1
|
Martis ASA, Soundararajan L, Shetty P, Moin S, Vanje T, Jai Sankar Y, Parveen S. Chromosome number alterations cause apoptosis and cellular hypertrophy in induced pluripotent stem cell models of embryonic epiblast cells. Biol Open 2025; 14:BIO061814. [PMID: 39851179 PMCID: PMC11789280 DOI: 10.1242/bio.061814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/26/2025] Open
Abstract
Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation. Upon reversine treatment, we obtained cells with varied chromosomal content that retained pluripotency and potential to differentiate into cells of three germ lineages. However, these cells displayed lagging chromosomes, increased micronuclei content, high p53 expression and excessive apoptotic activity. Cell proliferation was not affected. Prolonged in vitro culture of these cells resulted in a selective pool of cells with supernumerary chromosomes, which exhibited cellular hypertrophy, enlarged nuclei, and overproduction of total RNAs and proteins. We conclude that increased DNA damage responses, apoptosis, and improper cellular mass and functions are possible mechanisms that contribute to abnormal epiblast development.
Collapse
Affiliation(s)
- Althea Stella Anil Martis
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Loshini Soundararajan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pallavi Shetty
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Syed Moin
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tejashree Vanje
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Yogeshwaran Jai Sankar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shagufta Parveen
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
Tichy ED. Specialized Circuitry of Embryonic Stem Cells Promotes Genomic Integrity. Crit Rev Oncog 2023; 27:1-15. [PMID: 36734869 DOI: 10.1615/critrevoncog.2022042332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) give rise to all cell types of the organism. Given the importance of these cells in this process, ESCs must employ robust mechanisms to protect genomic integrity or risk catastrophic propagation of mutations throughout the organism. Should such an event occur in daughter cells that will eventually contribute to the germline, the overall species health could dramatically decline. This review describes several key mechanisms employed by ESCs that are unique to these cells, in order to maintain their genomic integrity. Additionally, the contributions of cell cycle regulators in modulating ESC differentiation, after DNA damage exposure, are also examined. Where data are available, findings reported in ESCs are extended to include observations described in induced pluripotent stem cells (IPSCs).
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
3
|
Jiang J, Qiu T, Yang C, Yuan Y, Qin L, Zhang P. Atypical cell cycle profile of mouse embryonic stem cell is regulated by classic oncogenic and tumor suppressive genes in vitro. Heliyon 2022; 8:e11979. [PMID: 36578422 PMCID: PMC9791322 DOI: 10.1016/j.heliyon.2022.e11979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) exhibit an unusual cell cycle profile containing a short G1 phase. Whether this feature is required to maintain pluripotency is a matter of debate. Here, we report that the short G1 phase is a consequence of MEK1/2 kinase-mediated promotion of G1/S transition, but not necessarily coupled with pluripotency maintenance. We find that compared to primed ESCs, naïve ESCs exhibit a significantly longer G1 phase due to the inhibition of MEK1/2 kinases. MEK1/2 inhibition increases intracellular level of reactive oxygen species (ROS), leading to the stabilization of p53 protein. The genetic ablation of p53 largely converts the cell cycle profile of naïve ESCs to that of primed ESCs. These results demonstrate that pluripotency and proliferation are separable cellular events, and the short G1 phase of primed ESCs is a manifestation of the intricate interplay between classical oncogenes MEK1/2 and tumor suppressor gene TP53 to promote G1/S transition.
Collapse
Affiliation(s)
- Jinfeng Jiang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China,Frontiers Science Center for Disease-related Molecular Network, West China Hospital
| | - Tong Qiu
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China,Frontiers Science Center for Disease-related Molecular Network, West China Hospital
| | - Chao Yang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China,Frontiers Science Center for Disease-related Molecular Network, West China Hospital
| | - Yuan Yuan
- Division of Bioinformatics, Sichuan Cunde Therapeutics, Chengdu 610093, China
| | - Ling Qin
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College,Corresponding authors.
| | - Peixuan Zhang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China,Corresponding authors.
| |
Collapse
|
4
|
Ayaz G, Yan H, Malik N, Huang J. An Updated View of the Roles of p53 in Embryonic Stem Cells. Stem Cells 2022; 40:883-891. [PMID: 35904997 PMCID: PMC9585900 DOI: 10.1093/stmcls/sxac051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Abstract
The TP53 gene is unarguably one of the most studied human genes. Its encoded protein, p53, is a tumor suppressor and is often called the "guardian of the genome" due to its pivotal role in maintaining genome stability. Historically, most studies of p53 have focused on its roles in somatic cells and tissues, but in the last two decades, its functions in embryonic stem cells (ESCs) and induced pluripotent stem cells have attracted increasing attention. Recent studies have identified p53 as a critical regulator of pluripotency, self-renewal, differentiation, proliferation, and genome stability in mouse and human embryonic stem cells. In this article, we systematically review the studies on the functions of p53 in ESCs, provide an updated overview, attempt to reconcile controversial results described in the literature, and discuss the relevance of these cellular functions of p53 to its roles in tumor suppression.
