1
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Waisman A, Sevlever F, Saulnier D, Francia M, Blanco R, Amín G, Lombardi A, Biani C, Palma MB, Scarafía A, Smucler J, La Greca A, Moro L, Sevlever G, Guberman A, Miriuka S. The transcription factor OCT6 promotes the dissolution of the naïve pluripotent state by repressing Nanog and activating a formative state gene regulatory network. Sci Rep 2024; 14:10420. [PMID: 38710730 PMCID: PMC11074312 DOI: 10.1038/s41598-024-59247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
In the mouse embryo, the transition from the preimplantation to the postimplantation epiblast is governed by changes in the gene regulatory network (GRN) that lead to transcriptional, epigenetic, and functional changes. This transition can be faithfully recapitulated in vitro by the differentiation of mouse embryonic stem cells (mESCs) to epiblast-like cells (EpiLCs), that reside in naïve and formative states of pluripotency, respectively. However, the GRN that drives this conversion is not fully elucidated. Here we demonstrate that the transcription factor OCT6 is a key driver of this process. Firstly, we show that Oct6 is not expressed in mESCs but is rapidly induced as cells exit the naïve pluripotent state. By deleting Oct6 in mESCs, we find that knockout cells fail to acquire the typical morphological changes associated with the formative state when induced to differentiate. Additionally, the key naïve pluripotency TFs Nanog, Klf2, Nr5a2, Prdm14, and Esrrb were expressed at higher levels than in wild-type cells, indicating an incomplete dismantling of the naïve pluripotency GRN. Conversely, premature expression of Oct6 in naïve cells triggered a rapid morphological transformation mirroring differentiation, that was accompanied by the upregulation of the endogenous Oct6 as well as the formative genes Sox3, Zic2/3, Foxp1, Dnmt3A and FGF5. Strikingly, we found that OCT6 represses Nanog in a bistable manner and that this regulation is at the transcriptional level. Moreover, our findings also reveal that Oct6 is repressed by NANOG. Collectively, our results establish OCT6 as a key TF in the dissolution of the naïve pluripotent state and support a model where Oct6 and Nanog form a double negative feedback loop which could act as an important toggle mediating the transition to the formative state.
Collapse
Affiliation(s)
- Ariel Waisman
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina.
| | - Federico Sevlever
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Denisse Saulnier
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Renata Blanco
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Guadalupe Amín
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Antonella Lombardi
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Celeste Biani
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - María Belén Palma
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Agustina Scarafía
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Joaquín Smucler
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Alejandro La Greca
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Lucía Moro
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Gustavo Sevlever
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Wang X, Wei K, Wang M, Zhang L. Identification of potential key ferroptosis- and autophagy-related genes in myelomeningocele through bioinformatics analysis. Heliyon 2024; 10:e29654. [PMID: 38660270 PMCID: PMC11040124 DOI: 10.1016/j.heliyon.2024.e29654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Myelomeningocele is a common congenital anomaly associated with polygenic disorders worldwide. However, the intricate molecular mechanisms underlying myelomeningocele remain elusive. To investigate whether ferroptosis and ferritinophagy contribute to the pathomechanism of myelomeningocele, differentially expressed genes (DEGs) were identified as novel biomarker and potential treatment agents. The GSE101141 dataset from Gene Expression Omnibus (GEO) was analyzed using GEO2R web tool to obtain DEGs based on |log2 fold change (FC)|≥1.5 and p < 0.05. Two datasets from the Ferroptosis Database (481 genes) and Autophagy Database (551 genes) were intersected with the DEGs from the GSE101141 dataset to identify ferroptosis- and autophagy-related DEGs using Venn diagrams. Functional and pathway enrichment, protein-protein interaction (PPI) network analyses were performed, and candidate genes were selected. Transcription factors (TFs), microRNAs (miRNAs), diseases and chemicals interacting with the candidate genes were identified. Receiver operating characteristic (ROC) curve analysis was performed to validate the diagnostic value of the candidate genes. Sixty ferroptosis-related and 74 autophagy-related DEGs were identified. These DEGs are involved in FoxO signaling pathway. Six candidate genes (EGFR, KRAS, IL1B, SIRT1, ATM, and MAPK8) were selected. miRNAs such as hsa-miR-27a-3p, hsa-miR-877-5p, and hsa-miR-892b, and TFs including P53, POU3F2, TATA are involved in regulation of candidate genes. Diseases such as schizophrenia, fibrosis, and neoplasms are the most relevant to the candidate genes. Chemicals, such as resveratrol, curcumin, and quercetin may have significant implications in the treatment of myelomeningocele. The candidate genes, especially MAPK8, also showed a high diagnostic value for myelomeningocele. These results help to shed light on the molecular mechanism of myelomeningocele and may provide new insights into diagnostic biomarker in the amniotic fluid and potential therapeutic agents of myelomeningocele.
