere with the endothelial cells and cardiomyocytes in the oxygen-glucose deprivation (OGD) model. The viability, apoptosis, angiogenesis of endothelial cells and cardiomyocytes were determined. Additionally, ANGPT1/VEGF/VEGFR2/PI3K/Akt/eNOS pathway was detected by ELISA and/or western blot. The results illustrated that exo-miR-153-3p- significantly reduced the apoptosis of endothelial cells and cardiomyocytes and promoted their viability. Meanwhile, exo-miR-153-3p- can promote the angiogenesis of endothelial cells. Mechanistically, miR-153-3p regulates the VEGF/VEGFR2/PI3K/Akt/eNOS pathways by targeting ANGPT1. Intervention with VEGFR2 inhibitor (SU1498, 1 μM) remarkably reversed the protective effect of exo-miR-153-3p- in vascular endothelial cells and cardiomyocytes treated by OGD. Collectively, MSCs-derived exosomes with low-expressed miR-153-3p notably promotes the activation of ANGPT1 and the VEGF/VEGFR2 /PI3K/Akt/eNOS pathways, thereby preventing the damages endothelial cells and cardiomyocytes against hypoxia.
Collapse
Affiliation(s)
- Wenlong Ning
- Department of Emergency, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Emergency, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Shuhua Li
- Department of Emergency, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Traditional Chinese Medicine, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Traditional Chinese Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Weiguang Yang
- Department of Emergency, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Emergency, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Bo Yang
- Department of Traditional Chinese Medicine, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Traditional Chinese Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Chuanyou Xin
- Department of Emergency, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Emergency, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Xin Ping
- Department of Emergency, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Emergency, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Chuanqi Huang
- Department of Emergency, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Emergency, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Yan Gu
- Department of Emergency, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Emergency, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Longzhe Guo
- Department of Emergency, the First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China; Department of Emergency, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China; Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
15
|
Zhao G, Zhang Y, Zhao Z, Cai H, Zhao X, Yang T, Chen W, Yao C, Wang Z, Wang Z, Han C, Wang H. MiR-153 reduces stem cell-like phenotype and tumor growth of lung adenocarcinoma by targeting Jagged1. Stem Cell Res Ther 2020; 11:170. [PMID: 32375892 PMCID: PMC7201619 DOI: 10.1186/s13287-020-01679-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Cancer stem cells (CSCs) have been proposed to be responsible for tumor recurrence and chemo-resistance. Previous studies suggested that miR-153 played essential roles in lung cancer. However, the molecular mechanism of miR-153 in regulating the stemness of non-small cell lung cancer (NSCLC) remains poorly understood. In this study, we investigated the role of miR-153 in regulation of the stemness of NSCLC. Methods The stemness property of lung stem cancer cells was detected by sphere formation assay, immunofluorescence, and Western blot. Luciferase reporter assay was performed to investigate the direct binding of miR-153 to the 3′-UTR of JAG1 mRNA. Animal study was conducted to evaluate the effect of miR-153 on tumor growth in vivo. The clinical relevance of miR-153 in NSCLC was evaluated by Rt-PCR and Kaplan-Meier analysis. Results MiR-153 expression was decreased in lung cancer tissues. Reduced miR-153 expression was associated with lung metastasis and poor overall survival of lung cancer patients. Jagged1, one of the ligands of Notch1, is targeted by miR-153 and inversely correlates with miR-153 in human lung samples. More importantly, we found that miR-153 inhibited stem cell-like phenotype and tumor growth of lung adenocarcinoma through inactivating the Jagged1/Notch1 axis. Conclusion MiR-153 suppresses the stem cell-like phenotypes and tumor growth of lung adenocarcinoma by targeting Jagged1 and provides a potential therapeutic target in lung cancer therapy.