Collapse
Affiliation(s)
- Gamze Ayaz
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Navdeep Malik
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Laka K, Mbita Z. P53-Related Anticancer Activities of Drimia calcarata Bulb Extracts Against Lung Cancer. Front Mol Biosci 2022; 9:876213. [PMID: 35769912 PMCID: PMC9235921 DOI: 10.3389/fmolb.2022.876213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
Current lung cancer treatment strategies are ineffective, and lung cancer cases continue to soar; thus, novel anticancer drugs and targets are needed, and medicinal plants are promising to offer better alternatives. This study was aimed at analysing two p53 splice variants during the potential anticancer activities of Drimia calcarata (Dc) methanol and water extracts against different human lung cancer cell lines of varying p53 mutation status, and these included mutant H1573 and mutant H1437 and p53-wild type (A549) cells. The anticancer activities of the Dc extracts were assessed by establishing the cytotoxic effect and the apoptosis-inducing capacity of these extracts, using the MTT assay and Annexin V analysis, respectively, with the latter confirmed using fluorescence microscopy. The molecular mechanisms induced by these extracts were further evaluated using cell cycle analysis and RT-PCR. Both extracts demonstrated safety against noncancerous lung MRC-5 fibroblasts and exhibited significant anticancer potency (p < 0.001) against the H1437 (IC50 values: 62.50 μg/ml methanol extract and 125 μg/ml WE), H1573 (IC50 value: 125 μg/ml for both extracts) and A549 (IC50 value: 500 μg/ml ME). The water extract had no effect on the viability of A549 cells. Treated H1437 cells underwent p53-dependent apoptosis and S-phase cell cycle arrest while H1573 treated cells underwent p53-independed apoptosis and G0/G1 cell cycle arrest through upregulation of p21 mRNA expression levels. The expression levels of STAT1, STAT3, STAT5A and STAT5B genes increased significantly (p < 0.001) following the treatment of H1573 cells with ME and WE. Treatment of H1437 cells with ME upregulated the STAT1, STAT3, STAT5A and STAT5B mRNAs. Our results indicate that the proliferative inhibitory effect of D. calcarata extracts on A549 and H1573 cells is correlated with the suppression of Bcl-2, STAT3 and STAT5B while that is not the case in H1437 cells. Thus, our results suggest that the dysregulation of anti-apoptotic molecules Bcl-2, STAT3, STAT5A and STAT5B in H1437 may play a role in cancer cell survival, which may consequently contribute to the development of p53-mutated non-small human lung cancer. Our results indicate that D. calcarata is a promising source of anticancer agents for the treatment of p53-mutant human non-small lung cancer cells than the p53-wild type human non-small lung cancer cells.
Collapse
|
6
|
Raj S, Jaiswal SK, DePamphilis ML. Cell Death and the p53 Enigma During Mammalian Embryonic Development. Stem Cells 2022; 40:227-238. [PMID: 35304609 PMCID: PMC9199838 DOI: 10.1093/stmcls/sxac003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023]
Abstract
Twelve forms of programmed cell death (PCD) have been described in mammalian cells, but which of them occurs during embryonic development and the role played by the p53 transcription factor and tumor suppressor remains enigmatic. Although p53 is not required for mouse embryonic development, some studies conclude that PCD in pluripotent embryonic stem cells from mice (mESCs) or humans (hESCs) is p53-dependent whereas others conclude that it is not. Given the importance of pluripotent stem cells as models of embryonic development and their applications in regenerative medicine, resolving this enigma is essential. This review reconciles contradictory results based on the facts that p53 cannot induce lethality in mice until gastrulation and that experimental conditions could account for differences in results with ESCs. Consequently, activation of the G2-checkpoint in mouse ESCs is p53-independent and generally, if not always, results in noncanonical apoptosis. Once initiated, PCD occurs at equivalent rates and to equivalent extents regardless of the presence or absence of p53. However, depending on experimental conditions, p53 can accelerate initiation of PCD in ESCs and late-stage blastocysts. In contrast, DNA damage following differentiation of ESCs in vitro or formation of embryonic fibroblasts in vivo induces p53-dependent cell cycle arrest and senescence.
Collapse
Affiliation(s)
- Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA
| | - Sushil K Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
8
|
Jaiswal SK, Raj S, DePamphilis ML. Developmental Acquisition of p53 Functions. Genes (Basel) 2021; 12:genes12111675. [PMID: 34828285 PMCID: PMC8622856 DOI: 10.3390/genes12111675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkably, the p53 transcription factor, referred to as “the guardian of the genome”, is not essential for mammalian development. Moreover, efforts to identify p53-dependent developmental events have produced contradictory conclusions. Given the importance of pluripotent stem cells as models of mammalian development, and their applications in regenerative medicine and disease, resolving these conflicts is essential. Here we attempt to reconcile disparate data into justifiable conclusions predicated on reports that p53-dependent transcription is first detected in late mouse blastocysts, that p53 activity first becomes potentially lethal during gastrulation, and that apoptosis does not depend on p53. Furthermore, p53 does not regulate expression of genes required for pluripotency in embryonic stem cells (ESCs); it contributes to ESC genomic stability and differentiation. Depending on conditions, p53 accelerates initiation of apoptosis in ESCs in response to DNA damage, but cell cycle arrest as well as the rate and extent of apoptosis in ESCs are p53-independent. In embryonic fibroblasts, p53 induces cell cycle arrest to allow repair of DNA damage, and cell senescence to prevent proliferation of cells with extensive damage.
