1
|
Xu Y, Yu Y, Guo Z. Hydrogels in cardiac tissue engineering: application and challenges. Mol Cell Biochem 2025; 480:2201-2222. [PMID: 39495368 DOI: 10.1007/s11010-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yaping Xu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
2
|
Xu Z, Hong W, Mo Y, Shu F, Liu Y, Cheng Y, Tan N, Jiang L. Stem cells derived exosome laden oxygen generating hydrogel composites with good electrical conductivity for the tissue-repairing process of post-myocardial infarction. J Nanobiotechnology 2025; 23:213. [PMID: 40091055 PMCID: PMC11912659 DOI: 10.1186/s12951-025-03289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/02/2025] [Indexed: 03/19/2025] Open
Abstract
Acute myocardial infarction (AMI) destroys heart cells by disrupting the oxygen supply. Improving oxygen delivery to the injured area may avoid cell death and regenerate the heart. We present the creation of oxygen-producing injectable bio-macromolecular hydrogels using catalase (CAT) loaded alginate (Alg) and fibrin (Fib) incorporated with the Mesenchymal stem cells (MSCs) derived exosomes (Exo). The composite hydrogel additionally incorporates electrical stimulating qualities from gold nanoparticles (AuNPs). In vitro experiments showed that this composite hydrogel (Exo/Hydro/AuNPs/CAT) exhibits electrical conductivity similar to an actual heart and effectively releases CAT. The O2-generating hydrogel released oxygen for almost 5 days under hypoxia conditions. We showed that after 7 days of in vitro cell culture, produces the same paracrine factors as rat neonatal cardiomyocytes (RNCs), rat cardiac fibroblasts (RCFs), and Human Umbilical Vein Endothelial Cells (HUVECs), imitating capillary architecture and function. Our work demonstrated that the injectable conductive hydrogel loaded with CAT and AuNPs reduced left ventricular remodeling and myocardial dysfunction in rats after MI. Exo/Hydro/AuNPs/CAT boosted infarct margin angiogenesis, decreased cell apoptosis, and necrosis, and elevated Connexm43 (Cx43) expression. The therapeutic benefits and the ease of production of oxygen make this bioactive injectable conductive hydrogel an effective therapeutic agent for MI.
Collapse
Affiliation(s)
- Zhaoyan Xu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Cardiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Wanzi Hong
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Cardiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Yuanxi Mo
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Fen Shu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yaoxin Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuqi Cheng
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lei Jiang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Dongwen L, Dapeng M, Jiazhi Y, Xiaoguang L. Hydrogels in Oral Disease Management: A Review of Innovations in Drug Delivery and Tissue Regeneration. Med Sci Monit 2025; 31:e946122. [PMID: 39962794 PMCID: PMC11846253 DOI: 10.12659/msm.946122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 02/24/2025] Open
Abstract
The oral cavity is an open and complicated structure with a variety of factors affecting topical oral medications. The complicated physical and chemical surroundings of the oral cavity can influence the action of free drugs. Thus, the drug delivery system can serve as a support structure or carrier. Hydrogels are prospective tissue engineering biomaterials that demonstrate immense potential for oral tissue regeneration and drug delivery. Hydrogels are crosslinked polymer chains with a 3-dimensional network structure that can take up larger volumes of liquid and have a soft, porous structure that closely resembles living tissue. Hydrogels protect the active drug from systemic and topical elimination, increase the bioavailability and absorption into cells, and release or modify the therapeutic drug release immediately after dosing. In this review, we introduce the classification of hydrogels, introduce the application of hydrogels in oral diseases (periodontal disease, endodontics, oral mucosal disease, alveolar surgery, oral cancer, maxillofacial bone defects, and oral implantation), summarize the synthesis methods and the applications of hydrogels, and discuss the possible directions of the future development of hydrogels, which will provide a new idea for the formulation and production of a more advantageous and efficient topical oral drug delivery system.
Collapse
|
4
|
Le DCP, Bui HT, Vu YTH, Vo QD. Induced pluripotent stem cell therapies in heart failure treatment: a meta-analysis and systematic review. Regen Med 2024; 19:497-509. [PMID: 39263954 PMCID: PMC11487948 DOI: 10.1080/17460751.2024.2393558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Heart failure (HF) causes over 266,400 deaths annually. Despite treatment advancements, HF mortality remains high. Induced pluripotent stem cells (iPSCs) offer promising new options. This review assesses iPSC-based treatments for HF.Method: the review included studies from PubMed, ScienceDirect and Web of Science.Results: Analysis of 25 studies with 553 animals showed a baseline ejection fraction (EF) of 39.2 ± 8.9%. iPSC treatment significantly improved EF (MD = 8.6, p < 0.001) and fractional shortening (MD = 6.38, p < 0.001), and reduced ventricular remodeling without increasing arrhythmia risk.Conclusion: iPSC-based therapy improves heart function and reduces ventricular volumes in HF animal models, aligning with promising early clinical trial outcomes.
Collapse
Affiliation(s)
- Duy Cao Phuong Le
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Hoa The Bui
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
| | - Yen Thi Hai Vu
- Faculty of Medicine, Thai Binh University of Medicine, Thai Binh, 61000, Vietnam
| | - Quan Duy Vo
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
- Cardiovascular Medicine Department, Okayama University, Okayama city, 7000000, Japan
| |
Collapse
|
5
|
Bettini A, Camelliti P, Stuckey DJ, Day RM. Injectable biodegradable microcarriers for iPSC expansion and cardiomyocyte differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404355. [PMID: 38900068 PMCID: PMC11348074 DOI: 10.1002/advs.202404355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to be the result of low cell retention and survival following transplantation. This study aimed to improve the delivery and engraftment of viable cells by using an injectable microcarrier that provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). We describe the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microcarriers and their surface modification to enable iPSC-derived cardiomyocyte attachment in xeno-free conditions is described. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes on the microcarriers is investigated in comparison with culture on 2D tissue culture plastic surfaces. Microcarrier culture is shown to support culture of a mature cardiomyocyte phenotype, be compatible with injectable delivery, and reduce anoikis. The findings from this study demonstrate that TIPS microcarriers provide a supporting matrix for culturing iPSC and iPSC-derived cardiomyocytes in vitro and are suitable as an injectable cell-substrate for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Patrizia Camelliti
- School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
6
|
Bettini A, Patrick PS, Day RM, Stuckey DJ. CT-Visible Microspheres Enable Whole-Body In Vivo Tracking of Injectable Tissue Engineering Scaffolds. Adv Healthc Mater 2024; 13:e2303588. [PMID: 38678393 PMCID: PMC11468734 DOI: 10.1002/adhm.202303588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/27/2024] [Indexed: 04/30/2024]
Abstract
