1
|
Pang J, Xu MX, Wang XY, Feng X, Duan YM, Zheng XY, Chen YQ, Yin W, Liu Y, Li JX. Targeted gene silencing in mouse testicular Sertoli and Leydig cells using adeno-associated virus vectors. Asian J Androl 2025:00129336-990000000-00299. [PMID: 40116190 DOI: 10.4103/aja2024120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/15/2024] [Indexed: 03/23/2025] Open
Abstract
ABSTRACT Researchers commonly use cyclization recombination enzyme/locus of X-over P1 (Cre/loxP) technology-based conditional gene knockouts of model mice to investigate the functional roles of genes of interest in Sertoli and Leydig cells within the testis. However, the shortcomings of these genetic tools include high costs, lengthy experimental periods, and limited accessibility for researchers. Therefore, exploring alternative gene silencing techniques is of great practical value. In this study, we employed adeno-associated virus (AAV) as a vector for gene silencing in Sertoli and Leydig cells. Our findings demonstrated that AAV serotypes 1, 8, and 9 exhibited high infection efficiency in both types of testis cells. Importantly, we discovered that all three AAV serotypes exhibited exquisite specificity in targeting Sertoli cells via tubular injection while demonstrating remarkable selectivity in targeting Leydig cells via interstitial injection. We achieved cell-specific knockouts of the steroidogenic acute regulatory (Star) and luteinizing hormone/human chorionic gonadotropin receptor (Lhcgr) genes in Leydig cells, but not in Sertoli cells, using AAV9-single guide RNA (sgRNA)-mediated gene editing in Rosa26-LSL-Cas9 mice. Knockdown of androgen receptor (Ar) gene expression in Sertoli cells of wild-type mice was achieved via tubular injection of AAV9-short hairpin RNA (shRNA)-mediated targeting. Our findings offer technical approaches for investigating gene function in Sertoli and Leydig cells through AAV9-mediated gene silencing.
Collapse
Affiliation(s)
- Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Mao-Xing Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xiao-Yu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xu Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Man Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xiao-Yan Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Yu-Qian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Wen Yin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Ying Liu
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221000, China
| | - Ju-Xue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
2
|
Aliev TI, Yudkin DV. AAV-based vectors for human diseases modeling in laboratory animals. Front Med (Lausanne) 2025; 11:1499605. [PMID: 40007819 PMCID: PMC11859266 DOI: 10.3389/fmed.2024.1499605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 02/27/2025] Open
Abstract
The development of therapeutic drugs and vaccines requires the availability of appropriate model animals that replicate the pathogenesis of human diseases. Both native and transgenic animals can be utilized as models. The advantage of transgenic animals lies in their ability to simulate specific properties desired by researchers. However, there is often a need for the rapid production of transgenic animal models, especially in situations like a pandemic, as was evident during COVID-19. An important tool for transgenesis is the adeno-associated virus. The genome of adeno-associated virus serves as a convenient expression cassette for delivering various DNA constructs into cells, and this method has proven effective in practice. This review analyzes the features of the adeno-associated virus genome that make it an advantageous vector for transgenesis. Additionally, examples of utilizing adeno-associated viral vectors to create animal models for hereditary, oncological, and viral human diseases are provided.
Collapse
Affiliation(s)
- Timur I. Aliev
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Dmitry V. Yudkin
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Sadeghi N, Mustoe A, Ross CN, McCarrey JR, Hermann BP. Benchmarks defining high-quality sperm in the common marmoset (Callithrix jacchus). Andrology 2024. [PMID: 39436318 DOI: 10.1111/andr.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Common marmosets (Callithrix jacchus) are increasingly recognized as valuable nonhuman primates (NHPs) for biomedical research due to their small size and short reproductive cycle and lifespan relative to other NHP species. Maximizing the utility of captive research marmosets, including genetically manipulated animals, will require the use of assisted reproductive techniques (ART) including manipulation, storage, and sharing of marmoset sperm. Here, we identify characteristics of high-quality semen samples and validate a simple method for selecting high-quality sperm. METHODS Computer-assisted sperm analysis (CASA) was used to evaluate sperm quality in semen samples collected from 44 marmosets and assessed the use of the swim-up method for the selection of high-quality sperm was also tested in half the samples as a potential means to optimize in vitro fertilization or intrauterine insemination. RESULTS For each reference parameter, samples at or below the 5th percentile were categorized as abnormal sperm, while those above the 5th percentile were considered to be normal. Among normal samples, those at or above the 50th percentile were categorized as high-quality. High-quality semen samples exhibited the following characteristics: semen volume ≥ 30 µL; sperm count ≥ 107/ejaculate; total motility ≥ 35%; and normal morphology ≥ 5%. Sperm isolated by swim-up exhibited superior sperm progressive motility (19.7% ± 4.5 vs. 5.6% ± 2.1; P = 0.01) and normal morphology (13.1 ± 1.59 vs. 7.65 ± 1.1; P < 0.001) compared with unselected sperm. CONCLUSION This study defines robust, statistically supported reference values for evaluating marmoset semen samples to assist with the identification of optimal sperm donors and the selection of high-quality sperm samples for assisted reproduction. Ultimately, these reference values combined with a validated selection method will contribute to consistent standards for the international sharing of genetically diverse and/or gene-edited marmoset sperm for research and reproduction.