Collapse
Affiliation(s)
- Sushil K. Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
9
|
Grow EJ, Weaver BD, Smith CM, Guo J, Stein P, Shadle SC, Hendrickson PG, Johnson NE, Butterfield RJ, Menafra R, Kloet SL, van der Maarel SM, Williams CJ, Cairns BR. p53 convergently activates Dux/DUX4 in embryonic stem cells and in facioscapulohumeral muscular dystrophy cell models. Nat Genet 2021; 53:1207-1220. [PMID: 34267371 PMCID: PMC8513633 DOI: 10.1038/s41588-021-00893-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
In mammalian embryos, proper zygotic genome activation (ZGA) underlies totipotent development. Double homeobox (DUX)-family factors participate in ZGA, and mouse Dux is required for forming cultured two-cell (2C)-like cells. Remarkably, in mouse embryonic stem cells, Dux is activated by the tumor suppressor p53, and Dux expression promotes differentiation into expanded-fate cell types. Long-read sequencing and assembly of the mouse Dux locus reveals its complex chromatin regulation including putative positive and negative feedback loops. We show that the p53-DUX/DUX4 regulatory axis is conserved in humans. Furthermore, we demonstrate that cells derived from patients with facioscapulohumeral muscular dystrophy (FSHD) activate human DUX4 during p53 signaling via a p53-binding site in a primate-specific subtelomeric long terminal repeat (LTR)10C element. In summary, our work shows that p53 activation convergently evolved to couple p53 to Dux/DUX4 activation in embryonic stem cells, embryos and cells from patients with FSHD, potentially uniting the developmental and disease regulation of DUX-family factors and identifying evidence-based therapeutic opportunities for FSHD.
Collapse
Affiliation(s)
- Edward J Grow
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bradley D Weaver
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christina M Smith
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sean C Shadle
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Peter G Hendrickson
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nicholas E Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Russell J Butterfield
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Roberta Menafra
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Susan L Kloet
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
López-Ferreras L, Martínez-García N, Maeso-Alonso L, Martín-López M, Díez-Matilla Á, Villoch-Fernandez J, Alonso-Olivares H, Marques MM, Marin MC. Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific Deficient Cell Lines Using the CRISPR/Cas9 Gene Editing System. Cancers (Basel) 2021; 13:cancers13133182. [PMID: 34202306 PMCID: PMC8268375 DOI: 10.3390/cancers13133182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Trp73 gene is involved in the regulation of multiple biological processes such as response to stress, differentiation and tissue architecture. This gene gives rise to structurally different N and C-terminal isoforms which lead to differences in its biological activity in a cell type dependent manner. However, there is a current lack of physiological models to study these isoforms. The aim of this study was to generate specific p73-isoform-deficient mouse embryonic stem cell lines using the CRISPR/Cas9 system. Their special features, self-renewal and pluripotency, make embryonic stem cells a useful research tool that allows the generation of cells from any of the three germ layers carrying specific inactivation of p73-isoforms. Characterization of the generated cell lines indicates that while the individual elimination of TA- or DN-p73 isoform is compatible with pluripotency, it results in alterations of the transcriptional profiles and the pluripotent state of the embryonic stem cells in an isoform-specific manner. Abstract The p53 family has been widely studied for its role in various physiological and pathological processes. Imbalance of p53 family proteins may contribute to developmental abnormalities and pathologies in humans. This family exerts its functions through a profusion of isoforms that are generated by different promoter usage and alternative splicing in a cell type dependent manner. In particular, the Trp73 gene gives rise to TA and DN-p73 isoforms that confer p73 a dual nature. The biological relevance of p73 does not only rely on its tumor suppression effects, but on its pivotal role in several developmental processes. Therefore, the generation of cellular models that allow the study of the individual isoforms in a physiological context is of great biomedical relevance. We generated specific TA and DN-p73-deficient mouse embryonic stem cell lines using the CRISPR/Cas9 gene editing system and validated them as physiological bona fide p73-isoform knockout models. Global gene expression analysis revealed isoform-specific alterations of distinctive transcriptional networks. Elimination of TA or DN-p73 is compatible with pluripotency but prompts naïve pluripotent stem cell transition into the primed state, compromising adequate lineage differentiation, thus suggesting that differential expression of p73 isoforms acts as a rheostat during early cell fate determination.
Collapse
Affiliation(s)
- Lorena López-Ferreras
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Nicole Martínez-García
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Producción Animal, Universidad de León, 24071 León, Spain
| | - Laura Maeso-Alonso
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Marta Martín-López
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Biomar Microbial Technologies, Parque Tecnológico de León, Armunia, 24009 León, Spain
| | - Ángela Díez-Matilla
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
| | - Javier Villoch-Fernandez
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Hugo Alonso-Olivares
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Margarita M. Marques
- Departamento de Producción Animal, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
- Correspondence: (M.M.M.); (M.C.M.); Tel.: +34-987-291757 (M.M.M.); +34-987-291490 (M.C.M.)
| | - Maria C. Marin
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Correspondence: (M.M.M.); (M.C.M.); Tel.: +34-987-291757 (M.M.M.); +34-987-291490 (M.C.M.)