Targeted delivery and retention are essential requirements for implantable tissue-engineered products. Non-invasive imaging methods that can confirm location, retention, and biodistribution of transplanted cells attached to implanted tissue engineering scaffolds will be invaluable for the optimization and enhancement of regenerative therapies. To address this need, an injectable tissue engineering scaffold consisting of highly porous microspheres compatible with transplantation of cells is modified to contain the computed tomography (CT) contrast agent barium sulphate (BaSO4). The trackable microspheres show high x-ray absorption, with contrast permitting whole-body tracking. The microspheres are cellularized with GFP+ Luciferase+ mesenchymal stem cells and show in vitro biocompatibility. In vivo, cellularized BaSO4-loaded microspheres are delivered into the hindlimb of mice where they remain viable for 14 days. Co-registration of 3D-bioluminescent imaging and µCT reconstructions enable the assessment of scaffold material and cell co-localization. The trackable microspheres are also compatible with minimally-invasive delivery by ultrasound-guided transthoracic intramyocardial injections in rats. These findings suggest that BaSO4-loaded microspheres can be used as a novel tool for optimizing delivery techniques and tracking persistence and distribution of implanted scaffold materials. Additionally, the microspheres can be cellularized and have the potential to be developed into an injectable tissue-engineered combination product for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision HealthcareDivision of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Peter Stephen Patrick
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision HealthcareDivision of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
| |
Collapse
|
7
|
Wang D, Zhang H, Chen Y, He J, Zhao L, Huang Y, Zhao F, Jiang Y, Fu S, Hong Z. Improving therapeutic effects of exosomes encapsulated gelatin methacryloyl/hyaluronic acid blended and oxygen releasing injectable hydrogel by cardiomyocytes induction and vascularization in rat myocardial infarction model. Int J Biol Macromol 2024; 271:132412. [PMID: 38754674 DOI: 10.1016/j.ijbiomac.2024.132412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Acute myocardial infarction (AMI) causes acute cardiac cell death when oxygen supply is disrupted. Improving oxygen flow to the damaged area could potentially achieve the to prevent cell death and provide cardiac regeneration. Here, we describe the production of oxygen-producing injectable bio-macromolecular hydrogels from natural polymeric components including gelatin methacryloyl (GelMA), hyaluronic acid (HA) loaded with catalase (CAT). Under hypoxic conditions, the O2-generating hydrogels (O2 (+) hydrogel) encapsulated with Mesenchymal stem cells (MSCs)-derived-exosomes (Exo- O2 (+) hydrogel) released substantial amounts of oxygen for >5 days. We demonstrated that after 7 days of in vitro cell culture, exhibits identical production of paracrine factors compared to those of culture of rat cardiac fibroblasts (RCFs), rat neonatal cardiomyocytes (RNCs) and Human Umbilical Vein Endothelial Cells (HUVECs), demonstrating its ability to replicate the natural architecture and function of capillaries. Four weeks after treatment with Exo-O2 (+) hydrogel, cardiomyocytes in the peri-infarct area of an in vivo rat model of AMI displayed substantial mitotic activity. In contrast with infarcted hearts treated with O2 (-) hydrogel, Exo- O2 (+) hydrogel infarcted hearts showed a considerable increase in myocardial capillary density. The outstanding therapeutic advantages and quick, easy fabrication of Exo- O2 (+) hydrogel has provided promise favourably for potential cardiac treatment applications.
Collapse
Affiliation(s)
- Dan Wang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Hong Zhang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yu Chen
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Jiangchun He
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Li Zhao
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yixiong Huang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Fengjiao Zhao
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yuting Jiang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Shihu Fu
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China.
| | - Zhibo Hong
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China.
| |
Collapse
|
8
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
9
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
10
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
11
|
Ullah A, Ullah M, Lim SI. Recent advancements in nanotechnology based drug delivery for the management of cardiovascular disease. Curr Probl Cardiol 2024; 49:102396. [PMID: 38266693 DOI: 10.1016/j.cpcardiol.2024.102396] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Cardiovascular diseases (CVDs) constitute a predominant cause of both global mortality and morbidity. To address the challenges in the early diagnosis and management of CVDs, there is growing interest in the field of nanotechnology and nanomaterials to develop innovative diagnostic and therapeutic approaches. This review focuses on the recent advancements in nanotechnology-based diagnostic techniques, including cardiac immunoassays (CIA), cardiac circulating biomarkers, cardiac exosomal biomarkers, and molecular Imaging (MOI). Moreover, the article delves into the exciting developments in nanoparticles (NPs), biomimetic NPs, nanofibers, nanogels, and nanopatchs for cardiovascular applications. And discuss how these nanoscale technologies can improve the precision, sensitivity, and speed of CVD diagnosis and management. While highlighting their vast potential, we also address the limitations and challenges that must be overcome to harness these innovations successfully. Furthermore, this review focuses on the emerging opportunities for personalized and effective cardiovascular care through the integration of nanotechnology, ultimately aiming to reduce the global burden of CVDs.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea.
| |
Collapse
|
12
|
Freeman M, Huethorst E, Boland E, Dunne M, Burton F, Denning C, Myles R, Smith G. A novel method for the percutaneous induction of myocardial infarction by occlusion of small coronary arteries in the rabbit. Am J Physiol Heart Circ Physiol 2024; 326:H735-H751. [PMID: 38180449 PMCID: PMC11221806 DOI: 10.1152/ajpheart.00657.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Arrhythmic sudden cardiac death (SCD) is an important cause of mortality following myocardial infarction (MI). The rabbit has similar cardiac electrophysiology to humans and is therefore an important small animal model to study post-MI arrhythmias. The established approach of surgical coronary ligation results in thoracic adhesions that impede epicardial electrophysiological studies. Adhesions are absent following a percutaneously induced MI, which is also associated with reduced surgical morbidity and so represents a clear refinement of the approach. Percutaneous procedures have previously been described in large rabbits (3.5-5.5 kg). Here, we describe a novel method of percutaneous MI induction in smaller rabbits (2.5-3.5 kg) that are readily available commercially. New Zealand White rabbits (n = 51 males, 3.1 ± 0.3 kg) were anesthetized using isoflurane (1.5-3%) and underwent either a percutaneous MI procedure involving microcatheter tip deployment (≤1.5 Fr, 5 mm), coronary ligation surgery, or a sham procedure. Electrocardiography (ECG) recordings were used to confirm ST-segment elevation indicating coronary occlusion. Blood samples (1 and 24 h) were taken for cardiac troponin I (cTnI) levels. Ejection fraction (EF) was measured at 6-8 wk. Rabbits were then euthanized (Euthatal) and hearts were processed for magnetic resonance imaging and histology. Mortality rates were similar in both groups. Scar volume, cTnI, and EF were similar between both MI groups and significantly different from their respective sham controls. Thus, percutaneous coronary occlusion by microcatheter tip deployment is feasible in rabbits (2.5-3.5 kg) and produces an MI with similar characteristics to surgical ligation with lower procedural trauma and without epicardial adhesions.NEW & NOTEWORTHY Surgical coronary ligation is the standard technique to induce myocardial infarction (MI) in rabbits but is associated with procedural trauma and the generation of thoracic adhesions. Percutaneous coronary occlusion avoids these shortcomings and is established in pigs but has only been applicable to large rabbits because of a mismatch between the equipment used and target vessel size. Here, we describe a new scalable approach to percutaneous MI induction that is safe and effective in 2.5-3.5-kg rabbits.