Collapse
Affiliation(s)
- Niloofar Sadeghi
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aaryn Mustoe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Corinna N Ross
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Brian P Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Kanatsu-Shinohara M, Morimoto H, Liu T, Tamura M, Shinohara T. Sendai virus-mediated RNA delivery restores fertility to congenital and chemotherapy-induced infertile female mice. PNAS NEXUS 2024; 3:pgae375. [PMID: 39262851 PMCID: PMC11388103 DOI: 10.1093/pnasnexus/pgae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Current infertility treatment strategies focus on mature gametes, leaving a significant proportion of cases with gamete progenitors that stopped complete differentiation. On the other hand, recent advancements in next-generation sequencing have identified many candidate genes that may promote maturation of germ cells. Although gene therapy has shown success in mice, concerns about the integration of DNA vectors into oocytes hinder clinical applications. Here, we present the restoration of fertility in female mice through Sendai virus (SeV)-mediated RNA delivery. Ovaries lacking Kitl expression exhibit only primordial follicles due to impaired signaling to oocytes expressing the KIT tyrosine kinase. Despite SeVs being immunogenic and larger than the blood-follicle barrier, the administration of Kitl-expressing SeVs reinitiated oogenesis in genetically infertile mice that have only primordial follicles, resulting in the birth of normal offspring through natural mating. This virus also effectively addressed iatrogenic infertility induced by busulfan, a widely used cancer chemotherapy agent. Offspring born through SeV administration and natural mating displayed normal genomic imprinting patterns and fertility. Since SeVs pose no genotoxicity risk, the successful restoration of fertility by SeVs represents a promising approach for treating congenital infertility with somatic cell defects and protecting fertility of cancer patients who may become infertile due to loss of oocytes during cancer therapy.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- AMED-CREST, AMED, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianjiao Liu
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Zhang S, Yang B, Shen X, Chen H, Wang F, Tan Z, Ou W, Yang C, Liu C, Peng H, Luo P, Peng L, Lei Z, Yan S, Wang T, Ke Q, Deng C, Xiang AP, Xia K. AAV-mediated gene therapy restores natural fertility and improves physical function in the Lhcgr-deficient mouse model of Leydig cell failure. Cell Prolif 2024; 57:e13680. [PMID: 38817099 PMCID: PMC11503244 DOI: 10.1111/cpr.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Leydig cell failure (LCF) caused by gene mutations leads to testosterone deficiency, infertility and reduced physical function. Adeno-associated virus serotype 8 (AAV8)-mediated gene therapy shows potential in treating LCF in the Lhcgr-deficient (Lhcgr-/-) mouse model. However, the gene-treated mice still cannot naturally sire offspring, indicating the modestly restored testosterone and spermatogenesis in AAV8-treated mice remain insufficient to support natural fertility. Recognizing this, we propose that enhancing gene delivery could yield superior results. Here, we screened a panel of AAV serotypes through in vivo transduction of mouse testes and identified AAVDJ as an impressively potent vector for testicular cells. Intratesticular injection of AAVDJ achieved markedly efficient transduction of Leydig cell progenitors, marking a considerable advance over conventional AAV8 vectors. AAVDJ-Lhcgr gene therapy was well tolerated and resulted in significant recovery of testosterone production, substantial improvement in sexual development, and remarkable restoration of spermatogenesis in Lhcgr-/- mice. Notably, this therapy restored fertility in Lhcgr-/- mice through natural mating, enabling the birth of second-generation. Additionally, this treatment led to remarkable improvements in adipose, muscle, and bone function in Lhcgr-/- mice. Collectively, our findings underscore AAVDJ-mediated gene therapy as a promising strategy for LCF and suggest its broader potential in addressing various reproductive disorders.
Collapse
Affiliation(s)
- Suyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Bin Yang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat‐sen University, The Key Laboratory for Reproductive Medicine of Guangdong ProvinceGuangzhouGuangdongChina
| | - Hong Chen
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenGuangdongChina
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Fulin Wang
- Department of Urology and AndrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhipeng Tan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Cuifeng Yang
- Department of Urology and AndrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Congyuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hao Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Peng Luo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat‐sen University, The Key Laboratory for Reproductive Medicine of Guangdong ProvinceGuangzhouGuangdongChina
- Department of Urology and AndrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Limei Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhenmin Lei
- Department of OB/GYN and Women's HealthUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Sunxing Yan
- Guangzhou Cellgenes Biotechnology Co., Ltd.GuangzhouGuangdongChina
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Chunhua Deng
- Department of Urology and AndrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Liu M, Wang L, Li Y, Zhi E, Shen G, Jiang X, Li D, Zhao X, Ruan T, Jiang C, Wang X, Zhang X, Zheng Y, Wu B, Ou N, Zhao G, Dai S, Zhou R, Yang L, Yang Y, Liu H, Shen Y. HSF5 Deficiency Causes Male Infertility Involving Spermatogenic Arrest at Meiotic Prophase I in Humans and Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402412. [PMID: 38958533 PMCID: PMC11434121 DOI: 10.1002/advs.202402412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Meiosis is a specialized cell division process that generates gametes for sexual reproduction. However, the factors and underlying mechanisms involving meiotic progression remain largely unknown, especially in humans. Here, it is first showed that HSF5 is associated with human spermatogenesis. Patients with a pathogenic variant of HSF5 are completely infertile. Testicular histologic findings in the patients reveal rare postmeiotic germ cells resulting from meiotic prophase I arrest. Hsf5 knockout (KO) mice confirms that the loss of HSF5 causes defects in meiotic recombination, crossover formation, sex chromosome synapsis, and sex chromosome inactivation (MSCI), which may contribute to spermatocyte arrest at the late pachytene stage. Importantly, spermatogenic arrest can be rescued by compensatory HSF5 adeno-associated virus injection into KO mouse testes. Mechanistically, integrated analysis of RNA sequencing and chromatin immunoprecipitation sequencing data revealed that HSF5 predominantly binds to promoters of key genes involved in crossover formation (e.g., HFM1, MSH5 and MLH3), synapsis (e.g., SYCP1, SYCP2 and SYCE3), recombination (TEX15), and MSCI (MDC1) and further regulates their transcription during meiotic progression. Taken together, the study demonstrates that HSF5 modulates the transcriptome to ensure meiotic progression in humans and mice. These findings will aid in genetic diagnosis of and potential treatments for male infertility.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyInstitute of Reproduction and DevelopmentObstetrics and Gynecology HospitalFudan UniversityShanghai200433China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEDepartment of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Erlei Zhi
- UrologyUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200000China
| | - Gan Shen
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiaohui Jiang
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
| | - Dingming Li
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xinya Zhao
- West China School of preclinical medicine and forensic medicineSichuan UniversityChengdu610041China
| | - Tiechao Ruan
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Chuan Jiang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiang Wang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xueguang Zhang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEDepartment of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyInstitute of Reproduction and DevelopmentObstetrics and Gynecology HospitalFudan UniversityShanghai200433China
| | - Ningjing Ou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guicheng Zhao
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Siyu Dai
- Department of Pediatric Pulmonology and ImmunologyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ruixi Zhou
- West China School of preclinical medicine and forensic medicineSichuan UniversityChengdu610041China
| | - Li Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University HospitalKey Laboratory of ObstetricGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationSichuan UniversityChengdu610041China
| | - Hanmin Liu
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
- Department of Pediatric Pulmonology and ImmunologyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ying Shen
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
| |
Collapse
|
7
|
Miyata H, Shimada K, Kaneda Y, Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis. Development 2024; 151:dev202838. [PMID: 39036999 DOI: 10.1242/dev.202838] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Li K, Li M, Luo Y, Zou D, Li Y, Mang X, Zhang Z, Li P, Lu Y, Miao S, Song W. Adeno-associated-virus-mediated delivery of CRISPR-CasRx induces efficient RNA knockdown in the mouse testis. Theranostics 2024; 14:3827-3842. [PMID: 38994027 PMCID: PMC11234267 DOI: 10.7150/thno.95633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: In male mammals, many developmental-stage-specific RNA transcripts (both coding and noncoding) are preferentially or exclusively expressed in the testis, where they play important roles in spermatogenesis and male fertility. However, a reliable platform for efficiently depleting various types of RNA transcripts to study their biological functions during spermatogenesis in vivo has not been developed. Methods: We used an adeno-associated virus serotype nine (AAV9)-mediated CRISPR-CasRx system to knock down the expression of exogenous and endogenous RNA transcripts in the testis. Virus particles were injected into the seminiferous tubules via the efferent duct. Using an autophagy inhibitor, 3-methyladenine (3-MA), we optimized the AAV9 transduction efficiency in germ cells in vivo. Results: AAV9-mediated delivery of CRISPR-CasRx effectively and specifically induces RNA transcripts (both coding and noncoding) knockdown in the testis in vivo. In addition, we showed that the co-microinjection of AAV9 and 3-MA into the seminiferous tubules enabled long-term transgene expression in the testis. Finally, we found that a promoter of Sycp1 gene induced CRISPR-CasRx-mediated RNA transcript knockdown in a germ-cell-type-specific manner. Conclusion: Our results demonstrate the efficacy and versatility of the AAV9-mediated CRISPR-CasRx system as a flexible knockdown platform for studying gene function during spermatogenesis in vivo. This approach may advance the development of RNA-targeting therapies for conditions affecting reproductive health.
Collapse
Affiliation(s)
- Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yanyun Luo
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yahui Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
9
|
Klees C, Alexandri C, Demeestere I, Lybaert P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? Int J Mol Sci 2023; 25:460. [PMID: 38203631 PMCID: PMC10778981 DOI: 10.3390/ijms25010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Oncological treatments have dramatically improved over the last decade, and as a result, survival rates for cancer patients have also improved. Quality of life, including concerns about fertility, has become a major focus for both oncologists and patients. While oncologic treatments are often highly effective at suppressing neoplastic growth, they are frequently associated with severe gonadotoxicity, leading to infertility. For male patients, the therapeutic option to preserve fertility is semen cryopreservation. In prepubertal patients, immature testicular tissue can be sampled and stored to allow post-cure transplantation of the tissue, immature germ cells, or in vitro spermatogenesis. However, experimental techniques have not yet been proven effective for restoring sperm production for these patients. MicroRNAs (miRNAs) have emerged as promising molecular markers and therapeutic tools in various diseases. These small regulatory RNAs possess the unique characteristic of having multiple gene targets. MiRNA-based therapeutics can, therefore, be used to modulate the expression of different genes involved in signaling pathways dysregulated by changes in the physiological environment (disease, temperature, ex vivo culture, pharmacological agents). This review discusses the possible role of miRNA as an innovative treatment option in male fertility preservation-restoration strategies and describes the diverse applications where these new therapeutic tools could serve as fertility protection agents.
Collapse
Affiliation(s)
- Charlotte Klees
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Chrysanthi Alexandri
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
- Fertility Clinic, HUB-Erasme Hospital, 1070 Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| |
Collapse
|
10
|
Sun J, Lian X, Lv C, Li H, Lin Z, Luo S, Liu Y, Xu Y, Jiang X, Xu W, Liao S, Chen Z, Wang S. Trps1 acts as a regulator of Sf-1 transcription and testosterone synthesis in mouse Leydig cells. Cell Biol Toxicol 2023; 39:3141-3157. [PMID: 37531013 DOI: 10.1007/s10565-023-09823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Infertility has attracted global concern, and disruption of testosterone is a common cause of male infertility. Exploring the critical factors in testosterone biosynthesis may provide new insights for disease research and clinical therapy. Research on trichorhinophalangeal syndrome-1 (Trps1) gene has recently been focus on cancers; it is yet unknown whether Trps1 produces a marked effect in the male reproductive system. In the current study, single-cell RNA sequencing analysis of trichorhinophalangeal syndrome-1 gene (Trps1) expression in mouse testes and cleavage under targets and tagmentation and RNA sequencing were utilized to investigate the functionality of Trps1 in mouse Leydig cells. Knockdown of Trps1 increased testosterone synthesis in vitro and vivo using adeno-associated viral delivery and conditional knockout models. The results showed that Trps1 was abundantly expressed in Leydig cells. The expression levels of both steroidogenic factor-1 (Sf-1) and steroidogenic enzymes (Cyp11a1, Hsd3b, Cyp17a1, and Hsd17b3) as well as testosterone secretion were increased after Trps1 deficiency in vivo and vitro. Furthermore, disruption of Trps1 reduced histone deacetylase 1/2 activity and increased histone H3 acetylation in the Sf-1 promoter, thereby promoting testosterone secretion. Interestingly, Sf-1 also regulated the transcription of Trps1 through activating transcription factor 2. These results indicate that Trps1 targets Sf-1 to affect steroidogenesis through histone acetylation and shed light on the critical role of Trps1 functioning in the mouse Leydig cells.