Collapse
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Kaixin Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Min Wang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
4
|
Cheng H, Hua L, Tang H, Bao Z, Xu X, Zhu H, Wang S, Jiapaer Z, Bhatia R, Dunn IF, Deng J, Wang D, Sun S, Luan S, Ji J, Xie Q, Yang X, Lei J, Li G, Wang X, Gong Y. CBX7 reprograms metabolic flux to protect against meningioma progression by modulating the USP44/c-MYC/LDHA axis. J Mol Cell Biol 2024; 15:mjad057. [PMID: 37791390 PMCID: PMC11195615 DOI: 10.1093/jmcb/mjad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Meningioma is one of the most common primary neoplasms in the central nervous system, but no specific molecularly targeted therapy has been approved for the clinical treatment of aggressive meningiomas. There is hence an urgent demand to decrypt the biological and molecular landscape of malignant meningioma. Here, through the in-silica prescreening and 10-year follow-up studies of 445 meningioma patients, we uncovered that CBX7 expression progressively decreases with malignancy grade and neoplasia stage in meningioma, and a high CBX7 expression level predicts a favorable prognosis in meningioma patients. CBX7 restoration significantly induces cell cycle arrest and inhibits meningioma cell proliferation. iTRAQ-based proteomics analysis indicated that CBX7 restoration triggers the metabolic shift from glycolysis to oxidative phosphorylation. The mechanistic study demonstrated that CBX7 promotes the proteasome-dependent degradation of c-MYC protein by transcriptionally inhibiting the expression of a c-MYC deubiquitinase, USP44, consequently attenuates c-MYC-mediated transactivation of LDHA transcripts, and further inhibits glycolysis and subsequent cell proliferation. More importantly, the functional role of CBX7 was further confirmed in subcutaneous and orthotopic meningioma xenograft mouse models and meningioma patients. Altogether, our results shed light on the critical role of CBX7 in meningioma malignancy progression and identify the CBX7/USP44/c-MYC/LDHA axis as a promising therapeutic target against meningioma progression.