Collapse
Affiliation(s)
- Guoli Zhao
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, Shandong, China.,School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Yueying Zhang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, Shandong, China. .,School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China.
| | - Zhonghua Zhao
- Department of Rehabilitation and Physiotherapy, The People's Hospital of Huaiyin, Jinan, 250000, China
| | - Haibo Cai
- Department of Thoracic Surgery, The Affiliated First People's Hospital of Jining Medical University, Jining, 272011, Shandong, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Tong Yang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, Shandong, China.,School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Weijun Chen
- Department of Medical Oncology, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Chengfang Yao
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, Shandong, China.,School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Zhaopeng Wang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Zhaoxia Wang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Chen Han
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Hengxiao Wang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, Shandong, China
| |
Collapse
|
16
|
Nakagawa T, Wada Y, Katada S, Kishi Y. Epigenetic regulation for acquiring glial identity by neural stem cells during cortical development. Glia 2020; 68:1554-1567. [PMID: 32163194 DOI: 10.1002/glia.23818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The nervous system consists of several hundred neuronal subtypes and glial cells that show specific gene expression and are generated from common ancestors, neural stem cells (NSCs). As the experimental techniques and molecular tools to analyze epigenetics and chromatin structures are rapidly advancing, the comprehensive events and genome-wide states of DNA methylation, histone modifications, and chromatin accessibility in developing NSCs are gradually being unveiled. Here, we review recent advances in elucidating the role of epigenetic and chromatin regulation in NSCs, especially focusing on the acquisition of glial identity and how epigenetic regulation enables the temporal regulation of NSCs during murine cortical development.
Collapse
Affiliation(s)
- Takumi Nakagawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshikuni Wada
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Matsumoto H, Hayashi T, Ozaki H, Tsuyuzaki K, Umeda M, Iida T, Nakamura M, Okano H, Nikaido I. An NMF-based approach to discover overlooked differentially expressed gene regions from single-cell RNA-seq data. NAR Genom Bioinform 2019; 2:lqz020. [PMID: 34632380 PMCID: PMC8499053 DOI: 10.1093/nargab/lqz020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/05/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022] Open
Abstract
Single-cell RNA sequencing has enabled researchers to quantify the transcriptomes of individual cells, infer cell types and investigate differential expression among cell types, which will lead to a better understanding of the regulatory mechanisms of cell states. Transcript diversity caused by phenomena such as aberrant splicing events have been revealed, and differential expression of previously unannotated transcripts might be overlooked by annotation-based analyses. Accordingly, we have developed an approach to discover overlooked differentially expressed (DE) gene regions that complements annotation-based methods. Our algorithm decomposes mapped count data matrix for a gene region using non-negative matrix factorization, quantifies the differential expression level based on the decomposed matrix, and compares the differential expression level based on annotation-based approach to discover previously unannotated DE transcripts. We performed single-cell RNA sequencing for human neural stem cells and applied our algorithm to the dataset. We also applied our algorithm to two public single-cell RNA sequencing datasets correspond to mouse ES and primitive endoderm cells, and human preimplantation embryos. As a result, we discovered several intriguing DE transcripts, including a transcript related to the modulation of neural stem/progenitor cell differentiation.
Collapse
Affiliation(s)
- Hirotaka Matsumoto
- Medical Image Analysis Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.,Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haruka Ozaki
- Center for Artificial Intelligence Research, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Koki Tsuyuzaki
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mana Umeda
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsuyoshi Iida
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Sinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Sinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Sinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Bioinformatics Course, Master's/Doctoral Program in Life Science Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
19
|
Qiao J, Zhao J, Chang S, Sun Q, Liu N, Dong J, Chen Y, Yang D, Ye D, Liu X, Yu Y, Chen W, Zhu S, Wang G, Jia W, Xi J, Kang J. MicroRNA-153 improves the neurogenesis of neural stem cells and enhances the cognitive ability of aged mice through the notch signaling pathway. Cell Death Differ 2019; 27:808-825. [PMID: 31296962 DOI: 10.1038/s41418-019-0388-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 01/22/2023] Open
Abstract