Collapse
Affiliation(s)
- Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Xiuli Lian
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Chengyu Lv
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Hua Li
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shanshan Luo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Yinglin Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Xia Jiang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shumin Liao
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zhangting Chen
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
11
|
Liu C, Si W, Tu C, Tian S, He X, Wang S, Yang X, Yao C, Li C, Kherraf ZE, Ye M, Zhou Z, Ma Y, Gao Y, Li Y, Liu Q, Tang S, Wang J, Saiyin H, Zhao L, Yang L, Meng L, Chen B, Tang D, Zhou Y, Wu H, Lv M, Tan C, Lin G, Kong Q, Shi H, Su Z, Li Z, Yao YG, Jin L, Zheng P, Ray PF, Tan YQ, Cao Y, Zhang F. Deficiency of primate-specific SSX1 induced asthenoteratozoospermia in infertile men and cynomolgus monkey and tree shrew models. Am J Hum Genet 2023; 110:516-530. [PMID: 36796361 PMCID: PMC10027476 DOI: 10.1016/j.ajhg.2023.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.
Collapse
Affiliation(s)
- Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Shengnan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chencheng Yao
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zixue Zhou
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Yuhua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qiwei Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Jiaxiong Wang
- Center for Reproduction and Genetics, State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Hexige Saiyin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Liangyu Zhao
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Liqun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Bingbing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yiling Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Limited, Shanghai, China
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Yamada M, Luo Y, Seandel M. Viral Transduction of Mammalian Spermatogonial Stem Cells. Methods Mol Biol 2023; 2656:211-225. [PMID: 37249874 DOI: 10.1007/978-1-0716-3139-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lentiviral vectors have been major tools for genetic manipulation of spermatogonial stem cells (SSCs) in vitro. Adeno-associated viral vectors are promising emerging tools for in vivo SSC transduction that are less invasive, compared to lentivirus, since AAV DNA is not integrated into the host genome and the host genome remains intact. In this chapter, we describe protocols using lentiviral and adeno-associated viral vectors to transduce SSCs in vitro and vivo, respectively.
Collapse
Affiliation(s)
- Makiko Yamada
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Yanyun Luo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
KANATSU-SHINOHARA M, LEE J, MIYAZAKI T, MORIMOTO H, SHINOHARA T. Adenovirus-mediated gene delivery restores fertility in congenitally infertile female mice. J Reprod Dev 2022; 68:369-376. [PMID: 36223953 PMCID: PMC9792657 DOI: 10.1262/jrd.2022-090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Oogenesis depends on close interactions between oocytes and granulosa cells. Abnormal signaling between these cell types can result in infertility. However, attempts to manipulate oocyte-granulosa cell interactions have had limited success, likely due to the blood-follicle barrier (BFB), which prevents the penetration of exogenous materials into ovarian follicles. Here, we used adenoviruses (AVs) to manipulate the oocyte-granulosa cell interactions. AVs penetrated the BFB and transduced granulosa cells through ovarian microinjection. Although AVs caused transient inflammation, they did not impair fertility in wild-type mice. Introduction of Kitl-expressing AVs into congenitally infertile KitlSl-t/KitlSl-t mutant mouse ovaries, which contained only primordial follicles because of a lack of Kitl expression, restored fertility through natural mating. The offspring showed no evidence of AV integration and exhibited normal genomic imprinting patterns for imprinted genes. These results demonstrate the usefulness of AVs for manipulating oogenesis and suggest the possibility of gene therapies for human female infertility.
Collapse
Affiliation(s)
- Mito KANATSU-SHINOHARA
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan,AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Jiyoung LEE
- Advanced Multidisciplinary Research Cluster, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Takehiro MIYAZAKI
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroko MORIMOTO
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi SHINOHARA
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Xia K, Wang F, Lai X, Dong L, Luo P, Zhang S, Yang C, Chen H, Ma Y, Huang W, Ou W, Li Y, Feng X, Yang B, Liu C, Lei Z, Tu X, Ke Q, Mao FF, Deng C, Xiang AP. AAV-mediated gene therapy produces fertile offspring in the Lhcgr-deficient mouse model of Leydig cell failure. Cell Rep Med 2022; 3:100792. [PMID: 36270285 PMCID: PMC9729833 DOI: 10.1016/j.xcrm.2022.100792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Leydig cell failure (LCF) caused by gene mutation results in testosterone deficiency and infertility. Serum testosterone levels can be recovered via testosterone replacement; however, established therapies have shown limited success in restoring fertility. Here, we use a luteinizing hormone/choriogonadotrophin receptor (Lhcgr)-deficient mouse model of LCF to investigate the feasibility of gene therapy for restoring testosterone production and fertility. We screen several adeno-associated virus (AAV) serotypes and identify AAV8 as an efficient vector to drive exogenous Lhcgr expression in progenitor Leydig cells through interstitial injection. We observe considerable testosterone recovery and Leydig cell maturation after AAV8-Lhcgr treatment in pubertal Lhcgr-/- mice. Of note, this gene therapy partially recovers sexual development, substantially restores spermatogenesis, and effectively produces fertile offspring. Furthermore, these favorable effects can be reproduced in adult Lhcgr-/- mice. Our proof-of-concept experiments in the mouse model demonstrate that AAV-mediated gene therapy may represent a promising therapeutic approach for patients with LCF.