Collapse
Affiliation(s)
- Haixia Cheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Hongguang Zhu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biology Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Roma Bhatia
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xinyu Yang
- Fangshan Hospital of Beijing, University of Traditional Chinese Medicine, Beijing 102400, China
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
6
|
Karthik KV, Rajalingam A, Shivashankar M, Ganjiwale A. Recursive Feature Elimination-based Biomarker Identification for Open Neural Tube Defects. Curr Genomics 2022; 23:195-206. [PMID: 36777008 PMCID: PMC9878829 DOI: 10.2174/1389202923666220511162038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Open spina bifida (myelomeningocele) is the result of the failure of spinal cord closing completely and is the second most common and severe birth defect. Open neural tube defects are multifactorial, and the exact molecular mechanism of the pathogenesis is not clear due to disease complexity for which prenatal treatment options remain limited worldwide. Artificial intelligence techniques like machine learning tools have been increasingly used in precision diagnosis. Objective: The primary objective of this study is to identify key genes for open neural tube defects using a machine learning approach that provides additional information about myelomeningocele in order to obtain a more accurate diagnosis. Materials and Methods: Our study reports differential gene expression analysis from multiple datasets (GSE4182 and GSE101141) of amniotic fluid samples with open neural tube defects. The sample outliers in the datasets were detected using principal component analysis (PCA). We report a combination of the differential gene expression analysis with recursive feature elimination (RFE), a machine learning approach to get 4 key genes for open neural tube defects. The features selected were validated using five binary classifiers for diseased and healthy samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbour (KNN) with 5-fold cross-validation. Results: Growth Associated Protein 43 (GAP43), Glial fibrillary acidic protein (GFAP), Repetin (RPTN), and CD44 are the important genes identified in the study. These genes are known to be involved in axon growth, astrocyte differentiation in the central nervous system, post-traumatic brain repair, neuroinflammation, and inflammation-linked neuronal injuries. These key genes represent a promising tool for further studies in the diagnosis and early detection of open neural tube defects. Conclusion: These key biomarkers help in the diagnosis and early detection of open neural tube defects, thus evaluating the progress and seriousness in diseases condition. This study strengthens previous literature sources of confirming these biomarkers linked with open NTD's. Thus, among other prenatal treatment options present until now, these biomarkers help in the early detection of open neural tube defects, which provides success in both treatment and prevention of these defects in the advanced stage.
Collapse
Affiliation(s)
| | - Aruna Rajalingam
- Department of Life Science, Bangalore University, Bangalore, India
| | | | - Anjali Ganjiwale
- Department of Life Science, Bangalore University, Bangalore, India
| |
Collapse
|
7
|
Li G, Manning AC, Bagi A, Yang X, Gokulnath P, Spanos M, Howard J, Chan PP, Sweeney T, Kitchen R, Li H, Laurent BD, Aranki SF, Kontaridis MI, Laurent LC, Van Keuren‐Jensen K, Muehlschlegel J, Lowe TM, Das S. Distinct Stress-Dependent Signatures of Cellular and Extracellular tRNA-Derived Small RNAs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200829. [PMID: 35373532 PMCID: PMC9189662 DOI: 10.1002/advs.202200829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 05/11/2023]
Abstract
The cellular response to stress is an important determinant of disease pathogenesis. Uncovering the molecular fingerprints of distinct stress responses may identify novel biomarkers and key signaling pathways for different diseases. Emerging evidence shows that transfer RNA-derived small RNAs (tDRs) play pivotal roles in stress responses. However, RNA modifications present on tDRs are barriers to accurately quantifying tDRs using traditional small RNA sequencing. Here, AlkB-facilitated methylation sequencing is used to generate a comprehensive landscape of cellular and extracellular tDR abundances in various cell types during different stress responses. Extracellular tDRs are found to have distinct fragmentation signatures from intracellular tDRs and these tDR signatures are better indicators of different stress responses than miRNAs. These distinct extracellular tDR fragmentation patterns and signatures are also observed in plasma from patients on cardiopulmonary bypass. It is additionally demonstrated that angiogenin and RNASE1 are themselves regulated by stressors and contribute to the stress-modulated abundance of sub-populations of cellular and extracellular tDRs. Finally, a sub-population of extracellular tDRs is identified for which AGO2 appears to be required for their expression. Together, these findings provide a detailed profile of stress-responsive tDRs and provide insight about tDR biogenesis and stability in response to cellular stressors.