| |
Collapse
|
11
|
Ter Huurne M, Stunnenberg HG. G1-phase progression in pluripotent stem cells. Cell Mol Life Sci 2021; 78:4507-4519. [PMID: 33884444 PMCID: PMC8195903 DOI: 10.1007/s00018-021-03797-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 11/10/2022]
Abstract
During early embryonic development both the rapid increase in cell number and the expression of genes that control developmental decisions are tightly regulated. Accumulating evidence has indicated that these two seemingly independent processes are mechanistically intertwined. The picture that emerges from studies on the cell cycle of embryonic stem cells is one in which proteins that promote cell cycle progression prevent differentiation and vice versa. Here, we review which transcription factors and signalling pathways play a role in both maintenance of pluripotency as well as cell cycle progression. We will not only describe the mechanism behind their function but also discuss the role of these regulators in different states of mouse pluripotency. Finally, we elaborate on how canonical cell cycle regulators impact on the molecular networks that control the maintenance of pluripotency and lineage specification.
Collapse
Affiliation(s)
- Menno Ter Huurne
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands.
- Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Iegiani G, Gai M, Di Cunto F, Pallavicini G. CENPE Inhibition Leads to Mitotic Catastrophe and DNA Damage in Medulloblastoma Cells. Cancers (Basel) 2021; 13:cancers13051028. [PMID: 33804489 PMCID: PMC7957796 DOI: 10.3390/cancers13051028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective, since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. CENPE is a gene critical for normal proliferation and survival of neural progenitors. Since there is evidence that MB cells are very similar to neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In MB cell lines, CENPE depletion induced defects in division and resulted in cell death. To consolidate CENPE as a target for MB treatment, we tested GSK923295, a specific inhibitor already in clinical trials for other cancer types. GSK923295 induced effects similar to CENPE depletion at low nM levels, supporting the idea that CENPE’s inhibition could be a viable strategy for MB treatment. Abstract Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. Primary microcephaly (MCPH) is a rare disorder caused by mutations in 25 different genes. Centromere-associated protein E (CENPE) heterozygous mutations cause the MCPH13 syndrome. As for other MCPH genes, CENPE is required for normal proliferation and survival of neural progenitors. Since there is evidence that MB shares many molecular features with neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In ONS-76 and DAOY cells, CENPE knockdown induced mitotic defects and apoptosis. Moreover, CENPE depletion induced endogenous DNA damage accumulation, activating TP53 or TP73 as well as cell death signaling pathways. To consolidate CENPE as a target for MB treatment, we tested GSK923295, an allosteric inhibitor already in clinical trial for other cancer types. GSK923295, induced effects similar to CENPE depletion with higher penetrance, at low nM levels, suggesting that CENPE’s inhibition could be a therapeutic strategy for MB treatment.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| |
Collapse
|
13
|
Overexpression of MicroRNA-122 Resists Oxidative Stress-Induced Human Umbilical Vascular Endothelial Cell Injury by Inhibition of p53. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9791608. [PMID: 33195700 PMCID: PMC7641695 DOI: 10.1155/2020/9791608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
Deep venous thrombosis (DVT) constitutes a great threat to health worldwide. Endothelial cell injury and dysfunction comprise the critical contributor for the development of DVT. However, the mechanism behind it remains poorly elucidated. The study is aimed at investigating the role of microRNA-122 (miR-122) and oxidative stress on DVT. The results showed that miR-122 overexpression dampened H2O2-evoked cytotoxic injury in human umbilical vein endothelial cells (HUVECs) by increasing cell viability, suppressing cell apoptosis and oxidative stress injury. Notably, miR-122 overexpression attenuated provasoconstriction factor endothelin-1 (ET-1) expression in HUVECs exposed to H2O2 but enhanced the productions of vasodilatation factor Prostaglandin F1α (PGF1α). Moreover, inhibition of miR-122 had the opposite results. miR-122 could inhibit the expression of p53. Low expression of p53 could enhance the protection of miR-122 on HUVEC injury. This study highlights that miR-122 overexpression may restore H2O2-induced HUVEC injury by regulating the expression of p53.
Collapse
|
14
|
Chung CYT, Lo PHY, Lee KKH. Babam2 Regulates Cell Cycle Progression and Pluripotency in Mouse Embryonic Stem Cells as Revealed by Induced DNA Damage. Biomedicines 2020; 8:biomedicines8100397. [PMID: 33050379 PMCID: PMC7600899 DOI: 10.3390/biomedicines8100397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
BRISC and BRCA1-A complex member 2 (Babam2) plays an essential role in promoting cell cycle progression and preventing cellular senescence. Babam2-deficient fibroblasts show proliferation defect and premature senescence compared with their wild-type (WT) counterpart. Pluripotent mouse embryonic stem cells (mESCs) are known to have unlimited cell proliferation and self-renewal capability without entering cellular senescence. Therefore, studying the role of Babam2 in ESCs would enable us to understand the mechanism of Babam2 in cellular aging, cell cycle regulation, and pluripotency in ESCs. For this study, we generated Babam2 knockout (Babam2−/−) mESCs to investigate the function of Babam2 in mESCs. We demonstrated that the loss of Babam2 in mESCs leads to abnormal G1 phase retention in response to DNA damage induced by gamma irradiation or doxorubicin treatments. Key cell cycle regulators, CDC25A and CDK2, were found to be degraded in Babam2−/− mESCs following gamma irradiation. In addition, Babam2−/− mESCs expressed p53 strongly and significantly longer than in control mESCs, where p53 inhibited Nanog expression and G1/S cell cycle progression. The combined effects significantly reduced developmental pluripotency in Babam2−/− mESCs. In summary, Babam2 maintains cell cycle regulation and pluripotency in mESCs in response to induced DNA damage.