Collapse
Affiliation(s)
- Kai Xia
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Fulin Wang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Luo
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cuifeng Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Yuyan Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin Feng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bin Yang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Congyuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhenmin Lei
- Department of OB/GYN and Women’s Health, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Xiang’an Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Frank Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Corresponding author
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Corresponding author
| |
Collapse
|
15
|
Ding G, Shao Q, Yu H, Liu J, Li Y, Wang B, Sang H, Li D, Bing A, Hou Y, Xiao Y. Tight Junctions, the Key Factor in Virus-Related Disease. Pathogens 2022; 11:pathogens11101200. [PMID: 36297257 PMCID: PMC9611889 DOI: 10.3390/pathogens11101200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Tight junctions (TJs) are highly specialized membrane structural domains that hold cells together and form a continuous intercellular barrier in epithelial cells. TJs regulate paracellular permeability and participate in various cellular signaling pathways. As physical barriers, TJs can block viral entry into host cells; however, viruses use a variety of strategies to circumvent this barrier to facilitate their infection. This paper summarizes how viruses evade various barriers during infection by regulating the expression of TJs to facilitate their own entry into the organism causing infection, which will help to develop drugs targeting TJs to contain virus-related disease.
Collapse
Affiliation(s)
- Guofei Ding
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Qingyuan Shao
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Haiyan Yu
- Reproductive Center, Taian Central Hospital, Tai’an 271000, China
| | - Jiaqi Liu
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Yingchao Li
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Bin Wang
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Haotian Sang
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Dexin Li
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Aiying Bing
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China
- Correspondence: (A.B.); (Y.H.); (Y.X.)
| | - Yanmeng Hou
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (A.B.); (Y.H.); (Y.X.)
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (A.B.); (Y.H.); (Y.X.)
| |
Collapse
|
16
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Sertoli cell survival and barrier function are regulated by miR-181c/d-Pafah1b1 axis during mammalian spermatogenesis. Cell Mol Life Sci 2022; 79:498. [PMID: 36008729 PMCID: PMC9411099 DOI: 10.1007/s00018-022-04521-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Sertoli cells contribute to the formation of the blood-testis barrier (BTB), which is necessary for normal spermatogenesis. Recently, microRNAs (miRNAs) have emerged as posttranscriptional regulatory elements in BTB function during spermatogenesis. Our previous study has shown that miR-181c or miR-181d (miR-181c/d) is highly expressed in testes from boars at 60 days old compared with at 180 days old. Herein, we found that overexpression of miR-181c/d via miR-181c/d mimics in murine Sertoli cells (SCs) or through injecting miR-181c/d-overexpressing lentivirus in murine testes perturbs BTB function by altering BTB-associated protein distribution at the Sertoli cell-cell interface and F-actin organization, but this in vivo perturbation disappears approximately 6 weeks after the final treatment. We also found that miR-181c/d represses Sertoli cell proliferation and promotes its apoptosis. Moreover, miR-181c/d regulates Sertoli cell survival and barrier function by targeting platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (Pafah1b1) gene. Furthermore, miR-181c/d suppresses PAFAH1B1 expression, reduces the complex of PAFAH1B1 with IQ motif-containing GTPase activating protein 1, and inhibits CDC42/PAK1/LIMK1/Cofilin pathway which is required for F-actin stabilization. In total, our results reveal the regulatory axis of miR-181c/d-Pafah1b1 in cell survival and barrier function of Sertoli cells and provide additional insights into miRNA functions in mammalian spermatogenesis.
Collapse
|
18
|
Kanatsu-Shinohara M, Lee J, Miyazaki T, Morimoto H, Shinohara T. Adeno-associated-virus-mediated gene delivery to ovaries restores fertility in congenital infertile mice. Cell Rep Med 2022; 3:100606. [PMID: 35584625 PMCID: PMC9133397 DOI: 10.1016/j.xcrm.2022.100606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Oocytes and granulosa cells closely interact with each other during follicular development, and a lack of appropriate signaling between them results in infertility. Attempts to manipulate oocyte microenvironment have been impeded by the impermeability of the blood-follicle barrier (BFB). To establish a strategy for manipulating oogenesis, we use adeno-associated viruses (AAVs), which have a unique ability of transcytosis. Microinjecting of AAVs into the ovarian stroma penetrates the BFB and achieves long-term gene expression. Introduction of an AAV carrying the mouse Kitl gene restores oogenesis in congenitally infertile KitlSl-t/KitlSl-t mutant mouse ovaries, which lack Kitl expression but contain only primordial follicles. Healthy offspring without AAV integration are born by natural mating. Therefore, AAV-mediated gene delivery not only provides a means for studying oocyte-granulosa interactions through the manipulation of the oocyte microenvironment but could also be a powerful method to treat female infertility resulting from somatic cell defects.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Takehiro Miyazaki
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
19
|
Abstract
A major cause of infertility in women is impaired ovulation or oogenesis. In this issue of Cell Reports Medicine, Kanatsu-Shinohara et al.1 demonstrate the potential of gene delivery with adeno-associated virus that can cross the blood-follicle barrier and restore oogenesis in congenitally infertile mice.
Collapse
Affiliation(s)
- Subhajit Pathak
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Pratiksha Sarangi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
20
|
Mori Y, Takashima S, Kanatsu-Shinohara M, Yi Z, Shinohara T. Cdc42 is required for male germline niche development in mice. Cell Rep 2021; 36:109550. [PMID: 34407418 DOI: 10.1016/j.celrep.2021.109550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are maintained in a special microenvironment called a niche. However, much is unknown about components that constitute the niche. Here, we report that Cdc42 is essential for germline niche development. Sertoli cell-specific Cdc42-deficient mice showed normal premeiotic spermatogenesis. However, germ cells gradually disappeared during haploid cell formation and few germ cells remained in the mature testes. Spermatogonial transplantation experiments revealed a significant loss of SSCs in Cdc42-deficient testes. Moreover, Cdc42 deficiency in Sertoli cells downregulated GDNF, a critical factor for SSC maintenance. Cdc42-deficient Sertoli cells also exhibited lower nuclear MAPK1/3 staining. Inhibition of MAP2K1 or depletion of Pea15a scaffold protein downregulated GDNF expression. A screen of transcription factors revealed that Cdc42-deficient Sertoli cells downregulate DMRT1 and SOX9, both of which are critical for Sertoli cell development. These results indicate that Cdc42 is essential for niche function via MAPK1/3-dependent GDNF secretion.