Collapse
Affiliation(s)
- Guoping Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Aidan C. Manning
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Alex Bagi
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Xinyu Yang
- Fangshan Hospital of BeijingUniversity of Traditional Chinese MedicineBeijing102499China
| | - Priyanka Gokulnath
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Michail Spanos
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jonathan Howard
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Patricia P. Chan
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Thadryan Sweeney
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Robert Kitchen
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Haobo Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Brice D. Laurent
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sary F. Aranki
- Division of Cardiac SurgeryDepartment of SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research InstituteUticaNY13501USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
- Department of MedicineDivision of CardiologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | | | - Jochen Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Todd M. Lowe
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Saumya Das
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
8
|
Biological importance of OCT transcription factors in reprogramming and development. Exp Mol Med 2021; 53:1018-1028. [PMID: 34117345 PMCID: PMC8257633 DOI: 10.1038/s12276-021-00637-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ectopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences. Cells can be reprogrammed into induced pluripotent stem cells (iPSCs), embryonic-like stem cells that can turn into any cell type and have extensive potential medical uses, without adding the transcription factor OCT4. Although other nearly identical OCT family members had been tried, only OCT4 could induce reprogramming and was previously thought to be indispensable. However, it now appears that the reprogramming can be induced by multiple pathways, as detailed in a review by Hans Schöler, Max Planck Institute for Biomolecular Medicine, Münster, and Johnny Kim, Max Planck Institute for Heart and Lung Research, Bad Nauheim, in Germany. They report that any factors that trigger cells to activate endogeous OCT4 can produce iPSCs without exogeously admistration of OCT4. The mechanisms for producing iPSCs can differ between species. These results illuminate the complex mechanisms of reprogramming.
Collapse
|
9
|
Zhao L, Liu D, Ma W, Gu H, Wei X, Luo W, Yuan Z. Bhlhe40/Sirt1 Axis-Regulated Mitophagy Is Implicated in All- Trans Retinoic Acid-Induced Spina Bifida Aperta. Front Cell Dev Biol 2021; 9:644346. [PMID: 33987177 PMCID: PMC8111003 DOI: 10.3389/fcell.2021.644346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations that result from failure of neural tube closure during early embryonic development, and the underlying molecular mechanisms remain elusive. Mitophagy is the best-known way of mitochondrial quality control. However, the role and regulation of mitophagy in NTDs have not yet been elucidated. In this study, we used an all-trans retinoic acid (ATRA)-induced rat model to investigate mitophagy and its underlying mechanism in spina bifida aperta (SBA). The results of western blot, immunofluorescence and RT-qPCR analyses indicated that mitophagy was impaired and Sirt1 was downregulated in SBA. Administration of resveratrol-a strong specific Sirt1 activator-activated Sirt1, thus attenuating autophagy suppression and ameliorating SBA. RNA-sequencing and bioinformatics analysis results indicated that transcriptional regulation played an important role in NTDs. A luciferase reporter assay was performed to demonstrate that the transcription factor Bhlhe40 directly bound to and negatively regulated Sirt1 expression. Further, we discovered that the Bhlhe40/Sirt1 axis regulated mitophagy in neural stem cells. Collectively, our results for the first time demonstrate that Bhlhe40/Sirt1 axis regulated mitophagy is implicated in ATRA-induced SBA. Our findings provide new insights into pathogenesis of NTDs and a basis for potential therapeutic targets for NTDs.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Barros II, Leão V, Santis JO, Rosa RCA, Brotto DB, Storti CB, Siena ÁDD, Molfetta GA, Silva WA. Non-Syndromic Intellectual Disability and Its Pathways: A Long Noncoding RNA Perspective. Noncoding RNA 2021; 7:ncrna7010022. [PMID: 33799572 PMCID: PMC8005948 DOI: 10.3390/ncrna7010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelopmental disorder that represents a global health issue. Although many efforts have been made to characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heterogeneous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs (lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be involved in important neurodevelopmental processes. In this sense, comprehending the roles they play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and develop. In this review, we attempt to bring together knowledge available in the literature about lncRNAs involved with molecular and cellular pathways already described in intellectual disability and neural function, to better understand their relevance in NS-ID and the regulatory complexity of this disorder.