Collapse
Affiliation(s)
- Cheuk Yiu Tenny Chung
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; (C.Y.T.C.); (P.H.Y.L.)
- Chinese University of Hong Kong-University of Southampton Joint Laboratory for Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Paulisally Hau Yi Lo
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; (C.Y.T.C.); (P.H.Y.L.)
- Chinese University of Hong Kong-University of Southampton Joint Laboratory for Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kenneth Ka Ho Lee
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; (C.Y.T.C.); (P.H.Y.L.)
- Chinese University of Hong Kong-University of Southampton Joint Laboratory for Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence:
| |
Collapse
|
15
|
Ma P, Pan Y, Yang F, Fang Y, Liu W, Zhao C, Yu T, Xie M, Jing X, Wu X, Sun C, Li W, Xu T, Shu Y. KLF5-Modulated lncRNA NEAT1 Contributes to Tumorigenesis by Acting as a Scaffold for BRG1 to Silence GADD45A in Gastric Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:382-395. [PMID: 33230443 PMCID: PMC7533296 DOI: 10.1016/j.omtn.2020.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs), genomic "dark matter," are deeply involved in diverse biological processes. The lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is a highly participatory lncRNA; however, its roles in gastric cancer (GC) remain largely unexplored. Here, we demonstrated that the expression of NEAT1 was significantly increased and negatively correlated with prognosis in GC. Subsequent experiments confirmed that KLF5 can induce NEAT1 expression by binding to the NEAT1 promoter region. Further experiments revealed that NEAT1 silencing significantly suppressed cell proliferation both in vitro and in vivo and induced apoptosis. We used mRNA sequencing (mRNA-seq) to identify the preferentially affected genes linked to cell proliferation in cells with NEAT1 knockdown. Mechanistically, NEAT1 bound BRG1 (SMARCA4) directly, modulating H3K27me3 and H3K4me3 in the GADD45A promoter to regulate GADD45A-dependent G2/M cell cycle progression. In addition, BRG1 was significantly upregulated and correlated with outcomes in GC; moreover, it promoted cell proliferation both in vitro and in vivo. Taken together, our data support the importance of NEAT1 in promoting GC tumorigenesis and indicate that NEAT1 might be a diagnostic and therapeutic target in GC.
Collapse
Affiliation(s)
- Pei Ma
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Yutian Pan
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Fan Yang
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Yuan Fang
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Weitao Liu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Chenhui Zhao
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Tao Yu
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Mengyan Xie
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xingming Jing
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xi Wu
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Chongqi Sun
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Wei Li
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
- Department of Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Tongpeng Xu
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Yongqian Shu
- Department of Oncology, Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People’s Republic of China
- Department of Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People’s Republic of China
- Corresponding author: Yongqian Shu, Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, People’s Republic of China.
| |
Collapse
|
16
|
Koifman G, Aloni-Grinstein R, Rotter V. p53 balances between tissue hierarchy and anarchy. J Mol Cell Biol 2020; 11:553-563. [PMID: 30925590 PMCID: PMC6735948 DOI: 10.1093/jmcb/mjz022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Normal tissues are organized in a hierarchical model, whereas at the apex of these hierarchies reside stem cells (SCs) capable of self-renewal and of producing differentiated cellular progenies, leading to normal development and homeostasis. Alike, tumors are organized in a hierarchical manner, with cancer SCs residing at the apex, contributing to the development and nourishment of tumors. p53, the well-known ‘guardian of the genome’, possesses various roles in embryonic development as well as in adult SC life and serves as the ‘guardian of tissue hierarchy’. Moreover, p53 serves as a barrier for dedifferentiation and reprogramming by constraining the cells to a somatic state and preventing their conversion to SCs. On the contrary, the mutant forms of p53 that lost their tumor suppressor activity and gain oncogenic functions serve as ‘inducers of tissue anarchy’ and promote cancer development. In this review, we discuss these two sides of the p53 token that sentence a tissue either to an ordered hierarchy and life or to anarchy and death. A better understanding of these processes may open new horizons for the development of new cancer therapies.