Collapse
Affiliation(s)
- Michael Freeman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Eline Huethorst
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Erin Boland
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael Dunne
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francis Burton
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachel Myles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
13
|
Xie C, Xu J, Wang X, Jiang S, Zheng Y, Liu Z, Jia Z, Jia Z, Lu X. Smart Hydrogels for Tissue Regeneration. Macromol Biosci 2024; 24:e2300339. [PMID: 37848181 DOI: 10.1002/mabi.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Indexed: 10/19/2023]
Abstract
The rapid growth in the portion of the aging population has led to a consequent increase in demand for biomedical hydrogels, together with an assortment of challenges that need to be overcome in this field. Smart hydrogels can autonomously sense and respond to the physiological/pathological changes of the tissue microenvironment and continuously adapt the response according to the dynamic spatiotemporal shifts in conditions. This along with other favorable properties, make smart hydrogels excellent materials for employing toward improving the precision of treatment for age-related diseases. The key factor during the smart hydrogel design is on accurately identifying the characteristics of natural tissues and faithfully replicating the composition, structure, and biological functions of these tissues at the molecular level. Such hydrogels can accurately sense distinct physiological and external factors such as temperature and biologically active molecules, so they may in turn actively and promptly adjust their response, by regulating their own biological effects, thereby promoting damaged tissue repair. This review summarizes the design strategies employed in the creation of smart hydrogels, their response mechanisms, as well as their applications in field of tissue engineering; and concludes by briefly discussing the relevant challenges and future prospects.
Collapse
Affiliation(s)
- Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jie Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xinyi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shengxi Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yujia Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zexin Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhuo Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhanrong Jia
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
14
|
Gao H, Liu S, Qin S, Yang J, Yue T, Ye B, Tang Y, Feng J, Hou J, Danzeng D. Injectable hydrogel-based combination therapy for myocardial infarction: a systematic review and Meta-analysis of preclinical trials. BMC Cardiovasc Disord 2024; 24:119. [PMID: 38383333 PMCID: PMC10882925 DOI: 10.1186/s12872-024-03742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION This study evaluates the effectiveness of a combined regimen involving injectable hydrogels for the treatment of experimental myocardial infarction. PATIENT CONCERNS Myocardial infarction is an acute illness that negatively affects quality of life and increases mortality rates. Experimental models of myocardial infarction can aid in disease research by allowing for the development of therapies that effectively manage disease progression and promote tissue repair. DIAGNOSIS Experimental animal models of myocardial infarction were established using the ligation method on the anterior descending branch of the left coronary artery (LAD). INTERVENTIONS The efficacy of intracardiac injection of hydrogels, combined with cells, drugs, cytokines, extracellular vesicles, or nucleic acid therapies, was evaluated to assess the functional and morphological improvements in the post-infarction heart achieved through the combined hydrogel regimen. OUTCOMES A literature review was conducted using PubMed, Web of Science, Scopus, and Cochrane databases. A total of 83 papers, including studies on 1332 experimental animals (rats, mice, rabbits, sheep, and pigs), were included in the meta-analysis based on the inclusion and exclusion criteria. The overall effect size observed in the group receiving combined hydrogel therapy, compared to the group receiving hydrogel treatment alone, resulted in an ejection fraction (EF) improvement of 8.87% [95% confidence interval (CI): 7.53, 10.21] and a fractional shortening (FS) improvement of 6.31% [95% CI: 5.94, 6.67] in rat models, while in mice models, the improvements were 16.45% [95% CI: 11.29, 21.61] for EF and 5.68% [95% CI: 5.15, 6.22] for FS. The most significant improvements in EF (rats: MD = 9.63% [95% CI: 4.02, 15.23]; mice: MD = 23.93% [95% CI: 17.52, 30.84]) and FS (rats: MD = 8.55% [95% CI: 2.54, 14.56]; mice: MD = 5.68% [95% CI: 5.15, 6.22]) were observed when extracellular vesicle therapy was used. Although there have been significant results in large animal experiments, the number of studies conducted in this area is limited. CONCLUSION The present study demonstrates that combining hydrogel with other therapies effectively improves heart function and morphology. Further preclinical research using large animal models is necessary for additional study and validation.
Collapse
Affiliation(s)
- Han Gao
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Song Liu
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Shanshan Qin
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jiali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Bengui Ye
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yue Tang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Feng
- School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Chengdu, Sichuan, China.
| | - Dunzhu Danzeng
- School of Medicine, Tibet University, Lhasa, Tibet, China.
| |
Collapse
|
15
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Vo QD, Saito Y, Nakamura K, Iida T, Yuasa S. Induced Pluripotent Stem Cell-Derived Cardiomyocytes Therapy for Ischemic Heart Disease in Animal Model: A Meta-Analysis. Int J Mol Sci 2024; 25:987. [PMID: 38256060 PMCID: PMC10815661 DOI: 10.3390/ijms25020987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Ischemic heart disease (IHD) poses a significant challenge in cardiovascular health, with current treatments showing limited success. Induced pluripotent derived-cardiomyocyte (iPSC-CM) therapy within regenerative medicine offers potential for IHD patients, although its clinical impacts remain uncertain. This study utilizes meta-analysis to assess iPSC-CM outcomes in terms of efficacy and safety in IHD animal model studies. A meta-analysis encompassing PUBMED, ScienceDirect, Web of Science, and the Cochrane Library databases, from inception until October 2023, investigated iPSC therapy effects on cardiac function and safety outcomes. Among 51 eligible studies involving 1012 animals, despite substantial heterogeneity, the iPSC-CM transplantation improved left ventricular ejection fraction (LVEF) by 8.23% (95% CI, 7.15 to 9.32%; p < 0.001) compared to control groups. Additionally, cell-based treatment reduced the left ventricle fibrosis area and showed a tendency to reduce left ventricular end-systolic volume (LVESV) and end-diastolic volume (LVEDV). No significant differences emerged in mortality and arrhythmia risk between iPSC-CM treatment and control groups. In conclusion, this meta-analysis indicates iPSC-CM therapy's promise as a safe and beneficial intervention for enhancing heart function in IHD. However, due to observed heterogeneity, the efficacy of this treatment must be further explored through large randomized controlled trials based on rigorous research design.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| |
Collapse
|
17
|
Keklikian A, de Barros NR, Rashad A, Chen Y, Tan J, Sheng R, Sun D, Liu H, Thankam FG. Chitosan-Polyethylene Glycol Inspired Polyelectrolyte Complex Hydrogel Templates Favoring NEO-Tissue Formation for Cardiac Tissue Engineering. Gels 2024; 10:46. [PMID: 38247769 PMCID: PMC10815274 DOI: 10.3390/gels10010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration. Chitosan-PEG (CP), gelatin-chitosan-PEG (GCP), hyaluronic acid-chitosan-PEG (HACP), and combined CP (CoCP) polyelectrolyte hydrogels were engineered by solvent casting and assessed for physiochemical, thermal, electrical, biodegradable, mechanical, and biological properties. The CP, GCP, HACP, and CoCP hydrogels exhibited excellent porosity (4.24 ± 0.18, 13.089 ± 1.13, 12.53 ± 1.30 and 15.88 ± 1.10 for CP, GCP, HACP and CoCP, respectively), water profile, mechanical strength, and amphiphilicity suitable for cardiac tissue engineering. The hydrogels were hemocompatible as evident from the negligible hemolysis and RBC aggregation and increased adsorption of plasma albumin. The hydrogels were cytocompatible as evident from the increased viability by MTT (>94% for all the four hydrogels) assay and direct contact assay. Also, the hydrogels supported the adhesion, growth, spreading, and proliferation of H9c2 cells as unveiled by rhodamine staining. The hydrogels promoted neo-tissue formation that was proven using rat and swine myocardial tissue explant culture. Compared to GCP and CoCP, CP and HACP were superior owing to the cell viability, hemocompatibility, and conductance, resulting in the highest degree of cytoskeletal organization and neo-tissue formation. The physiochemical and biological performance of these hydrogels supported neo-cardiac tissue formation. Overall, the CP, GCP, HACP, and CoCP hydrogel systems promise novel translational opportunities in regenerative cardiology.