Collapse
Affiliation(s)
- Isabela I. Barros
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Vitor Leão
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Jessica O. Santis
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Reginaldo C. A. Rosa
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Danielle B. Brotto
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Camila B. Storti
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Ádamo D. D. Siena
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Greice A. Molfetta
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Wilson A. Silva
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Center for Integrative Systems Biology-CISBi, NAP/USP, Ribeirão Preto Medical School, University of São Paulo, Rua Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Department of Medicine at the Midwest State University of Paraná-UNICENTRO, and Guarapuava Institute for Cancer Research, Rua Fortim Atalaia, 1900, Cidade dos Lagos, Guarapuava 85100-000, Brazil
- Correspondence: ; Tel.: +55-16-3315-3293
| |
Collapse
|
11
|
Wu Y, Zhang X, Wang J, Jin G, Zhang X. Research progress of the transcription factor Brn4 (Review). Mol Med Rep 2021; 23:179. [PMID: 33398372 PMCID: PMC7809911 DOI: 10.3892/mmr.2020.11818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain 4 (Brn4) is a transcription factor belonging to the POU3 family, and it is important for the embryonic development of the neural tube, inner ear and pancreas. In addition, it serves a crucial role in neural stem cell differentiation and reprogramming. The present review aimed to summarize the chromosomal location, species homology, protein molecular structure and tissue distribution of Brn4, in addition to its biological processes, with the aim of providing a reference of its structure and function for further studies, and its potential use as a gene therapy target.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xunrui Zhang
- Department of Clinical Medicine, Faculty of Medicine, Xinglin College, Nantong University, Nantong, Jiangsu 226008, P.R. China
| | - Jue Wang
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guohua Jin
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinhua Zhang
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
12
|
Ma L, Tian MX, Sun QY, Liu NN, Dong JF, Feng K, Wu YK, Wang YX, Wang GY, Chen W, Xi JJ, Kang JH. Fetal growth restriction mice are more likely to exhibit depression-like behaviors due to stress-induced loss of dopaminergic neurons in the VTA. FASEB J 2020; 34:13257-13271. [PMID: 32860269 DOI: 10.1096/fj.202000534r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 11/11/2022]
Abstract
Fetal growth restriction (FGR) is a severe perinatal complication that can increase risk for mental illness. To investigate the mechanism by which FGR mice develop mental illness in adulthood, we established the FGR mouse model and the FGR mice did not display obvious depression-like behaviors, but after environmental stress exposure, FGR mice were more likely to exhibit depression-like behaviors than control mice. Moreover, FGR mice had significantly fewer dopaminergic neurons in the ventral tegmental area but no difference in serotoninergic neurons in the dorsal raphe. RNA-seq analysis showed that the downregulated genes in the midbrain of FGR mice were associated with many mental diseases and were especially involved in the regulation of NMDA-selective glutamate receptor (NMDAR) activity. Furthermore, the NMDAR antagonist memantine can relieve the stress-induced depression-like behaviors of FGR mice. In summary, our findings provide a theoretical basis for future research and treatment of FGR-related depression.