Collapse
Affiliation(s)
- Gabriela Koifman
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel.,Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Jaiswal SK, Oh JJ, DePamphilis ML. Cell cycle arrest and apoptosis are not dependent on p53 prior to p53-dependent embryonic stem cell differentiation. Stem Cells 2020; 38:1091-1106. [PMID: 32478947 DOI: 10.1002/stem.3199] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022]
Abstract
Previous efforts to determine whether or not the transcription factor and tumor suppressor protein p53 is required for DNA damage-induced apoptosis in pluripotent embryonic stem cells (ESCs) produced contradictory conclusions. To resolve this issue, p53+/+ and p53-/- ESCs derived by two different methods were used to quantify time-dependent changes in nuclear DNA content; annexin-V binding; cell permeabilization; and protein expression, modification, and localization. The results revealed that doxorubicin (Adriamycin [ADR]) concentrations 10 to 40 times less than commonly used in previous studies induced the DNA damage-dependent G2-checkpoint and completed apoptosis within the same time frame, regardless of the presence or absence of p53, p21, and PUMA. Increased ADR concentrations delayed initiation of apoptosis in p53-/- ESCs, but the rates of apoptosis remained equivalent. Similar results were obtained by inducing apoptosis with either staurosporine inhibition of kinase activities or WX8 disruption of lysosome homeostasis. Differentiation of ESCs by LIF deprivation revealed p53-dependent formation of haploid cells, increased genomic stability, and suppression of the G2-checkpoint. Minimal induction of DNA damage now resulted in p53-facilitated apoptosis, but regulation of pluripotent gene expression remained p53-independent. Primary embryonic fibroblasts underwent p53-dependent total cell cycle arrest (a prelude to cell senescence), and p53-independent apoptosis occurred in the presence of 10-fold higher levels of ADR, consistent with previous studies. Taken together, these results reveal that the multiple roles of p53 in cell cycle regulation and apoptosis are first acquired during pluripotent stem cell differentiation.
Collapse
Affiliation(s)
- Sushil K Jaiswal
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - John J Oh
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Stage-Specific Effects of Ionizing Radiation during Early Development. Int J Mol Sci 2020; 21:ijms21113975. [PMID: 32492918 PMCID: PMC7312565 DOI: 10.3390/ijms21113975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Early embryonic cells are sensitive to genotoxic stressors such as ionizing radiation. However, sensitivity to these stressors varies depending on the embryonic stage. Recently, the sensitivity and response to ionizing radiation were found to differ during the preimplantation period. The cellular and molecular mechanisms underlying the change during this period are beginning to be elucidated. In this review, we focus on the changes in radio-sensitivity and responses to ionizing radiation during the early developmental stages of the preimplantation (before gastrulation) period in mammals, Xenopus, and fish. Furthermore, we discuss the underlying cellular and molecular mechanisms and the similarities and differences between species.
Collapse
|
19
|
Critical Role for P53 in Regulating the Cell Cycle of Ground State Embryonic Stem Cells. Stem Cell Reports 2020; 14:175-183. [PMID: 32004494 PMCID: PMC7013234 DOI: 10.1016/j.stemcr.2020.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) grown in serum-supplemented conditions are characterized by an extremely short G1 phase due to the lack of G1-phase control. Concordantly, the G1-phase-specific P53-P21 pathway is compromised in serum ESCs. Here, we provide evidence that P53 is activated upon transition of serum ESCs to their pluripotent ground state using serum-free 2i conditions and that is required for the elongated G1 phase characteristic of ground state ESCs. RNA sequencing and chromatin immunoprecipitation sequencing analyses reveal that P53 directly regulates the expression of the retinoblastoma (RB) protein and that the hypo-phosphorylated, active RB protein plays a key role in G1-phase control. Our findings suggest that the P53-P21 pathway is active in ground state 2i ESCs and that its role in the G1-checkpoint is abolished in serum ESCs. Taken together, the data reveal a mechanism by which inactivation of P53 can lead to loss of RB and uncontrolled cell proliferation. The P53-P21 pathway is activated upon adaptation of ESCs to their pluripotent ground state. P53 is required for the elongated G1-phase characteristic to 2i ESCs. P53 binds the promoter and activates Rb1 expression.
Collapse
|
20
|
Yan J, Chen J, Zhang N, Yang Y, Zhu W, Li L, He B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J Mater Chem B 2020; 8:492-503. [DOI: 10.1039/c9tb02266j] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
d-(KLAKLAK)2-and Cy5-modified tetrahedral DNA nanostructures for imaging-guided mitochondria-targeted drug delivery
Collapse
Affiliation(s)
- Jianqin Yan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road
- Chengdu
- China
| | - Jun Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road
- Chengdu
- China
| | - Nan Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road
- Chengdu
- China
| | - Yidi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road
- Chengdu
- China
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road
- Chengdu
- China
| | - Li Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road
- Chengdu
- China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road
- Chengdu
- China
| |
Collapse
|
21
|
Jin Y, Lee WY, Toh ST, Tennakoon C, Toh HC, Chow PKH, Chung AYF, Chong SS, Ooi LLPJ, Sung WK, Lee CGL. Comprehensive analysis of transcriptome profiles in hepatocellular carcinoma. J Transl Med 2019; 17:273. [PMID: 31429776 PMCID: PMC6701074 DOI: 10.1186/s12967-019-2025-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
Background Hepatocellular carcinoma is the second most deadly cancer with late presentation and limited treatment options, highlighting an urgent need to better understand HCC to facilitate the identification of early-stage biomarkers and uncover therapeutic targets for the development of novel therapies for HCC. Methods Deep transcriptome sequencing of tumor and paired non-tumor liver tissues was performed to comprehensively evaluate the profiles of both the host and HBV transcripts in HCC patients. Differential gene expression patterns and the dys-regulated genes associated with clinical outcomes were analyzed. Somatic mutations were identified from the sequencing data and the deleterious mutations were predicted. Lastly, human-HBV chimeric transcripts were identified, and their distribution, potential function and expression association were analyzed. Results Expression profiling identified the significantly upregulated TP73 as a nodal molecule modulating expression of apoptotic genes. Approximately 2.5% of dysregulated genes significantly correlated with HCC clinical characteristics. Of the 110 identified genes, those involved in post-translational modification, cell division and/or transcriptional regulation were upregulated, while those involved in redox reactions were downregulated in tumors of patients with poor prognosis. Mutation signature analysis identified that somatic mutations in HCC tumors were mainly non-synonymous, frequently affecting genes in the micro-environment and cancer pathways. Recurrent mutations occur mainly in ribosomal genes. The most frequently mutated genes were generally associated with a poorer clinical prognosis. Lastly, transcriptome sequencing suggest that HBV replication in the tumors of HCC patients is rare. HBV-human fusion transcripts are a common observation, with favored HBV and host insertion sites being the HBx C-terminus and gene introns (in tumors) and introns/intergenic-regions (in non-tumors), respectively. HBV-fused genes in tumors were mainly involved in RNA binding while those in non-tumors tissues varied widely. These observations suggest that while HBV may integrate randomly during chronic infection, selective expression of functional chimeric transcripts may occur during tumorigenesis. Conclusions Transcriptome sequencing of HCC patients reveals key cancer molecules and clinically relevant pathways deregulated/mutated in HCC patients and suggests that while HBV may integrate randomly during chronic infection, selective expression of functional chimeric transcripts likely occur during the process of tumorigenesis.