Collapse
Affiliation(s)
- Yoshifumi Mori
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Seiji Takashima
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Zheng Yi
- Division of Experimental Hematology, Molecular Developmental Biology Graduate Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Jin YH, Robledo D, Hickey JM, McGrew MJ, Houston RD. Surrogate broodstock to enhance biotechnology research and applications in aquaculture. Biotechnol Adv 2021; 49:107756. [PMID: 33895331 PMCID: PMC8192414 DOI: 10.1016/j.biotechadv.2021.107756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Aquaculture is playing an increasingly important role in meeting global demands for seafood, particularly in low and middle income countries. Genetic improvement of aquaculture species has major untapped potential to help achieve this, with selective breeding and genome editing offering exciting avenues to expedite this process. However, limitations to these breeding and editing approaches include long generation intervals of many fish species, alongside both technical and regulatory barriers to the application of genome editing in commercial production. Surrogate broodstock technology facilitates the production of donor-derived gametes in surrogate parents, and comprises transplantation of germ cells of donors into sterilised recipients. There are many successful examples of intra- and inter-species germ cell transfer and production of viable offspring in finfish, and this leads to new opportunities to address the aforementioned limitations. Firstly, surrogate broodstock technology raises the opportunity to improve genome editing via the use of cultured germ cells, to reduce mosaicism and potentially enable in vivo CRISPR screens in the progeny of surrogate parents. Secondly, the technology has pertinent applications in preservation of aquatic genetic resources, and in facilitating breeding of high-value species which are otherwise difficult to rear in captivity. Thirdly, it holds potential to drastically reduce the effective generation interval in aquaculture breeding programmes, expediting the rate of genetic gain. Finally, it provides new opportunities for dissemination of tailored, potentially genome edited, production animals of high genetic merit for farming. This review focuses on the state-of-the-art of surrogate broodstock technology, and discusses the next steps for its applications in research and production. The integration and synergy of genomics, genome editing, and reproductive technologies have exceptional potential to expedite genetic gain in aquaculture species in the coming decades. Genetic improvement in aquaculture species has a major role in global food security. Advances in biotechnology provide new opportunities to support aquaculture breeding. Advances in biotechnology provide new opportunities to support aquaculture breeding. Donor-derived gametes can be produced from surrogate broodstock of several aquaculture species. Surrogate broodstock technology provides new opportunities for application of genome editing. Surrogate broodstock can accelerate genetic gain, and improve dissemination of elite germplasm.
Collapse
Affiliation(s)
- Ye Hwa Jin
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Diego Robledo
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Mike J McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK.
| |
Collapse
|
22
|
Darbey A, Rebourcet D, Curley M, Kilcoyne K, Jeffery N, Reed N, Milne L, Roesl C, Brown P, Smith LB. A comparison of in vivo viral targeting systems identifies adeno-associated virus serotype 9 (AAV9) as an effective vector for genetic manipulation of Leydig cells in adult mice. Andrology 2020; 9:460-473. [PMID: 32996275 DOI: 10.1111/andr.12915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the increasing popularity of deliverable transgenics, a robust and fully validated method for targeting Leydig cells, capable of delivering long-term transgene expression, is yet to be defined. OBJECTIVES We compared three viral vector systems in terms of their cell targeting specificity, longevity of gene expression and impact on targeted cell types when delivered to the interstitial compartment of the mouse testis. MATERIALS & METHODS We delivered lentiviral, adenoviral and adeno-associated (AAV) viral particles to the interstitial compartment of adult mouse testis. Immunolocalization and stereology were performed to characterize ability of vectors to target and deliver transgenes to Leydig cells. RESULTS Viral vectors utilized in this study were found to specifically target Leydig cells when delivered interstitially. Transgene expression in lentiviral-targeted Leydig cells was detected for 7 days post-injection before Leydig cells underwent apoptosis. Adenoviral-delivered transgene expression was detected for 10 days post-injection with no evidence of targeted cell apoptosis. We found serotype differences in AAV injected testis with AAV serotype 9 targeting a significant proportion of Leydig cells. Targeting efficiency increased to an average of 59.63% (and a maximum of 80%) of Leydig cells with the addition of neuraminidase during injection. In AAV injected testis sections, transgene expression was detectable for up to 50 days post-injection. DISCUSSION & CONCLUSION Lentivirus, Adenovirus and Adeno-Associated virus delivery to the testis resulted in key variances in targeting efficiency of Leydig cells and in longevity of transgene expression, but identified AAV9 + Neuraminidase as an efficient vector system for transgene delivery and long-term expression. Simple viral delivery procedures and the commercial availability of viral vectors suggests AAV9 + Neuraminidase will be of significant utility to researchers investigating the genetics underpinning Leydig cell function and holds promise to inform the development of novel therapeutics for the treatment of male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Karen Kilcoyne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nathan Jeffery
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Natalie Reed
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Cornelia Roesl
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Pamela Brown
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
23
|
Shinohara T, Kanatsu-Shinohara M. Transgenesis and Genome Editing of Mouse Spermatogonial Stem Cells by Lentivirus Pseudotyped with Sendai Virus F Protein. Stem Cell Reports 2020; 14:447-461. [PMID: 32160520 PMCID: PMC7066332 DOI: 10.1016/j.stemcr.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) serve as a resource for producing genetically modified animals. However, genetic manipulation of SSCs has met with limited success. Here, we show efficient gene transfer into SSCs via a lentivirus (FV-LV) using a fusion protein (F), a Sendai virus (SV) envelope protein involved in virion/cell membrane fusion. FV-LVs transduced cultured SSCs more efficiently than conventional LVs. Although SSCs infected with SV failed to produce offspring, those transduced with FV-LVs were fertile. In vivo microinjection showed that FV-LVs could penetrate not only the basement membrane of the seminiferous tubules but also the blood-testis barrier, which resulted in successful transduction of both spermatogenic cells and testicular somatic cells. Cultured SSCs transfected with FV-LVs that express drug-inducible CRISPR/Cas9 against Kit or Sycp3 showed impaired spermatogenesis upon transplantation and drug treatment in vivo. Thus, FV-LVs provide an efficient method for functional analysis of genes involved in SSCs and spermatogenesis. Sendai virus-derived F protein enhances lentiviral infection of male germ cells Transfected spermatogonial stem cells undergo germline transmission Lentivirus pseudotyped with F protein penetrates the blood-testis barrier This method is compatible with in vivo conditional gene editing
Collapse
Affiliation(s)
- Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan.