Aging-related cognitive ability impairments are one of the main threats to public health, and impaired hippocampal neurogenesis is a major cause of cognitive decline during aging. However, the regulation of adult neurogenesis in the hippocampus requires further study. Here, we investigated the role of microRNA-153 (miR-153), a highly conserved microRNA in mice and humans, in adult neurogenesis. During the passaging of neural stem cells (NSCs) in vitro, endogenous miR-153 expression was downregulated, with a decrease in neuronal differentiation ability. In addition, miR-153 overexpression increased the neurogenesis of NSCs. Further studies showed that miR-153 regulated neurogenesis by precisely targeting the Notch signaling pathway through inhibition of Jagged1 and Hey2 translation. In vivo analysis demonstrated that miR-153 expression was decreased in the hippocampi of aged mice with impaired cognitive ability, and that miR-153 overexpression in the hippocampus promoted neurogenesis and markedly increased the cognitive abilities of the aged mice. Overall, our findings revealed that miR-153 affected neurogenesis by regulating the Notch signaling pathway and elucidated the function of miR-153 in aging-related, hippocampus-dependent cognitive ability impairments, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jinping Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jianfeng Dong
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yafang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoqin Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yangyang Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
20
|
Xu C, Wang C, Meng Q, Gu Y, Wang Q, Xu W, Han Y, Qin Y, Li J, Jia S, Xu J, Zhou Y. miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase. Mol Med Rep 2019; 20:1725-1735. [PMID: 31257504 PMCID: PMC6625396 DOI: 10.3892/mmr.2019.10421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/06/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play important regulatory roles in certain neurodegenerative diseases. The aim of the present study was to investigate the effect of miRNA-153 (miR-153) on the neural differentiation of HT-22 cells. Overexpression of miR-153 induced the differentiation of HT-22 cells, increasing the number of protrusions and branches, reducing the S phase distribution of the cell cycle, and attenuating the cell proliferation rate as determined using the Cell Counting Kit-8 assay. Furthermore, miR-153 increased the expression of neuron-specific γ-enolase (NSE), neuronal nuclei (NeuN), and N-ethylmaleimide-sensitive fusion attachment protein 23 (SNAP23) and SNAP25 at the transcriptional and protein level by PCR and western blot analysis. Moreover, miR-153 caused obvious upregulation of peroxiredoxin 5 (PRX5), which has been found to protect neural cells from death and apoptosis. miR-153 promoted neural differentiation and protected neural cells by upregulating the neuron markers γ-enolase, neuronal nuclei, and the functional proteins SNAP23, SNAP25 and PRX5. Therefore, miR-153 may be a potential target for the treatment of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunli Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Chen Wang
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Qiuyu Meng
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yuming Gu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiwei Wang
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wenjie Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ying Han
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yong Qin
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Song Jia
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Jie Xu
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yixin Zhou
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
21
|
Wang Z, Cui J, Song J, Gou M, Wang H, Gao K, Qiu X, Wang X, Chang Y. Integration of small RNAs and mRNAs by high-throughput sequencing reveals a complex regulatory network in Chinese sea cucumber, Russian sea cucumber and their hybrids. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:1-13. [DOI: 10.1016/j.cbd.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 11/30/2022]
|
22
|
Pavlou MAS, Grandbarbe L, Buckley NJ, Niclou SP, Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog Neurobiol 2018; 174:36-52. [PMID: 30599178 DOI: 10.1016/j.pneurobio.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
23
|
Li X, Tao Y, Bradley R, Du Z, Tao Y, Kong L, Dong Y, Jones J, Yan Y, Harder CRK, Friedman LM, Bilal M, Hoffmann B, Zhang SC. Fast Generation of Functional Subtype Astrocytes from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:998-1008. [PMID: 30269954 PMCID: PMC6178885 DOI: 10.1016/j.stemcr.2018.08.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023] Open
Abstract
Differentiation of astrocytes from human pluripotent stem cells (hPSCs) is a tedious and variable process. This hampers the study of hPSC-generated astrocytes in disease processes and drug development. By using CRISPR/Cas9-mediated inducible expression of NFIA or NFIA plus SOX9 in hPSCs, we developed a method to efficiently generate astrocytes in 4-7 weeks. The astrocytic identity of the induced cells was verified by their characteristic molecular and functional properties as well as after transplantation. Furthermore, we developed a strategy to generate region-specific astrocyte subtypes by combining differentiation of regional progenitors and transgenic induction of astrocytes. This simple and efficient method offers a new opportunity to study the fundamental biology of human astrocytes and their roles in disease processes.