Collapse
Affiliation(s)
- Angelo Keklikian
- Department of Translational Research, College of Osteopathic Medicine of the Pacific and Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (N.R.d.B.); (A.R.)
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (N.R.d.B.); (A.R.)
| | - Yiqing Chen
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Jinrui Tan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Ruoyu Sheng
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Dongwei Sun
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Finosh G. Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific and Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
18
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Wang S, Hu J, Dong G, Ma M, Chen X, Ding F. Effects of bone marrow cells transplantation for acute myocardial infarction on cardiac function, infarct size, and clinical events: a meta-analysis. Chin Med J (Engl) 2023; 136:2518-2520. [PMID: 37634946 PMCID: PMC10586869 DOI: 10.1097/cm9.0000000000002799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Shuxia Wang
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jihong Hu
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
- Center of Research and Experiment, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Genxi Dong
- School & Hospital of Stomatology Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingyan Ma
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Xuelian Chen
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Fengfeng Ding
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| |
Collapse
|
20
|
Zhang J, Guo Y, Bai Y, Wei Y. Application of biomedical materials in the diagnosis and treatment of myocardial infarction. J Nanobiotechnology 2023; 21:298. [PMID: 37626396 PMCID: PMC10463704 DOI: 10.1186/s12951-023-02063-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Myocardial infarction (MI) is a cardiovascular emergency and the leading cause of death worldwide. Inflammatory and immune responses are initiated immediately after MI, leading to myocardial death, scarring, and ventricular remodeling. Current therapeutic approaches emphasize early restoration of ischemic myocardial reperfusion, but there is no effective treatment for the pathological changes of infarction. Biomedical materials development has brought new hope for MI diagnosis and treatment. Biomedical materials, such as cardiac patches, hydrogels, nano biomaterials, and artificial blood vessels, have played an irreplaceable role in MI diagnosis and treatment. They improve the accuracy and efficacy of MI diagnosis and offer further possibilities for reducing inflammation, immunomodulation, inhibiting fibrosis, and cardiac regeneration. This review focuses on the advances in biomedical materials applications in MI diagnosis and treatment. The current studies are outlined in terms of mechanisms of action and effects. It is addressed how biomedical materials application can lessen myocardial damage, encourage angiogenesis, and enhance heart function. Their clinical transformation value and application prospect are discussed.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yishan Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Yu Bai
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100000, China.
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China.
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
21
|
Basara G, Bahcecioglu G, Ren X, Zorlutuna P. An Experimental and Numerical Investigation of Cardiac Tissue-Patch Interrelation. J Biomech Eng 2023; 145:081004. [PMID: 37337466 PMCID: PMC10321148 DOI: 10.1115/1.4062736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Tissue engineered cardiac patches have great potential as a regenerative therapy for myocardial infarction. Yet, the mutual interaction of cardiac patches with healthy tissue has not been completely understood. Here, we investigated the impact of acellular and cellular patches on a beating two-dimensional (2D) cardiac cell layer, and the effect of the beating of this layer on the cells encapsulated in the patch. We cultured human-induced pluripotent stem cell-derived cardiomyocytes (iCMs) on a coverslip and placed gelatin methacryloyl hydrogel alone or with encapsulated iCMs to create acellular and cellular patches, respectively. When the acellular patch was placed on the cardiac cell layer, the beating characteristics and Ca+2 handling properties reduced, whereas placing the cellular patch restored these characteristics. To better understand the effects of the cyclic contraction and relaxation induced by the beating cardiac cell layer on the patch placed on top of it, a simulation model was developed, and the calculated strain values were in agreement with the values measured experimentally. Moreover, this dynamic culture induced by the beating 2D iCM layer on the iCMs encapsulated in the cellular patch improved their beating velocity and frequency. Additionally, the encapsulated iCMs were observed to be coupled with the underlying beating 2D iCM layer. Overall, this study provides a detailed investigation on the mutual relationship of acellular/cellular patches with the beating 2D iCM layer, understanding of which would be valuable for developing more advanced cardiac patches.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, 225 Multidisciplinary Research Building, Notre Dame, IN 46556
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, 108B Multidisciplinary Research Building, Notre Dame, IN 46556
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556; Department of Chemical and Biomolecular Engineering, University of Notre Dame, 143 Multidisciplinary Research Building, Notre Dame, IN 46556
| |
Collapse
|
22
|
Roshanravan N, Ghaffari S, Bastani S, Pahlavan S, Asghari S, Doustvandi MA, Jalilzadeh- Razin S, Dastouri M. Human cardiac organoids: A recent revolution in disease modeling and regenerative medicine. J Cardiovasc Thorac Res 2023; 15:68-72. [PMID: 37654821 PMCID: PMC10466470 DOI: 10.34172/jcvtr.2023.31830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 09/02/2023] Open
Abstract
Three-dimensional (3D) myocardial tissues for studying human heart biology, physiology and pharmacology have recently received lots of attention. Organoids as 3D mini-organs are created from multiple cell types (i.e. induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs)) with other supporting co-cultured cells such as endothelial cells or fibroblasts. Cardiac organoid culture technologies are bringing about significant advances in organ research and allows for the establishment of tissue regeneration and disease modeling. The present review provides an overview of the recent advances in human cardiac organoid platforms in disease biology and for cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bastani
- Department of Immunology, Leiden University Medical Science, Leiden, Netherlands
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Samira Asghari
- University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Sepideh Jalilzadeh- Razin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Dastouri
- Ankara University Biotechnology Institute and SISBIYOTEK Advanced Research Unit, Gumusdere Yerleskesi, Kecioren, Ankara, Turkey
| |
Collapse
|
23
|
Patel L, Worch JC, Dove AP, Gehmlich K. The Utilisation of Hydrogels for iPSC-Cardiomyocyte Research. Int J Mol Sci 2023; 24:9995. [PMID: 37373141 PMCID: PMC10298477 DOI: 10.3390/ijms24129995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts' (FBs) and cardiomyocytes' (CMs) behaviour and morphology are influenced by their environment such as remodelling of the myocardium, thus highlighting the importance of biomaterial substrates in cell culture. Biomaterials have emerged as important tools for the development of physiological models, due to the range of adaptable properties of these materials, such as degradability and biocompatibility. Biomaterial hydrogels can act as alternative substrates for cellular studies, which have been particularly key to the progression of the cardiovascular field. This review will focus on the role of hydrogels in cardiac research, specifically the use of natural and synthetic biomaterials such as hyaluronic acid, polydimethylsiloxane and polyethylene glycol for culturing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The ability to fine-tune mechanical properties such as stiffness and the versatility of biomaterials is assessed, alongside applications of hydrogels with iPSC-CMs. Natural hydrogels often display higher biocompatibility with iPSC-CMs but often degrade quicker, whereas synthetic hydrogels can be modified to facilitate cell attachment and decrease degradation rates. iPSC-CM structure and electrophysiology can be assessed on natural and synthetic hydrogels, often resolving issues such as immaturity of iPSC-CMs. Biomaterial hydrogels can thus provide a more physiological model of the cardiac extracellular matrix compared to traditional 2D models, with the cardiac field expansively utilising hydrogels to recapitulate disease conditions such as stiffness, encourage alignment of iPSC-CMs and facilitate further model development such as engineered heart tissues (EHTs).