Collapse
Affiliation(s)
- Yu Jin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Wai Yeow Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Soo Ting Toh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | | | - Han Chong Toh
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Level 6, Lab 5, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Pierce Kah-Hoe Chow
- Duke-NUS Medical School, Singapore, 169547, Singapore.,Department of Surgery, Singapore General Hospital, Singapore, 169608, Singapore
| | - Alexander Y-F Chung
- Department of Surgery, Singapore General Hospital, Singapore, 169608, Singapore
| | - Samuel S Chong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Department of Laboratory Medicine, National University Hospital, Singapore, 119074, Singapore
| | - London L-P-J Ooi
- Department of Surgery, Singapore General Hospital, Singapore, 169608, Singapore.,Department of Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Wing-Kin Sung
- Genome Institute of Singapore, Singapore, Singapore.,School of Computing, National University of Singapore, Singapore, Singapore
| | - Caroline G-L Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore. .,Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Level 6, Lab 5, 11 Hospital Drive, Singapore, 169610, Singapore. .,Duke-NUS Medical School, Singapore, 169547, Singapore.
| |
Collapse
|
22
|
Akinjo OO, Gant TW, Marczylo EL. Perturbation of microRNA signalling by doxorubicin in spermatogonial, Leydig and Sertoli cell lines in vitro. Toxicol Res (Camb) 2018; 7:760-770. [PMID: 30310654 PMCID: PMC6115902 DOI: 10.1039/c7tx00314e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/04/2018] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that in addition to its widely recognised cardiotoxicity, the chemotherapeutic doxorubicin (DOX) is able to induce transcriptional, microRNA (miRNA) and DNA methylation changes in the mouse testis. These changes perturb pathways involved in stress/cell death and survival and testicular function and lead to germ cell loss and reproductive organ damage. Here, we further investigated the differential miRNA expression induced by DOX in mouse spermatogonial (GC1), Leydig (TM3) and Sertoli (TM4) cell lines in vitro. We began by performing cell cycle analysis of the three mouse testicular cell lines to evaluate their sensitivity to DOX and thus select suitable doses for miRNA profiling. In keeping with our in vivo data, the spermatogonial cell line was the most sensitive, and the Sertoli cell line the most resistant to DOX-induced cell cycle arrest. We then further demonstrated that each cell line has a distinct miRNA profile, which is perturbed upon treatment with DOX. Pathway analysis identified changes in the miRNA-mediated regulation of specialised signalling at germ-Sertoli and Sertoli-Sertoli cell junctions following treatment with DOX. Amongst the most significant disease categories associated with DOX-induced miRNA expression were organismal injury and abnormalities, and reproductive system disease. This suggests that miRNAs play significant roles in both normal testicular function and DOX-induced testicular toxicity. Comparison of our in vitro and in vivo data highlights that in vitro cell models can provide valuable mechanistic information, which may also help facilitate the development of biomarkers of testicular toxicity and high-throughput in vitro screening methods to identify potential testicular toxicants.
Collapse
Affiliation(s)
- Oluwajoba O Akinjo
- Toxicology Department , CRCE , PHE , Chilton , Oxfordshire OX11 0RQ , UK .
| | - Timothy W Gant
- Toxicology Department , CRCE , PHE , Chilton , Oxfordshire OX11 0RQ , UK .
| | - Emma L Marczylo
- Toxicology Department , CRCE , PHE , Chilton , Oxfordshire OX11 0RQ , UK .