Collapse
Affiliation(s)
- Li Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng-Xue Tian
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Institute of Translational Research, Tongji Hospital, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Qiao-Yi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Na-Na Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian-Feng Dong
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu-Kang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu-Xi Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gui-Ying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jia-Jie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiu-Hong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Qiao J, Zhao J, Chang S, Sun Q, Liu N, Dong J, Chen Y, Yang D, Ye D, Liu X, Yu Y, Chen W, Zhu S, Wang G, Jia W, Xi J, Kang J. MicroRNA-153 improves the neurogenesis of neural stem cells and enhances the cognitive ability of aged mice through the notch signaling pathway. Cell Death Differ 2019; 27:808-825. [PMID: 31296962 DOI: 10.1038/s41418-019-0388-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 01/22/2023] Open
Abstract
Aging-related cognitive ability impairments are one of the main threats to public health, and impaired hippocampal neurogenesis is a major cause of cognitive decline during aging. However, the regulation of adult neurogenesis in the hippocampus requires further study. Here, we investigated the role of microRNA-153 (miR-153), a highly conserved microRNA in mice and humans, in adult neurogenesis. During the passaging of neural stem cells (NSCs) in vitro, endogenous miR-153 expression was downregulated, with a decrease in neuronal differentiation ability. In addition, miR-153 overexpression increased the neurogenesis of NSCs. Further studies showed that miR-153 regulated neurogenesis by precisely targeting the Notch signaling pathway through inhibition of Jagged1 and Hey2 translation. In vivo analysis demonstrated that miR-153 expression was decreased in the hippocampi of aged mice with impaired cognitive ability, and that miR-153 overexpression in the hippocampus promoted neurogenesis and markedly increased the cognitive abilities of the aged mice. Overall, our findings revealed that miR-153 affected neurogenesis by regulating the Notch signaling pathway and elucidated the function of miR-153 in aging-related, hippocampus-dependent cognitive ability impairments, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jinping Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jianfeng Dong
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yafang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoqin Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yangyang Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
14
|
The POU-Domain Transcription Factor Oct-6/POU3F1 as a Regulator of Cellular Response to Genotoxic Stress. Cancers (Basel) 2019; 11:cancers11060810. [PMID: 31212703 PMCID: PMC6627474 DOI: 10.3390/cancers11060810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
DNA damage and the generation of reactive oxygen species (ROS) are key mechanisms of apoptotic cell death by commonly used genotoxic drugs. However, the complex cellular response to these pharmacologic agents remains yet to be fully characterized. Several studies have described the role of transcription factor octamer-1 (Oct-1)/Pit-1, Oct-1/2, and Unc-86 shared domain class 2 homeobox 1 (POU2F1) in the regulation of the genes important for cellular response to genotoxic stress. Evaluating the possible involvement of other POU family transcription factors in these pathways, we revealed the inducible expression of Oct-6/POU3F1, a regulator of neural morphogenesis and epidermal differentiation, in cancer cells by genotoxic drugs. The induction of Oct-6 occurs at the transcriptional level via reactive oxygen species (ROS) and ataxia telangiectasia mutated- and Rad3-related (ATR)-dependent mechanisms, but in a p53 independent manner. Moreover, we provide evidence that Oct-6 may play a role in the regulation of cellular response to DNA damaging agents. Indeed, by using the shRNA approach, we demonstrate that in doxorubicin-treated H460 non-small-cell lung carcinoma (NSCLC) cells, Oct-6 depletion leads to a reduced G2-cell cycle arrest and senescence, but also to increased levels of intracellular ROS and DNA damage. In addition, we could identify p21 and catalase as Oct-6 target genes possibly mediating these effects. These results demonstrate that Oct-6 is expressed in cancer cells after genotoxic stress, and suggests its possible role in the control of ROS, DNA damage response (DDR), and senescence.
