1
|
Kardeh S, Mazloomrezaei M, Hosseini A. Scaling Autologous Epidermal Cell Therapies: iPSC-Derived Keratinocytes and In Vivo Chimerism for Skin Regeneration. Exp Dermatol 2025; 34:e70107. [PMID: 40289411 DOI: 10.1111/exd.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Severe skin injuries and genetic disorders such as epidermolysis bullosa present significant clinical challenges due to limitations in current epidermal replacement therapies. While promising, cultured epithelial autografts (CEAs) suffer from prolonged culture times, cellular senescence, and low-quality clinical outcomes, limiting their widespread application. Recent advancements in iPSC-derived keratinocytes (iKeratinocytes) and in vivo chimerism offer transformative potential for scalable and personalised skin regeneration. Advances in understanding transcriptional networks, mRNA delivery, CRISPR-based genome editing, and automated biomanufacturing processes can enable improved and efficient protocols for generating iKeratinocytes. Despite these advances, there are still challenges for scaling iKeratinocytes, including optimising xeno-free culture systems and developing reproducible methods for generating multilayered skin with appendages. Interspecies chimerism utilising lineage-specific ablation systems and targeted in utero delivery of organ progenitor cells can enable human epidermal tissue development within animal hosts, offering an alternative novel platform for scaling epidermal cell and skin generation. This method, however, requires further refinements for complete ablation and detachment of target cells in the animal hosts and improved human cell integration in chimeric models. Together, iKeratinocytes and in vivo chimerism hold great promise for advancing autologous epidermal cell therapies and enabling broader clinical adoption and improved outcomes for patients with severe skin injuries and genetic disorders.
Collapse
Affiliation(s)
- Sina Kardeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Mohsen Mazloomrezaei
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Ahmad Hosseini
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Bigliardi E, Shetty AV, Low WC, Steer CJ. Interspecies Blastocyst Complementation and the Genesis of Chimeric Solid Human Organs. Genes (Basel) 2025; 16:215. [PMID: 40004544 PMCID: PMC11854981 DOI: 10.3390/genes16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in the donor animal has been investigated as a possible option. However, the use of exogenous tissue presents another host of obstacles, particularly regarding organ rejection. Given these limitations, interspecies blastocyst complementation in combination with precise gene knockouts presents a unique, promising pathway for the transplant organ shortage. In recent years, great advancements have been made in the field, with encouraging results in producing a donor-derived organ in a chimeric host. That said, one of the major barriers to successful interspecies chimerism is the mismatch in the developmental stages of the donor and the host cells in the chimeric embryo. Another major barrier to successful chimerism is the mismatch in the developmental speeds between the donor and host cells in the chimeric embryos. This review outlines 19 studies in which blastocyst complementation was used to generate solid organs. In particular, the genesis of the liver, lung, kidney, pancreas, heart, thyroid, thymus and parathyroids was investigated. Of the 19 studies, 7 included an interspecies model. Of the 7, one was completed using human donor cells in a pig host, and all others were rat-mouse chimeras. While very promising results have been demonstrated, with great advancements in the field, several challenges continue to persist. In particular, successful chimerism, organ generation and donor contribution, synchronized donor-host development, as well as ethical concerns regarding human-animal chimeras remain important aspects that will need to be addressed in future research.
Collapse
Affiliation(s)
- Elena Bigliardi
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Anala V. Shetty
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford J. Steer
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Yuri S, Arisawa N, Kitamuro K, Isotani A. Blastocyst complementation-based rat-derived heart generation reveals cardiac anomaly barriers to interspecies chimera development. iScience 2024; 27:111414. [PMID: 39687030 PMCID: PMC11647242 DOI: 10.1016/j.isci.2024.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
The use of pluripotent stem cells (PSCs) to generate functional organs via blastocyst complementation is a cutting-edge strategy in regenerative medicine. However, existing models that use this method for heart generation do not meet expectations owing to the complexity of heart development. Here, we investigated a Mesp1/2 deficient mouse model, which is characterized by abnormalities in the cardiac mesodermal cells. The injection of either mouse or rat PSCs into Mesp1/2 deficient mouse blastocysts led to successful heart generation. In chimeras, the resulting hearts were predominantly composed of rat cells; however, their functionality was limited to the embryonic developmental stage on day 12.5. These results present the functional limitation of the xenogeneic heart, which poses a significant challenge to the development in mouse-rat chimeras.