| |
Collapse
|
23
|
Zaveri L, Dhawan J. Cycling to Meet Fate: Connecting Pluripotency to the Cell Cycle. Front Cell Dev Biol 2018; 6:57. [PMID: 29974052 PMCID: PMC6020794 DOI: 10.3389/fcell.2018.00057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023] Open
Abstract
Pluripotent stem cells are characterized by their high proliferative rates, their ability to self-renew and their potential to differentiate to all the three germ layers. This rapid proliferation is brought about by a highly modified cell cycle that allows the cells to quickly shuttle from DNA synthesis to cell division, by reducing the time spent in the intervening gap phases. Many key regulators that define the somatic cell cycle are either absent or exhibit altered behavior, allowing the pluripotent cell to bypass cell cycle checkpoints typical of somatic cells. Experimental analysis of this modified stem cell cycle has been challenging due to the strong link between rapid proliferation and pluripotency, since perturbations to the cell cycle or pluripotency factors result in differentiation. Despite these hurdles, our understanding of this unique cell cycle has greatly improved over the past decade, in part because of the availability of new technologies that permit the analysis of single cells in heterogeneous populations. This review aims to highlight some of the recent discoveries in this area with a special emphasis on different states of pluripotency. We also discuss the highly interlinked network that connects pluripotency factors and key cell cycle genes and review evidence for how this interdependency may promote the rapid cell cycle. This issue gains translational importance since disruptions in stem cell proliferation and differentiation can impact disorders at opposite ends of a spectrum, from cancer to degenerative disease.
Collapse
Affiliation(s)
- Lamuk Zaveri
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
24
|
Stelcer E, Kulcenty K, Rucinski M, Jopek K, Richter M, Trzeciak T, Suchorska WM. Forced differentiation in vitro leads to stress-induced activation of DNA damage response in hiPSC-derived chondrocyte-like cells. PLoS One 2018; 13:e0198079. [PMID: 29864138 PMCID: PMC5986142 DOI: 10.1371/journal.pone.0198079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023] Open
Abstract
A human induced pluripotent stem cell line (GPCCi001-A) created by our group was differentiated towards chondrocyte-like cells (ChiPS) via monolayer culturing with growth factors. ChiPS are promising because they have the potential to be used in tissue engineering to regenerate articular cartilage. However, their safety must be confirmed before they can be routinely used in regenerative medicine. Using microarray analysis, we compared the ChiPS to both GPCCi001-A cells and chondrocytes. The analysis showed that, compared to both GPCCi001-A cells and chondrocytes, the expression of genes engaged in DNA damage and in the tumor protein p53 signalling pathways was significantly higher in the ChiPS. The significant amount of DNA double strand breaks and increased DNA damage response may lead to incomplete DNA repair and the accumulation of mutations and, ultimately, to genetic instability. These findings provide evidence indicating that the differentiation process in vitro places stress on human induced pluripotent stem cells (hiPSCs). The results of this study raise doubts about the use of stem cell-derived components given the negative effects of the differentiation process in vitro on hiPSCs.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- * E-mail:
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Maria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
25
|
Phermthai T, Pokathikorn P, Wichitwiengrat S, Thongbopit S, Tungprasertpol K, Julavijitphong S. P53 Mutation and Epigenetic Imprinted IGF2/H19 Gene Analysis in Mesenchymal Stem Cells Derived from Amniotic Fluid, Amnion, Endometrium, and Wharton's Jelly. Stem Cells Dev 2017. [PMID: 28629288 DOI: 10.1089/scd.2016.0356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSC) are promising cells for medical therapy. In in vitro expansion, MSC can give rise to progeny with genomic and epigenomic alterations, resulting in senescence, loss of terminal differentiation, and transformation to cancer. However, MSC genome protects its genetic instability by a guardian function of the P53 tumor suppressor gene and epigenetic balance system during MSC culture. Mutations of P53 and epigenetic alterations have been reported to disrupt the quality and quantity of MSC and initiate tumorigenesis. We monitor P53 and epigenetic changes in MSC derived from amniotic fluid (AF-MSC), amnion membrane (AM-MSC), endometrium (EM-MSC), and Wharton's jelly (WJ-MSC) by the missense mutation analysis of the P53 gene and the expression levels of P53, and epigenetic insulin-like growth factor 2 (IGF2) and H19-imprinted genes. Our work demonstrates a variation of P53 expression among different MSC types. AF-MSC has a high P53 expression level with retaining a stability of P53 expression throughout a long culture period, whereas EM-MSC and WJ-MSC showed variation of P53 gene expression during culture. Epigenetic analysis showed a stable H19 expression pattern in AF-MSC, AM-MSC, and EM-MSC culture, whereas H19 expression fluctuated in WJ-MSC culture. We conclude that gene instability can be found during in vitro MSC expansion. With awareness to MSC quality and safety in MSC transformation risk, P53 mutation and IGF2 and H19-imprinted gene analysis should be applied to monitor in therapeutic-grade MSC. We also demonstrated that AF-MSC is one of the most interesting MSC for medical therapy because of its high genomic stability and epigenetic fidelity.
Collapse
Affiliation(s)
- Tatsanee Phermthai
- Stem Cell Research and Development Unit, Obstetrics and Gynecology Department, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Puttachart Pokathikorn
- Stem Cell Research and Development Unit, Obstetrics and Gynecology Department, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Suparat Wichitwiengrat
- Stem Cell Research and Development Unit, Obstetrics and Gynecology Department, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Sasiprapa Thongbopit
- Stem Cell Research and Development Unit, Obstetrics and Gynecology Department, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Kittima Tungprasertpol
- Stem Cell Research and Development Unit, Obstetrics and Gynecology Department, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Suphakde Julavijitphong
- Stem Cell Research and Development Unit, Obstetrics and Gynecology Department, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| |
Collapse
|