Collapse
|
15
|
Zhang L, Xue Z, Yan J, Wang J, Liu Q, Jiang H. LncRNA Riken-201 and Riken-203 modulates neural development by regulating the Sox6 through sequestering miRNAs. Cell Prolif 2019; 52:e12573. [PMID: 30667104 PMCID: PMC6536386 DOI: 10.1111/cpr.12573] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives Long non‐coding RNAs (LncRNAs) play important roles in epigenetic regulatory function during the development processes. In this study, we found that through alternative splicing, LncRNA C130071C03Riken variants Riken‐201 (Riken‐201) and Riken‐203 (Riken‐203) are both expressed highly in brain, and increase gradually during neural differentiation. However, the function of Rik‐201 and Rik‐203 is unknown. Materials and methods Embryonic stem cells (ESCs); RNA sequencing; gene expression of mRNAs, LncRNAs and miRNAs; over‐expression and RNA interference of genes; flow cytometry; real‐time quantity PCR; and Western blot were used in the studies. RNA pull‐down assay and PCR were employed to detect any miRNA that attached to Rik‐201 and Rik‐203. The binding of miRNA with mRNA of Sox6 was presented by the luciferase assay. Results Repression of Rik‐201 and Rik‐203 inhibited neural differentiation from mouse embryonic stem cells. Moreover, Rik‐201 and Rik‐203 functioned as the competing endogenous RNA (ceRNA) to repress the function of miR‐96 and miR‐467a‐3p, respectively, and modulate the expression of Sox6 to further regulate neural differentiation. Knockout of the Rik‐203 and Rik‐201 induced high ratio of brain developmental retardation. Further we found that C/EBPβ might potentially activated the transcription of Rik‐201 and Rik‐203. Conclusions These findings identify the functional role of Rik‐201 and Rik‐203 in facilitating neural differentiation and further brain development, and elucidate the underlying miRNAs‐Sox6‐associated molecular mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Jie Wang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Qidong Liu
- Anesthesia and Brain Function Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| |
Collapse
|
16
|
Fawal MA, Davy A. Impact of Metabolic Pathways and Epigenetics on Neural Stem Cells. Epigenet Insights 2018; 11:2516865718820946. [PMID: 30627699 PMCID: PMC6311566 DOI: 10.1177/2516865718820946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Balancing self-renewal with differentiation is crucial for neural stem cells (NSC) functions to ensure tissue development and homeostasis. Over the last years, multiple studies have highlighted the coupling of either metabolic or epigenetic reprogramming to NSC fate decisions. Metabolites are essential as they provide the energy and building blocks for proper cell function. Moreover, metabolites can also function as substrates and/or cofactors for epigenetic modifiers. It is becoming more evident that metabolic alterations and epigenetics rewiring are highly intertwined; however, their relation regarding determining NSC fate is not well understood. In this review, we summarize the major metabolic pathways and epigenetic modifications that play a role in NSC. We then focus on the notion that nutrients availability can function as a switch to modify the epigenetic machinery and drive NSC sequential differentiation during embryonic neurogenesis.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI) and Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI) and Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
17
|
Jiapaer Z, Li G, Ye D, Bai M, Li J, Guo X, Du Y, Su D, Jia W, Chen W, Wang G, Yu Y, Zhu F, Wan X, Kang J. LincU Preserves Naïve Pluripotency by Restricting ERK Activity in Embryonic Stem Cells. Stem Cell Reports 2018; 11:395-409. [PMID: 30017820 PMCID: PMC6092693 DOI: 10.1016/j.stemcr.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Although the functional roles of long noncoding RNAs (lncRNAs) have been increasingly identified, few lncRNAs that control the naïve state of embryonic stem cells (ESCs) are known. Here, we report a naïve-state-associated lncRNA, LincU, which is intrinsically activated by Nanog in mESCs. LincU-deficient mESCs exhibit a primed-like pluripotent state and potentiate the transition from the naïve state to the primed state, whereas ectopic LincU expression maintains mESCs in the naïve state. Mechanistically, we demonstrate that LincU binds and stabilizes the DUSP9 protein, an ERK-specific phosphatase, and then constitutively inhibits the ERK1/2 signaling pathway, which critically contributes to maintenance of the naïve state. Importantly, we reveal the functional role of LincU to be evolutionarily conserved in human. Therefore, our findings unveil LincU as a conserved lncRNA that intrinsically restricts MAPK/ERK activity and maintains the naïve state of ESCs. LincU is integral and sufficient to maintain the naïve state of mESCs LincU binds and stabilizes DUSP9 protein to inhibit the ERK1/2 phosphorylation LincU is a direct target of NANOG in naïve-state mESCs The functional role of LincU is conserved in human ESCs
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yanhua Du
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dingwen Su
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yangyang Yu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|