Collapse
Affiliation(s)
- Leena Patel
- Institute of Cardiovascular Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Joshua C. Worch
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK; (J.C.W.); (A.P.D.)
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK; (J.C.W.); (A.P.D.)
| | - Katja Gehmlich
- Institute of Cardiovascular Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
24
|
Chen A, Deng S, Lai J, Li J, Chen W, Varma SN, Zhang J, Lei C, Liu C, Huang L. Hydrogels for Oral Tissue Engineering: Challenges and Opportunities. Molecules 2023; 28:3946. [PMID: 37175356 PMCID: PMC10179962 DOI: 10.3390/molecules28093946] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Oral health is crucial to daily life, yet many people worldwide suffer from oral diseases. With the development of oral tissue engineering, there is a growing demand for dental biomaterials. Addressing oral diseases often requires a two-fold approach: fighting bacterial infections and promoting tissue growth. Hydrogels are promising tissue engineering biomaterials that show great potential for oral tissue regeneration and drug delivery. In this review, we present a classification of hydrogels commonly used in dental research, including natural and synthetic hydrogels. Furthermore, recent applications of these hydrogels in endodontic restorations, periodontal tissues, mandibular and oral soft tissue restorations, and related clinical studies are also discussed, including various antimicrobial and tissue growth promotion strategies used in the dental applications of hydrogels. While hydrogels have been increasingly studied in oral tissue engineering, there are still some challenges that need to be addressed for satisfactory clinical outcomes. This paper summarizes the current issues in the abovementioned application areas and discusses possible future developments.
Collapse
Affiliation(s)
- Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Shuhua Deng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Jindi Lai
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Jing Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Weijia Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Swastina Nath Varma
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Jingjing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Lijia Huang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
26
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
27
|
Ai X, Yan B, Witman N, Gong Y, Yang L, Tan Y, Chen Y, Liu M, Lu T, Luo R, Wang H, Chien KR, Wang W, Fu W. Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Mol Ther 2023; 31:211-229. [PMID: 35982619 PMCID: PMC9840120 DOI: 10.1016/j.ymthe.2022.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 08/12/2022] [Indexed: 01/28/2023] Open
Abstract
Cell-based therapies offer an exciting and novel treatment for heart repair following myocardial infarction (MI). However, these therapies often suffer from poor cell viability and engraftment rates, which involve many factors, including the hypoxic conditions of the infarct environment. Meanwhile, vascular endothelial growth factor (VEGF) has previously been employed as a therapeutic agent to limit myocardial damage and simultaneously induce neovascularization. This study took an approach to transiently overexpress VEGF protein, in a controlled manner, by transfecting human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with VEGF mRNA prior to transplantation. The conditioning of iPSC-CMs with VEGF mRNA ultimately led to greater survival rates of the transplanted cells, which promoted a stable vascular network in the grafted region. Furthermore, bulk RNA transcriptomics data and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) and AGE-RAGE signaling pathways were significantly upregulated in the VEGF-treated iPSC-CMs group. The over-expression of VEGF from iPSC-CMs stimulated cell proliferation and partially attenuated the hypoxic environment in the infarcted area, resulting in reduced ventricular remodeling. This study provides a valuable solution for the survival of transplanted cells in tissue-engineered heart regeneration and may further promote the application of modified mRNA (modRNA) in the field of tissue engineering.
Collapse
Affiliation(s)
- Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yiqi Gong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Chen
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minglu Liu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Lu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
28
|
Genome Editing and Cardiac Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:37-52. [DOI: 10.1007/978-981-19-5642-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Marzoog BA. Transcription Factors - the Essence of Heart Regeneration: A Potential Novel Therapeutic Strategy. Curr Mol Med 2023; 23:232-238. [PMID: 35170408 DOI: 10.2174/1566524022666220216123650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Myocardial cell injury and following sequelae are the primary reasons for death globally. Unfortunately, myocardiocytes in adults have limited regeneration capacity. Therefore, the generation of neo myocardiocytes from non-myocardial cells is a surrogate strategy. Transcription factors (TFs) can be recruited to achieve this tremendous goal. Transcriptomic analyses have suggested that GATA, Mef2c, and Tbx5 (GMT cocktail) are master TFs to transdifferentiate/reprogram cell linage of fibroblasts, somatic cells, mesodermal cells into myocardiocytes. However, adding MESP1, MYOCD, ESRRG, and ZFPM2 TFs induces the generation of more efficient and physiomorphological features for induced myocardiocytes. Moreover, the same cocktail of transcription factors can induce the proliferation and differentiation of induced/pluripotent stem cells into myocardial cells. Amelioration of impaired myocardial cells involves the activation of healing transcription factors, which are induced by inflammation mediators; IL6, tumor growth factor β, and IL22. Transcription factors regulate the cellular and subcellular physiology of myocardiocytes to include mitotic cell cycling regulation, karyokinesis and cytokinesis, hypertrophic growth, adult sarcomeric contractile protein gene expression, fatty acid metabolism, and mitochondrial biogenesis and maturation. Cell therapy by transcription factors can be applied to cardiogenesis and ameliorating impaired cardiocytes. Transcription factors are the cornerstone in cell differentiation.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- Department of Normal and Pathological Physiology, National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005, Russia
| |
Collapse
|
30
|
Mu L, Dong R, Guo B. Biomaterials-Based Cell Therapy for Myocardial Tissue Regeneration. Adv Healthc Mater 2022; 12:e2202699. [PMID: 36572412 DOI: 10.1002/adhm.202202699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) have been the leading cause of death worldwide during the past several decades. Cell loss is the main problem that results in cardiac dysfunction and further mortality. Cell therapy aiming to replenish the lost cells is proposed to treat CVDs especially ischemic heart diseases which lead to a big portion of cell loss. Due to the direct injection's low cell retention and survival ratio, cell therapy using biomaterials as cell carriers has attracted more and more attention because of their promotion of cell delivery and maintenance at the aiming sites. In this review, the three main factors involved in cell therapy for myocardial tissue regeneration: cell sources (somatic cells, stem cells, and engineered cells), chemical components of cell carriers (natural materials, synthetic materials, and electroactive materials), and categories of cell delivery materials (patches, microspheres, injectable hydrogels, nanofiber and microneedles, etc.) are systematically summarized. An introduction of the methods including magnetic resonance/radionuclide/photoacoustic and fluorescence imaging for tracking the behavior of transplanted cells in vivo is also included. Current challenges of biomaterials-based cell therapy and their future directions are provided to give both beginners and professionals a clear view of the development and future trends in this area.
Collapse
Affiliation(s)
- Lei Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruonan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.,State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
31
|
Banovic M, Poglajen G, Vrtovec B, Ristic A. Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9120429. [PMID: 36547426 PMCID: PMC9783726 DOI: 10.3390/jcdd9120429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
It has now been almost 20 years since first clinical trials of stem cell therapy for heart repair were initiated. While initial preclinical data were promising and suggested that stem cells may be able to directly restore a diseased myocardium, this was never unequivocally confirmed in the clinical setting. Clinical trials of cell therapy did show the process to be feasible and safe. However, the clinical benefits of this treatment modality in patients with ischemic and non-ischemic heart failure have not been consistently confirmed. What is more, in the rapidly developing field of stem cell therapy in patients with heart failure, relevant questions regarding clinical trials' protocol streamlining, optimal patient selection, stem cell type and dose, and the mode of cell delivery remain largely unanswered. Recently, novel approaches to myocardial regeneration, including the use of pluripotent and allogeneic stem cells and cell-free therapeutic approaches, have been proposed. Thus, in this review, we aim to outline current knowledge and highlight contemporary challenges and dilemmas in clinical aspects of stem cell and regenerative therapy in patients with chronic ischemic and non-ischemic heart failure.