Collapse
Affiliation(s)
- Xiang Li
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yezheng Tao
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Robert Bradley
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | - Yunlong Tao
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Linghai Kong
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yi Dong
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Jeffrey Jones
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yuanwei Yan
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Cole R K Harder
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | - Magd Bilal
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; BrainXell, Inc., Madison, WI 53711, USA.
| |
Collapse
|
24
|
Zbtb20 Regulates Developmental Neurogenesis in the Olfactory Bulb and Gliogenesis After Adult Brain Injury. Mol Neurobiol 2018; 56:567-582. [DOI: 10.1007/s12035-018-1104-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/03/2018] [Indexed: 01/02/2023]
|
25
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
26
|
Abstract
The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Tomasz Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA.,Department of Anatomy, University of California, San Francisco, California 94158, USA
| |
Collapse
|
27
|
Yang B, Zhou ZH, Chen L, Cui X, Hou JY, Fan KJ, Han SH, Li P, Yi SQ, Liu Y. Prognostic significance of NFIA and NFIB in esophageal squamous carcinoma and esophagogastric junction adenocarcinoma. Cancer Med 2018; 7:1756-1765. [PMID: 29577671 PMCID: PMC5943462 DOI: 10.1002/cam4.1434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor I (NFI) family members, especially NFIA and NFIB, play essential roles in cancers. The roles of NFIA and NFIB in esophageal squamous cell carcinoma (ESCC) and esophagogastric junction adenocarcinoma (EJA) remain poorly known. This study aimed to determine the expression of NFIA and NFIB in ESCC and EJA and elucidate their prognostic significance. The expression of NFIA and NFIB was examined in 163 ESCC samples and 26 EJA samples by immunohistochemistry. The results showed that high NFIA expression correlated significantly with poor differentiation, lymph node metastasis, and advanced TNM stage in patients with ESCC. High NFIB expression only correlated with poor differentiation in patients with ESCC. Survival analysis showed that NFIA but not NFIB associated with short overall survival (OS) and disease‐free survival (DFS) of patients with ESCC. On the other hand, high NFIB expression correlated with lymph node metastasis, advanced TNM stage, and short OS and DFS in patients with EJA. Finally, multivariate analysis demonstrated that high NFIA expression was an independent prognostic factor for ESCC. Taken together, these results demonstrated that NFIA and NFIB could serve as prognostic indicators for ESCC and EJA, respectively.
Collapse
Affiliation(s)
- Bo Yang
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Zhi-Hang Zhou
- Department of Digestive Disease, the Second affiliated hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Emergency, The General Hospital of PLA, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The General Hospital of PLA, Beijing, China
| | - Jun-Yan Hou
- The Medico-technical Division, The General Hospital of PLA, Beijing, China
| | - Kai-Jie Fan
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Si-Hao Han
- Harvard T.H.Chan School of Public Health, Boston, Massachusetts
| | - Peng Li
- Department of General Surgery, The General Hospital of PLA, Beijing, China
| | - Shao-Qiong Yi
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Yang Liu
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| |
Collapse
|
28
|
Liu Q, Zhang L, Li H. New Insights: MicroRNA Function in CNS Development and Psychiatric Diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40495-018-0129-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Kawamura Y, Takouda J, Yoshimoto K, Nakashima K. New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells. Cell Biol Toxicol 2018; 34:425-440. [PMID: 29383547 DOI: 10.1007/s10565-017-9420-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
Abstract
Neural stem cells (NSCs) undergo self-renewal and generate neurons and glial cells under the influence of specific signals from surrounding environments. Glioblastoma multiforme (GBM) is a highly lethal brain tumor arising from NSCs or glial precursor cells owing to dysregulation of transcriptional and epigenetic networks that control self-renewal and differentiation of NSCs. Highly tumorigenic glioblastoma stem cells (GSCs) constitute a small subpopulation of GBM cells, which share several characteristic similarities with NSCs. GSCs exist atop a stem cell hierarchy and generate heterogeneous populations that participate in tumor propagation, drug resistance, and relapse. During multimodal treatment, GSCs de-differentiate and convert into cells with malignant characteristics, and thus play critical roles in tumor propagation. In contrast, differentiation therapy that induces GBM cells or GSCs to differentiate into a neuronal or glial lineage is expected to inhibit their proliferation. Since stem cell differentiation is specified by the cells' epigenetic status, understanding their stemness and the epigenomic situation in the ancestor, NSCs, is important and expected to be helpful for developing treatment modalities for GBM. Here, we review the current findings regarding the epigenetic regulatory mechanisms of NSC fate in the developing brain, as well as those of GBM and GSCs. Furthermore, considering the similarities between NSCs and GSCs, we also discuss potential new strategies for GBM treatment.