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
25
|
Yokonishi T, McKey J, Ide S, Capel B. Sertoli cell ablation and replacement of the spermatogonial niche in mouse. Nat Commun 2020; 11:40. [PMID: 31896751 PMCID: PMC6940386 DOI: 10.1038/s41467-019-13879-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/14/2019] [Indexed: 01/15/2023] Open
Abstract
Spermatogonia, which produce sperm throughout the male lifetime, are regulated inside a niche composed of Sertoli cells, and other testis cell types. Defects in Sertoli cells often lead to infertility, but replacement of defective cells has been limited by the inability to deplete the existing population. Here, we use an FDA-approved non-toxic drug, benzalkonium chloride (BC), to deplete testis cell types in vivo. Four days after BC administration, Sertoli cells are preferentially depleted, and can be replaced to promote spermatogenesis from surviving (host) spermatogonia. Seven days after BC treatment, multiple cell types can be engrafted from fresh or cryopreserved testicular cells, leading to complete spermatogenesis from donor cells. These methods will be valuable for investigation of niche-supporting cell interactions, have the potential to lead to a therapy for idiopathic male infertility in the clinic, and could open the door to production of sperm from other species in the mouse. Sertoli cells and other somatic cells of the testis comprise the germ cell niche and are critical to regulate spermatogenesis. Here the authors present a method in which Sertoli cells are selectively targeted for ablation by the compound benzalkonium chloride (BC) in mice, and the spermatogenic niche is subsequently repopulated in regions that have been affected by BC treatment.
Collapse
Affiliation(s)
- Tetsuhiro Yokonishi
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Urology, Yokohama City University, Yokohama, Japan.
| | - Jennifer McKey
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shintaro Ide
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
26
|
Li K, Zhong S, Luo Y, Zou D, Li M, Li Y, Lu Y, Miao S, Wang L, Song W. A long noncoding RNA binding to QKI-5 regulates germ cell apoptosis via p38 MAPK signaling pathway. Cell Death Dis 2019; 10:699. [PMID: 31541077 PMCID: PMC6754436 DOI: 10.1038/s41419-019-1941-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 11/09/2022]
Abstract
Spermatogenesis is the complex process of male germline development and requires coordinated interactions by multiple gene products that undergo strict developmental regulations. Increasing evidence has suggested that a number of long noncoding RNAs (lncRNAs) may function as important regulatory molecules in various physiological and pathological processes by binding to specific proteins. Here, we identified a subset of QKI-5-binding lncRNAs in the mouse testis through the integrated analyses of RNA immunoprecipitation (RIP)-microarray and biological verification. Among the lncRNAs, we revealed that NONMMUT074098.2 (Lnc10), which was highly expressed in the spermatogonia and spermatocytes of the testis, interacted with QKI-5. Furthermore, Lnc10 depletion promoted germ cell apoptosis via the activation of p38 MAPK, whereas the simultaneous knockdown of QKI-5 could rescue the apoptotic phenotype and the activation of p38 MAPK, which were induced by the loss of Lnc10. These data indicated that the Lnc10-QKI-5 interaction was associated with the regulatory roles of QKI-5 and that the Lnc10-QKI-5 interaction inhibited the regulation of QKI-5 on the downstream p38 MAPK signaling pathway. Additionally, we functionally characterized the biological roles of Lnc10 and found that the knockdown of Lnc10 promoted the apoptosis of spermatogenic cells in vivo; this suggested that Lnc10 had an important biological role in mouse spermatogenesis. Thus, our study provides a potential strategy to investigate the biological significance of lncRNA-RBP interactions during male germline development.