Collapse
Affiliation(s)
- Marko Banovic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
- Correspondence: (M.B.); (G.P.)
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (M.B.); (G.P.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Arsen Ristic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
| |
Collapse
|
32
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
33
|
Yang C, Zhu C, Li Y, Li Z, Zhang Z, Xu J, Chen M, Li R, Liu S, Wu Y, Huang Z, Wu C. Injectable selenium-containing polymeric hydrogel formulation for effective treatment of myocardial infarction. Front Bioeng Biotechnol 2022; 10:912562. [PMID: 36032710 PMCID: PMC9403312 DOI: 10.3389/fbioe.2022.912562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Myocardial infarction (MI) is a serious threat to people’s life and health, which is significantly hindered by effective treatment formulations. Interestingly, our recent endeavour of designing selenium-containing polymeric hydrogel has been experimentally proved to be helpful in combating inflammatory responses and treating MI. The design was inspired by selenium with anti-inflammatory and anti-fibrosis activities, and the formulation could also serve as a support of myocardial tissue upon the failure of this function. In details, an injectable selenium-containing polymeric hydrogel, namely, poly[di-(1-hydroxylyndecyl) selenide/polypropylene glycol/polyethylene glycol urethane] [poly(DH-SE/PEG/PPG urethane)], was synthesised by combining a thermosensitive PPG block, DH-Se (which has oxidation-reduction properties), and hydrophilic PEG segments. Based on the established mouse model of MI, this formulation was experimentally validated to effectively promote the recovery of cardiac function. At the same time, we confirmed by enzyme-linked immunosorbent assay, Masson staining and Western blotting that this formulation could inhibit inflammation and fibrosis, so as to significantly improve left ventricular remodelling. In summary, a selenium-containing polymeric hydrogel formulation analysed in the current study could be a promising therapeutic formulation, which can provide new strategies towards the effective treatment of myocardial infarction or even other inflammatory diseases.
Collapse
Affiliation(s)
- Cui Yang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, School of Medicine, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chunyan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yanling Li
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, School of Medicine, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Zhenghao Zhang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, School of Medicine, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jiajia Xu
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, School of Medicine, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Minwei Chen
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, School of Medicine, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Runjing Li
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, School of Medicine, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shixiao Liu
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, School of Medicine, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhengrong Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, School of Medicine, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
34
|
High-throughput rhythmic regulation of cardiomyocytes by integrated electrical stimulation and video-based automated analysis biosensing platform. Biosens Bioelectron 2022; 209:114252. [DOI: 10.1016/j.bios.2022.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
|
35
|
Tariq U, Gupta M, Pathak S, Patil R, Dohare A, Misra SK. Role of Biomaterials in Cardiac Repair and Regeneration: Therapeutic Intervention for Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3271-3298. [PMID: 35867701 DOI: 10.1021/acsbiomaterials.2c00454] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heart failure or myocardial infarction (MI) is one of the world's leading causes of death. Post MI, the heart can develop pathological conditions such as ischemia, inflammation, fibrosis, and left ventricular dysfunction. However, current surgical approaches are sufficient for enhancing myocardial perfusion but are unable to reverse the pathological changes. Tissue engineering and regenerative medicine approaches have shown promising effects in the repair and replacement of injured cardiomyocytes. Additionally, biomaterial scaffolds with or without stem cells are established to provide an effective environment for cardiac regeneration. Excipients loaded with growth factors, cytokines, oligonucleotides, and exosomes are found to help in such cardiac eventualities by promoting angiogenesis, cardiomyocyte proliferation, and reducing fibrosis, inflammation, and apoptosis. Injectable hydrogels, nanocarriers, cardiac patches, and vascular grafts are some excipients that can help the self-renewal in the damaged heart but are not understood well yet, in the context of used biomaterials. This review focuses on the use of various biomaterial-based approaches for the regeneration and repair of cardiac tissue postoccurrence of MI. It also discusses the outlines of cardiac remodeling and current therapeutic approaches after myocardial infarction, which are translationally important with respect to used biomaterials. It provides comprehensive details of the biomaterial-based regenerative approaches, which are currently the focus of the research for cardiac repair and regeneration and can provide a broad outline for further improvements.
Collapse
Affiliation(s)
- Ubaid Tariq
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Mahima Gupta
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Subhajit Pathak
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Ruchira Patil
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Akanksha Dohare
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| |
Collapse
|
36
|
Ko T, Nomura S. Manipulating Cardiomyocyte Plasticity for Heart Regeneration. Front Cell Dev Biol 2022; 10:929256. [PMID: 35898398 PMCID: PMC9309349 DOI: 10.3389/fcell.2022.929256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological heart injuries such as myocardial infarction induce adverse ventricular remodeling and progression to heart failure owing to widespread cardiomyocyte death. The adult mammalian heart is terminally differentiated unlike those of lower vertebrates. Therefore, the proliferative capacity of adult cardiomyocytes is limited and insufficient to restore an injured heart. Although current therapeutic approaches can delay progressive remodeling and heart failure, difficulties with the direct replenishment of lost cardiomyocytes results in a poor long-term prognosis for patients with heart failure. However, it has been revealed that cardiac function can be improved by regulating the cell cycle or changing the cell state of cardiomyocytes by delivering specific genes or small molecules. Therefore, manipulation of cardiomyocyte plasticity can be an effective treatment for heart disease. This review summarizes the recent studies that control heart regeneration by manipulating cardiomyocyte plasticity with various approaches including differentiating pluripotent stem cells into cardiomyocytes, reprogramming cardiac fibroblasts into cardiomyocytes, and reactivating the proliferation of cardiomyocytes.