Collapse
Affiliation(s)
- Yoichiro Kawamura
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Takouda
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Following the establishment of a number of successful immunomodulatory treatments for multiple sclerosis, current research focuses on the repair of existing damage. RECENT FINDINGS Promotion of regeneration is particularly important for demyelinated areas with degenerated or functionally impaired axons of the central nervous system's white and gray matter. As the protection and generation of new oligodendrocytes is a key to the re-establishment of functional connections, adult oligodendrogenesis and myelin reconstitution processes are of primary interest. Moreover, understanding, supporting and promoting endogenous repair activities such as mediated by resident oligodendroglial precursor or adult neural stem cells are currently thought to be a promising approach toward the development of novel regenerative therapies. SUMMARY This review summarizes recent developments and findings related to pharmacological myelin repair as well as to the modulation/application of stem cells with the aim to restore defective myelin sheaths.
Collapse
|
31
|
Bunt J, Osinski JM, Lim JW, Vidovic D, Ye Y, Zalucki O, O'Connor TR, Harris L, Gronostajski RM, Richards LJ, Piper M. Combined allelic dosage of Nfia and Nfib regulates cortical development. Brain Neurosci Adv 2017; 1:2398212817739433. [PMID: 32166136 PMCID: PMC7058261 DOI: 10.1177/2398212817739433] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background: Nuclear factor I family members nuclear factor I A and nuclear factor I B play important roles during cerebral cortical development. Nuclear factor I A and nuclear factor I B regulate similar biological processes, as their expression patterns, regulation of target genes and individual knockout phenotypes overlap. We hypothesised that the combined allelic loss of Nfia and Nfib would culminate in more severe defects in the cerebral cortex than loss of a single member. Methods: We combined immunofluorescence, co-immunoprecipitation, gene expression analysis and immunohistochemistry on knockout mouse models to investigate whether nuclear factor I A and nuclear factor I B function similarly and whether increasing allelic loss of Nfia and Nfib caused a more severe phenotype. Results: We determined that the biological functions of nuclear factor I A and nuclear factor I B overlap during early cortical development. These proteins are co-expressed and can form heterodimers in vivo. Differentially regulated genes that are shared between Nfia and Nfib knockout mice are highly enriched for nuclear factor I binding sites in their promoters and are associated with neurodevelopment. We found that compound heterozygous deletion of both genes resulted in a cortical phenotype similar to that of single homozygous Nfia or Nfib knockout embryos. This was characterised by retention of the interhemispheric fissure, dysgenesis of the corpus callosum and a malformed dentate gyrus. Double homozygous knockout of Nfia and Nfib resulted in a more severe phenotype, with increased ventricular enlargement and decreased numbers of differentiated glia and neurons. Conclusion: In the developing cerebral cortex, nuclear factor I A and nuclear factor I B share similar biological functions and function additively, as the combined allelic loss of these genes directly correlates with the severity of the developmental brain phenotype.