Collapse
Affiliation(s)
- Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Shunshun Zhong
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yanyun Luo
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yahui Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
27
|
Watanabe S, Kanatsu-Shinohara M, Shinohara T. Sendai virus-mediated transduction of mammalian spermatogonial stem cells†. Biol Reprod 2019; 100:523-534. [PMID: 30165393 DOI: 10.1093/biolre/ioy192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the foundation of spermatogenesis. However, because of their small number and slow self-renewal, transfection of SSCs has met with limited success. Although several viral vectors can infect SSCs, genome integration and an inability to maintain long-term gene expression have hampered studies on SSCs. Here we report successful SSC infection by Sendai virus (SV), an RNA virus in the Paramyxoviridae. The SV efficiently transduced germline stem (GS) cells, cultured spermatogonia with enriched SSC activity, and maintained gene expression for at least 5 months. It also infected freshly isolated SSCs from adult testes. The transfected GS cells reinitiated spermatogenesis following spermatogonial transplantation into seminiferous tubules of infertile mice, suggesting that SV transfection does not interfere with spermatogenesis progression. On the other hand, microinjection of SV into the seminiferous tubules of immature mice transduced SSCs and Sertoli cells, but did not transduce Leydig or peritubular cells by interstitial virus injection. SV-infected hamster GS cells, and freshly isolated rabbit or monkey SSC-like cells were identified following xenogeneic spermatogonial transplantation, suggesting that SV transduces SSCs from several mammalian species. Thus, SV is a useful vector that can transduce both SSCs and Sertoli cells and overcome problems associated with other viral vectors.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Pereira CD, Serrano JB, Martins F, da Cruz E Silva OAB, Rebelo S. Nuclear envelope dynamics during mammalian spermatogenesis: new insights on male fertility. Biol Rev Camb Philos Soc 2019; 94:1195-1219. [PMID: 30701647 DOI: 10.1111/brv.12498] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
The production of highly specialized spermatozoa from undifferentiated spermatogonia is a strictly organized and programmed process requiring extensive restructuring of the entire cell. One of the most remarkable cellular transformations accompanying the various phases of spermatogenesis is the profound remodelling of the nuclear architecture, in which the nuclear envelope (NE) seems to be crucially involved. In recent years, several proteins from the distinct layers forming the NE (i.e. the inner and outer nuclear membranes as well as the nuclear lamina) have been associated with meiosis and/or spermiogenesis in different mammalian species. Among these are A- and B-type lamins, Dpy-19-like protein 2 (DPY19L2), lamin B receptor (LBR), lamina-associated polypeptide 1 (LAP1), LAP2/emerin/MAN1 (LEM) domain-containing proteins, spermatogenesis-associated 46 (SPATA46) and diverse elements of the linker of nucleoskeleton and cytoskeleton (LINC) complex, namely Sad-1/UNC-84 homology (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain-containing proteins. Herein, we summarize the current state of the art on the cellular and subcellular distribution of NE proteins expressed during mammalian spermatogenesis, and discuss the latest research developments regarding their testis-specific functions. This review provides a comprehensive and innovative overview of the NE network as a regulatory platform and as an essential determinant of efficient meiotic chromosome recombination as well as spermiogenesis-associated nuclear remodelling and differentiation in mammalian male germline cells. Thus, this review provides important novel insights on the biological relevance of NE proteins for male fertility.
Collapse
Affiliation(s)
- Cátia D Pereira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana B Serrano
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal.,The Discovery CTR, University of Aveiro Campus, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Rajasekaran S, Thatte J, Periasamy J, Javali A, Jayaram M, Sen D, Krishnagopal A, Jayandharan GR, Sambasivan R. Infectivity of adeno-associated virus serotypes in mouse testis. BMC Biotechnol 2018; 18:70. [PMID: 30384832 PMCID: PMC6211462 DOI: 10.1186/s12896-018-0479-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
Background Recombinant adeno-associated viruses (AAVs) are emerging as favoured transgene delivery vectors for both research applications and gene therapy. In this context, a thorough investigation of the potential of various AAV serotypes to transduce specific cell types is valuable. Here, we rigorously tested the infectivity of a number of AAV serotypes in murine testis by direct testicular injection. Results We report the tropism of serotypes AAV2, 5, 8, 9 and AAVrh10 in mouse testis. We reveal unique infectivity of AAV2 and AAV9, which preferentially target intertubular testosterone-producing Leydig cells. Remarkably, AAV2 TM, a mutant for capsid designed to increase transduction, displayed a dramatic alteration in tropism; it infiltrated seminiferous tubules unlike wildtype AAV2 and transduced Sertoli cells. However, none of the AAVs tested infected spermatogonial cells. Conclusions In spite of direct testicular injection, none of the tested AAVs appeared to infect sperm progenitors as assayed by reporter expression. This lends support to the current view that AAVs are safe gene-therapy vehicles. However, testing the presence of rAAV genomic DNA in germ cells is necessary to assess the risk of individual serotypes. Electronic supplementary material The online version of this article (10.1186/s12896-018-0479-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jayashree Thatte
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
| | - Jayaprakash Periasamy
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
| | - Alok Javali
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India.,National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bengaluru, 560065, India
| | - Manjunath Jayaram
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India
| | - Dwaipayan Sen
- Department of Haematology and Centre for Stem Cell Research, Christian Medical College, Vellore, 632004, India.,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Akshaya Krishnagopal
- Department of Haematology and Centre for Stem Cell Research, Christian Medical College, Vellore, 632004, India
| | - Giridhara R Jayandharan
- Department of Haematology and Centre for Stem Cell Research, Christian Medical College, Vellore, 632004, India.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Ramkumar Sambasivan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru, 560065, India.
| |
Collapse
|
30
|
Takashima S. Biology and manipulation technologies of male germline stem cells in mammals. Reprod Med Biol 2018; 17:398-406. [PMID: 30377393 PMCID: PMC6194257 DOI: 10.1002/rmb2.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are the origin of sperm and defined by their functions of "colonization in the testis" and "spermatogenesis". In vitro manipulation techniques of SSCs contribute to a wide variety of fields including reproductive medicine and molecular breeding. This review presents the recent progress of the biology and manipulation technologies of SSCs. METHODS Research articles regarding SSC biology and technologies were collected and summarized. MAIN FINDINGS Dr. Ralph Brinster developed the spermatogonial transplantation technique that enables SSC detection by functional markers. Using this technique, cultured SSCs, termed germline stem (GS) cells, were established from the mouse. GS cells provide the opportunity to produce genome-edited animals without using zygotes. In vitro spermatogenesis allows production of haploid germ cells from GS cells without spermatogonial transplantation. The recent advancement of pluripotent stem cell culture techniques has also achieved production of functional GS-like cells in addition to male/female germ cells. CONCLUSION Although in vitro manipulation techniques of GS cells have been developed for the mouse, it appears to be difficult to apply these techniques to other species. Understanding and control of interspecies barriers are required to extend this technology to nonrodent mammals.
Collapse
Affiliation(s)
- Seiji Takashima
- Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
- Graduate school of Science and TechnologyShinshu UniversityUedaJapan
| |
Collapse
|