Collapse
|
37
|
Poorna M, Pravallika S, Ashok A, S S, Thampi M, Varma PK, Mony U. Differentiation of induced pluripotent stem cells to Cardiomyocytes on Cellulose Nanofibril substrate. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Fassina D, Costa CM, Longobardi S, Karabelas E, Plank G, Harding SE, Niederer SA. Modelling the interaction between stem cells derived cardiomyocytes patches and host myocardium to aid non-arrhythmic engineered heart tissue design. PLoS Comput Biol 2022; 18:e1010030. [PMID: 35363778 PMCID: PMC9007348 DOI: 10.1371/journal.pcbi.1010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Application of epicardial patches constructed from human-induced pluripotent stem cell- derived cardiomyocytes (hiPSC-CMs) has been proposed as a long-term therapy to treat scarred hearts post myocardial infarction (MI). Understanding electrical interaction between engineered heart tissue patches (EHT) and host myocardium represents a key step toward a successful patch engraftment. EHT retain different electrical properties with respect to the host heart tissue due to the hiPSC-CMs immature phenotype, which may lead to increased arrhythmia risk. We developed a modelling framework to examine the influence of patch design on electrical activation at the engraftment site. We performed an in silico investigation of different patch design approaches to restore pre-MI activation properties and evaluated the associated arrhythmic risk. We developed an in silico cardiac electrophysiology model of a transmural cross section of host myocardium. The model featured an infarct region, an epicardial patch spanning the infarct region and a bath region. The patch is modelled as a layer of hiPSC-CM, combined with a layer of conductive polymer (CP). Tissue and patch geometrical dimensions and conductivities were incorporated through 10 modifiable model parameters. We validated our model against 4 independent experimental studies and showed that it can qualitatively reproduce their findings. We performed a global sensitivity analysis (GSA) to isolate the most important parameters, showing that the stimulus propagation is mainly governed by the scar depth, radius and conductivity when the scar is not transmural, and by the EHT patch conductivity when the scar is transmural. We assessed the relevance of small animal studies to humans by comparing simulations of rat, rabbit and human myocardium. We found that stimulus propagation paths and GSA sensitivity indices are consistent across species. We explored which EHT design variables have the potential to restore physiological propagation. Simulations predict that increasing EHT conductivity from 0.28 to 1-1.1 S/m recovered physiological activation in rat, rabbit and human. Finally, we assessed arrhythmia risk related to increasing EHT conductivity and tested increasing the EHT Na+ channel density as an alternative strategy to match healthy activation. Our results revealed a greater arrhythmia risk linked to increased EHT conductivity compared to increased Na+ channel density. We demonstrated that our modeling framework could capture the interaction between host and EHT patches observed in in vitro experiments. We showed that large (patch and tissue dimensions) and small (cardiac myocyte electrophysiology) scale differences between small animals and humans do not alter EHT patch effect on infarcted tissue. Our model revealed that only when the scar is transmural do EHT properties impact activation times and isolated the EHT conductivity as the main parameter influencing propagation. We predicted that restoring physiological activation by tuning EHT conductivity is possible but may promote arrhythmic behavior. Finally, our model suggests that acting on hiPSC-CMs low action potential upstroke velocity and lack of IK1 may restore pre-MI activation while not promoting arrhythmia.
Collapse
Affiliation(s)
- Damiano Fassina
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Caroline M. Costa
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Stefano Longobardi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Elias Karabelas
- Institute of Mathematics & Scientific Computing, University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division Biophysics, Medical University of Graz, Graz, Austria
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
39
|
Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073482. [PMID: 35408844 PMCID: PMC8998628 DOI: 10.3390/ijms23073482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.
Collapse
|
40
|
Tani H, Tohyama S, Kishino Y, Kanazawa H, Fukuda K. Production of functional cardiomyocytes and cardiac tissue from human induced pluripotent stem cells for regenerative therapy. J Mol Cell Cardiol 2021; 164:83-91. [PMID: 34822838 DOI: 10.1016/j.yjmcc.2021.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022]
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) has revealed the potential for curing end-stage heart failure. Indeed, transplantation of hiPSC-derived cardiomyocytes (hiPSC-CMs) may have applications as a replacement for heart transplantation and conventional regenerative therapies. However, there are several challenges that still must be overcome for clinical applications, including large-scale production of hiPSCs and hiPSC-CMs, elimination of residual hiPSCs, purification of hiPSC-CMs, maturation of hiPSC-CMs, efficient engraftment of transplanted hiPSC-CMs, development of an injection device, and avoidance of post-transplant arrhythmia and immunological rejection. Thus, we developed several technologies based on understanding of the metabolic profiles of hiPSCs and hiPSC derivatives. In this review, we outline how to overcome these hurdles to realize the transplantation of hiPSC-CMs in patients with heart failure and introduce cutting-edge findings and perspectives for future regenerative therapy.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
41
|
Yu D, Wang X, Ye L. Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. J Cardiovasc Dev Dis 2021; 8:jcdd8110153. [PMID: 34821706 PMCID: PMC8617685 DOI: 10.3390/jcdd8110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Poor cell engraftment rate is one of the primary factors limiting the effectiveness of cell transfer therapy for cardiac repair. Recent studies have shown that the combination of cell-based therapy and tissue engineering technology can improve stem cell engraftment and promote the therapeutic effects of the treatment for myocardial infarction. This mini-review summarizes the recent progress in cardiac tissue engineering of cardiovascular cells from differentiated human pluripotent stem cells (PSCs), highlights their therapeutic applications for the treatment of myocardial infarction, and discusses the present challenges of cardiac tissue engineering and possible future directions from a clinical perspective.
Collapse
Affiliation(s)
- Dongmin Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
- Correspondence: (X.W.); (L.Y.); Tel.: +86-02568303105 (X.W.); +65-67042193 2 (L.Y.)
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
- Correspondence: (X.W.); (L.Y.); Tel.: +86-02568303105 (X.W.); +65-67042193 2 (L.Y.)
| |
Collapse
|
42
|
Khan MUA, Razaq SIA, Mehboob H, Rehman S, Al-Arjan WS, Amin R. Antibacterial and Hemocompatible pH-Responsive Hydrogel for Skin Wound Healing Application: In Vitro Drug Release. Polymers (Basel) 2021; 13:3703. [PMID: 34771258 PMCID: PMC8588096 DOI: 10.3390/polym13213703] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The treatment of successive skin wounds necessitates meticulous medical procedures. In the care and treatment of skin wounds, hydrogels produced from natural polymers with controlled drug release play a crucial role. Arabinoxylan is a well-known and widely available biological macromolecule. We produced various formulations of blended composite hydrogels (BCHs) from arabinoxylan (ARX), carrageenan (CG), and reduced graphene oxide (rGO) using and cross-linked them with an optimal amount of tetraethyl orthosilicate (TEOS). The structural, morphological, and mechanical behavior of the BCHs samples were determined using Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), mechanical testing, and wetting, respectively. The swelling and degradation assays were performed in phosphate-buffered saline (PBS) solution and aqueous media. Maximum swelling was observed at pH 7 and the least swelling in basic pH regions. All composite hydrogels were found to be hemocompatible. In vitro, silver sulfadiazine release profile in PBS solution was analyzed via the Franz diffusion method, and maximum drug release (87.9%) was observed in 48 h. The drug release kinetics was studied against different mathematical models (zero-order, first-order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, and Baker-Lonsdale models) and compared their regression coefficient (R2) values. It was observed that drug release follows the Baker-Lonsdale model, as it has the highest value (0.989) of R2. Hence, the obtained results indicated that, due to optimized swelling, wetting, and degradation, the blended composite hydrogel BCH-3 could be an essential wound dressing biomaterial for sustained drug release for skin wound care and treatment.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
- Institute of Personalized Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU),1954 Huashan Road, Shanghai 200030, China;
- Nanosciences and Technology Department (NS & TD), National Center for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Pakistan
| | - Saiful Izwan Abd Razaq
- Institute of Personalized Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU),1954 Huashan Road, Shanghai 200030, China;
- Centre for Advanced Composite Materials Universiti Teknologi Malaysia Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Rafha Street, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Sarish Rehman
- Chemistry Department, McGill University, 801 Sherbrooke St. W, Montreal, QC H3A0G4, Canada;
| | - Wafa Shamsan Al-Arjan
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Rashid Amin
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al-Batin 39524, Saudi Arabia;
| |
Collapse
|
43
|
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021; 10:cells10102538. [PMID: 34685518 PMCID: PMC8533887 DOI: 10.3390/cells10102538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.