Collapse
Affiliation(s)
- Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jason M Osinski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jonathan Wc Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Diana Vidovic
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yunan Ye
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy R O'Connor
- School of Chemical and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Hermanto Y, Sunohara T, Faried A, Takagi Y, Takahashi J, Maki T, Miyamoto S. Transplantation of feeder-free human induced pluripotent stem cell-derived cortical neuron progenitors in adult male Wistar rats with focal brain ischemia. J Neurosci Res 2017; 96:863-874. [PMID: 29110329 DOI: 10.1002/jnr.24197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022]
Abstract
The use of human induced pluripotent stem cells (hiPSCs) eliminates the ethical issues associated with fetal or embryonic materials, thus allowing progress in cell therapy research for ischemic stroke. Strict regulation of cell therapy development requires the xeno-free condition to eliminate clinical complications. Maintenance of hiPSCs with feeder-free condition presents a higher degree of spontaneous differentiation in comparison with conventional cultures. Therefore, feeder-free derivation might be not ideal for developing transplantable hiPSC derivatives. We developed the feeder-free condition for differentiation of cortical neurons from hiPSCs. Then, we evaluated the cells' characteristics upon transplantation into the sham and focal brain ischemia on adult male Wistar rats. Grafts in lesioned brains demonstrated polarized reactivity toward the ischemic border, indicated by directional preferences in axonal outgrowth and cellular migration, with no influence on graft survival. Following the transplantation, forelimb asymmetry was better restored compared with controls. Herein, we provide evidence to support the use of the xeno-free condition for the development of cell therapy for ischemic stroke.
Collapse
Affiliation(s)
- Yulius Hermanto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Clinical Application, Center of iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Tadashi Sunohara
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Clinical Application, Center of iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ahmad Faried
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Yasushi Takagi
- Department of Neurosurgery, Institute of Biological Sciences, Tokushima University, Tokushima, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center of iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Transcriptional regulation of Nfix by NFIB drives astrocytic maturation within the developing spinal cord. Dev Biol 2017; 432:286-297. [PMID: 29106906 DOI: 10.1016/j.ydbio.2017.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/15/2023]
Abstract
During mouse spinal cord development, ventricular zone progenitor cells transition from producing neurons to producing glia at approximately embryonic day 11.5, a process known as the gliogenic switch. The transcription factors Nuclear Factor I (NFI) A and B initiate this developmental transition, but the contribution of a third NFI member, NFIX, remains unknown. Here, we reveal that ventricular zone progenitor cells within the spinal cord express NFIX after the onset of NFIA and NFIB expression, and after the gliogenic switch has occurred. Mice lacking NFIX exhibit normal neurogenesis within the spinal cord, and, while early astrocytic differentiation proceeds normally, aspects of terminal astrocytic differentiation are impaired. Finally, we report that, in the absence of Nfia or Nfib, there is a marked reduction in the spinal cord expression of NFIX, and that NFIB can transcriptionally activate Nfix expression in vitro. These data demonstrate that NFIX is part of the downstream transcriptional program through which NFIA and NFIB coordinate gliogenesis within the spinal cord. This hierarchical organisation of NFI protein expression and function during spinal cord gliogenesis reveals a previously unrecognised auto-regulatory mechanism within this gene family.
Collapse
|
34
|
Rajman M, Schratt G. MicroRNAs in neural development: from master regulators to fine-tuners. Development 2017; 144:2310-2322. [DOI: 10.1242/dev.144337] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper formation and function of neuronal networks is required for cognition and behavior. Indeed, pathophysiological states that disrupt neuronal networks can lead to neurodevelopmental disorders such as autism, schizophrenia or intellectual disability. It is well-established that transcriptional programs play major roles in neural circuit development. However, in recent years, post-transcriptional control of gene expression has emerged as an additional, and probably equally important, regulatory layer. In particular, it has been shown that microRNAs (miRNAs), an abundant class of small regulatory RNAs, can regulate neuronal circuit development, maturation and function by controlling, for example, local mRNA translation. It is also becoming clear that miRNAs are frequently dysregulated in neurodevelopmental disorders, suggesting a role for miRNAs in the etiology and/or maintenance of neurological disease states. Here, we provide an overview of the most prominent regulatory miRNAs that control neural development, highlighting how they act as ‘master regulators’ or ‘fine-tuners’ of gene expression, depending on context, to influence processes such as cell fate determination, cell migration, neuronal polarization and synapse formation.
Collapse
Affiliation(s)
- Marek Rajman
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Gerhard Schratt
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
35
|
Hou XQ, Wang L, Wang FG, Zhao XM, Zhang HT. Combination of RNA Interference and Stem Cells for Treatment of Central Nervous System Diseases. Genes (Basel) 2017; 8:genes8050135. [PMID: 28481269 PMCID: PMC5448009 DOI: 10.3390/genes8050135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi), including microRNAs, is an important player in the mediation of differentiation and migration of stem cells via target genes. It is used as a potential strategy for gene therapy for central nervous system (CNS) diseases. Stem cells are considered vectors of RNAi due to their capacity to deliver RNAi to other cells. In this review, we discuss the recent advances in studies of RNAi pathways in controlling neuronal differentiation and migration of stem cells. We also highlight the utilization of a combination of RNAi and stem cells in treatment of CNS diseases.
Collapse
Affiliation(s)
- Xue-Qin Hou
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Lei Wang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Fu-Gang Wang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Xiao-Min Zhao
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Han-Ting Zhang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA.
| |
Collapse
|
36
|
The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA. PLoS One 2017; 12:e0173890. [PMID: 28323865 PMCID: PMC5360322 DOI: 10.1371/journal.pone.0173890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/28/2017] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM) development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose) polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA), higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2), another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.
Collapse
|
37
|
TAKOUDA J, KATADA S, NAKASHIMA K. Emerging mechanisms underlying astrogenesis in the developing mammalian brain. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:386-398. [PMID: 28603210 PMCID: PMC5709539 DOI: 10.2183/pjab.93.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/31/2017] [Indexed: 06/06/2023]
Abstract
In the developing brain, the three major cell types, i.e., neurons, astrocytes and oligodendrocytes, are generated from common multipotent neural stem cells (NSCs). In particular, astrocytes eventually occupy a great fraction of the brain and play pivotal roles in the brain development and functions. However, NSCs cannot produce the three major cell types simultaneously from the beginning; e.g., it is known that neurogenesis precedes astrogenesis during brain development. How is this fate switching achieved? Many studies have revealed that extracellular cues and intracellular programs are involved in the transition of NSC fate specification. The former include growth factor- and cytokine-signaling, and the latter involve epigenetic machinery, including DNA methylation, histone modifications, and non-coding RNAs. Accumulating evidence has identified a complex array of epigenetic modifications that control the timing of astrocytic differentiation of NSCs. In this review, we introduce recent progress in identifying the molecular mechanisms of astrogenesis underlying the tight regulation of neuronal-astrocytic fate switching of NSCs.
Collapse
Affiliation(s)
- Jun TAKOUDA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako KATADA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi NAKASHIMA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
|
39
|
Heterochronic microRNAs in temporal specification of neural stem cells: application toward rejuvenation. NPJ Aging Mech Dis 2016; 2:15014. [PMID: 28721261 PMCID: PMC5514991 DOI: 10.1038/npjamd.2015.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022] Open
Abstract
Plasticity is a critical factor enabling stem cells to contribute to the development and regeneration of tissues. In the mammalian central nervous system (CNS), neural stem cells (NSCs) that are defined by their capability for self-renewal and differentiation into neurons and glia, are present in the ventricular neuroaxis throughout life. However, the differentiation potential of NSCs changes in a spatiotemporally regulated manner and these cells progressively lose plasticity during development. One of the major alterations in this process is the switch from neurogenesis to gliogenesis. NSCs initiate neurogenesis immediately after neural tube closure and then turn to gliogenesis from midgestation, which requires an irreversible competence transition that enforces a progressive reduction of neuropotency. A growing body of evidence indicates that the neurogenesis-to-gliogenesis transition is governed by multiple layers of regulatory networks consisting of multiple factors, including epigenetic regulators, transcription factors, and non-coding RNA (ncRNA). In this review, we focus on critical roles of microRNAs (miRNAs), a class of small ncRNA that regulate gene expression at the post-transcriptional level, in the regulation of the switch from neurogenesis to gliogenesis in NSCs in the developing CNS. Unraveling the regulatory interactions of miRNAs and target genes will provide insights into the regulation of plasticity of NSCs, and the development of new strategies for the regeneration of damaged CNS.
Collapse
|