Collapse
|
44
|
Unfathomed Nanomessages to the Heart: Translational Implications of Stem Cell-Derived, Progenitor Cell Exosomes in Cardiac Repair and Regeneration. Cells 2021; 10:cells10071811. [PMID: 34359980 PMCID: PMC8307947 DOI: 10.3390/cells10071811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes formed from the endosomal membranes at the lipid microdomains of multivesicular bodies (MVBs) have become crucial structures responsible for cell communication. This paracrine communication system between a myriad of cell types is essential for maintaining homeostasis and influencing various biological functions in immune, vasculogenic, and regenerative cell types in multiple organs in the body, including, but not limited to, cardiac cells and tissues. Characteristically, exosomes are identifiable by common proteins that participate in their biogenesis; however, many different proteins, mRNA, miRNAs, and lipids, have been identified that mediate intercellular communication and elicit multiple functions in other target cells. Although our understanding of exosomes is still limited, the last decade has seen a steep surge in translational studies involving the treatment of cardiovascular diseases with cell-free exosome fractions from cardiomyocytes (CMs), cardiosphere-derived cells (CDCs), endothelial cells (ECs), mesenchymal stromal cells (MSCs), or their combinations. However, most primary cells are difficult to culture in vitro and to generate sufficient exosomes to treat cardiac ischemia or promote cardiac regeneration effectively. Pluripotent stem cells (PSCs) offer the possibility of an unlimited supply of either committed or terminally differentiated cells and their exosomes for treating cardiovascular diseases (CVDs). This review discusses the promising prospects of treating CVDs using exosomes from cardiac progenitor cells (CPCs), endothelial progenitor cells (EPCs), MSCs, and cardiac fibroblasts derived from PSCs.
Collapse
|
45
|
Yin S, Cao Y. Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomater 2021; 128:1-20. [PMID: 33746032 DOI: 10.1016/j.actbio.2021.03.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Stem cells demonstrate considerable promise for various preclinical and clinical applications, including drug screening, disease treatments, and regenerative medicine. Producing high-quality and large amounts of stem cells is in demand for these applications. Despite challenges, as hydrogel-based cell culture technology has developed, tremendous progress has been made in stem cell expansion and directed differentiation. Hydrogels are soft materials with abundant water. Many hydrogel properties, including biodegradability, mechanical strength, and porosity, have been shown to play essential roles in regulating stem cell proliferation and differentiation. The biochemical and physical properties of hydrogels can be specifically tailored to mimic the native microenvironment that various stem cells reside in vivo. A few hydrogel-based systems have been developed for successful stem cell cultures and expansion in vitro. In this review, we summarize various types of hydrogels that have been designed to effectively enhance the proliferation of hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs), respectively. According to each stem cell type's preference, we also discuss strategies for fabricating hydrogels with biochemical and mechanical cues and other characteristics representing microenvironments of stem cells in vivo. STATEMENT OF SIGNIFICANCE: In this review article we summarize current progress on the construction of hydrogel systems for the culture and expansion of various stem cells, including hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs). The Significance includes: (1) Provide detailed discussion on the stem cell niches that should be considered for stem cell in vitro expansion. (2) Summarize various strategies to construct hydrogels that can largely recapture the microenvironment of native stem cells. (3) Suggest a few future directions that can be implemented to improve current in vitro stem cell expansion systems.
Collapse
Affiliation(s)
- Sheng Yin
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057.
| |
Collapse
|
46
|
Pushp P, Nogueira DES, Rodrigues CAV, Ferreira FC, Cabral JMS, Gupta MK. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2021; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
Affiliation(s)
- Pallavi Pushp
- Department of Biotechnology, Institute of Engineering and Technology (IET), Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Diogo E S Nogueira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico C Ferreira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
47
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
48
|
Ghodrat S, Hoseini SJ, Asadpour S, Nazarnezhad S, Alizadeh Eghtedar F, Kargozar S. Stem cell-based therapies for cardiac diseases: The critical role of angiogenic exosomes. Biofactors 2021; 47:270-291. [PMID: 33606893 DOI: 10.1002/biof.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Finding effective treatments for cardiac diseases is among the hottest subjects in medicine; cell-based therapies have brought great promises for managing a broad range of life-threatening heart complications such as myocardial infarction. After clarifying the critical role of angiogenesis in tissue repair and regeneration, various stem/progenitor cell were utilized to accelerate the healing of injured cardiac tissue. Embryonic, fetal, adult, and induced pluripotent stem cells have shown the appropriate proangiogenic potential for tissue repair strategies. The capability of stem cells for differentiating into endothelial lineages was initially introduced as the primary mechanism involved in improving angiogenesis and accelerated heart tissue repair. However, recent studies have demonstrated the leading role of paracrine factors secreted by stem cells in advancing neo-vessel formation. Genetically modified stem cells are also being applied for promoting angiogenesis regarding their ability to considerably overexpress and secrete angiogenic bioactive molecules. Yet, conducting further research seems necessary to precisely identify molecular mechanisms behind the proangiogenic potential of stem cells, including the signaling pathways and regulatory molecules such as microRNAs. In conclusion, stem cells' pivotal roles in promoting angiogenesis and consequent improved cardiac healing and remodeling processes should not be ignored, especially in the case of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Sara Ghodrat
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Alizadeh Eghtedar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Klontzas ME, Kakkos GA, Papadakis GZ, Marias K, Karantanas AH. Advanced clinical imaging for the evaluation of stem cell based therapies. Expert Opin Biol Ther 2021; 21:1253-1264. [PMID: 33576278 DOI: 10.1080/14712598.2021.1890711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: As stem cell treatments reach closer to the clinic, the need for appropriate noninvasive imaging for accurate disease diagnosis, treatment planning, follow-up, and early detection of complications, is constantly rising. Clinical radiology affords an extensive arsenal of advanced imaging techniques, to provide anatomical and functional information on the whole spectrum of stem cell treatments from diagnosis to follow-up.Areas covered: This manuscript aims at providing a critical review of major published studies on the utilization of advanced imaging for stem cell treatments. Uses of magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and positron emission tomography (PET) are reviewed and interrogated for their applicability to stem cell imaging.Expert opinion: A wide spectrum of imaging methods have been utilized for the evaluation of stem cell therapies. The majority of published techniques are not clinically applicable, using methods exclusively applicable to animals or technology irrelevant to current clinical practice. Harmonization of preclinical methods with clinical reality is necessary for the timely translation of stem cell therapies to the clinic. Methods such as diffusion weighted MRI, hybrid imaging, and contrast-enhanced ultrasound hold great promise and should be routinely incorporated in the evaluation of patients receiving stem cell treatments.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
| | - George A Kakkos
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
50
|
Portillo Esquivel LE, Zhang B. Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomater Sci Eng 2021; 7:1000-1021. [PMID: 33591735 DOI: 10.1021/acsbiomaterials.0c01805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death around the world, being responsible for 31.8% of all deaths in 2017 (Roth, G. A. et al. The Lancet 2018, 392, 1736-1788). The leading cause of CVD is ischemic heart disease (IHD), which caused 8.1 million deaths in 2013 (Benjamin, E. J. et al. Circulation 2017, 135, e146-e603). IHD occurs when coronary arteries in the heart are narrowed or blocked, preventing the flow of oxygen and blood into the cardiac muscle, which could provoke acute myocardial infarction (AMI) and ultimately lead to heart failure and death. Cardiac regenerative therapy aims to repair and refunctionalize damaged heart tissue through the application of (1) intramyocardial cell delivery, (2) epicardial cardiac patch, and (3) acellular biomaterials. In this review, we aim to examine these current approaches and challenges in the cardiac regenerative therapy field.
Collapse
Affiliation(s)
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontaria L8S 4L8, Canada
| |
Collapse
|