Collapse
Affiliation(s)
- Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Laboratory of Experimental Animals, Research Institution, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan
| | - Norie Arisawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kohei Kitamuro
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
4
|
Simpson SG, Park KE, Yeddula SGR, Waters J, Scimeca E, Poonooru RR, Etches R, Telugu BP. Blastocyst complementation generates exogenous donor-derived liver in ahepatic pigs. FASEB J 2024; 38:e70161. [PMID: 39530535 DOI: 10.1096/fj.202401244r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Liver diseases are one of the leading causes of morbidity and mortality worldwide. Globally, liver diseases are responsible for approximately 2 million deaths annually (1 of every 25 deaths). Many of the patients with chronic liver diseases can benefit from organ transplantation. However, stringent criteria for placement on organ transplantation waitlist and chronic shortage of organs preclude access to patients. To bridge the shortfall, generation of chimeric human organs in pigs has long been considered as an alternative. Here, we report feasibility of the approach by generating chimeric livers in pigs using a conditional blastocyst complementation approach that creates a vacant niche in chimeric hosts, enabling the initiation of organogenesis through donor-derived pluripotent cells. Porcine fetal fibroblasts were sequentially targeted for knockin of CRE into the endogenous FOXA3 locus (FOXA3CRE) followed by floxing of exon 1 of HHEX (FOXA3CREHHEXloxP/loxP) locus. The conditional HHEX knockout and constitutive GFP donor (COL1ACAG:LACZ 2A EGFP) were used as nuclear donors to generate host embryos by somatic cell nuclear transfer, and complemented and transferred into estrus synchronized surrogates. In the resulting fetuses, donor EGFP blastomeres reconstituted hepatocytes as confirmed by immunohistochemistry. These results potentially pave the way for exogenous donor-derived hepatogenesis in large animal models.
Collapse
Affiliation(s)
- Sean G Simpson
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ki-Eun Park
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Jerel Waters
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Erin Scimeca
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
| | | | - Rob Etches
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
| | - Bhanu P Telugu
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Ahmadzada B, Felgendreff P, Minshew AM, Amiot BP, Nyberg SL. Producing Human Livers From Human Stem Cells Via Blastocyst Complementation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100537. [PMID: 38854436 PMCID: PMC11160964 DOI: 10.1016/j.cobme.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The need for organ transplants exceeds donor organ availability. In the quest to solve this shortage, the most remarkable area of advancement is organ production through the use of chimeric embryos, commonly known as blastocyst complementation. This technique involves the combination of different species to generate chimeras, where the extent of donor cell contribution to the desired tissue or organ can be regulated. However, ethical concerns arise with the use of brain tissue in such chimeras. Furthermore, the ratio of contributed cells to host animal cells in the chimeric system is low in the production of chimeras associated with cell apoptosis. This review discusses the latest innovations in blastocyst complementation and highlights the progress made in creating organs for transplant.
Collapse
Affiliation(s)
- Boyukkhanim Ahmadzada
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Philipp Felgendreff
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Anna M Minshew
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bruce P Amiot
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Scott L Nyberg
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Nagaya M, Uchikura A, Nakano K, Watanabe M, Matsunari H, Umeyama K, Mizuno N, Nishimura T, Nakauchi H, Nagashima H. Generation of insulin-like growth factor 1 receptor-knockout pigs as a potential system for interspecies organogenesis. Regen Ther 2024; 26:783-791. [PMID: 39309395 PMCID: PMC11416208 DOI: 10.1016/j.reth.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND To overcome organ shortage during transplantation, interspecies organ generation via blastocyst complementation has been proposed, although not yet in evolutionarily distant species. To establish high levels of chimerism, low chimerism is required early in development, followed by high chimerism, to effectively complement the organ niche. Very few human cells are expected to contribute to chimerism in heterologous animals. Previous studies had demonstrated increased donor chimerism in both intra- and interspecies chimeras in rodents, using insulin-like growth factor 1 receptor (Igf1r) knockout (KO) mice; deletion of the Igf1r gene in the mouse host embryo created a cell-competitive niche. The current study aimed to generate IGF1R-KO pigs and evaluate whether they have the same phenotype as Igf1r-KO mice. METHODS To generate IGF1R-KO pigs, genome-editing molecules were injected into the cytoplasm of pig zygotes. The fetuses were evaluated at 104 days of gestation. RESULTS IGF1R-KO pigs were generated successfully. Their phenotypes were almost identical to those of Igf1r-KO mice, including small lungs and enlarged endodermal organs in fetuses, and they were highly reproducible. CONCLUSIONS Pigs may allow the generation of organs using blastocyst complementation with developmentally-compatible xenogeneic pluripotent stem cells over a large evolutionary distance.
Collapse
Affiliation(s)
- Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
- PorMedTec Co. Ltd., 2-3227 Mita, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
- PorMedTec Co. Ltd., 2-3227 Mita, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
- PorMedTec Co. Ltd., 2-3227 Mita, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
- PorMedTec Co. Ltd., 2-3227 Mita, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan
| | - Naoaki Mizuno
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Stem Cell Therapy Laboratory, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510 Tokyo, Japan
| | - Toshiya Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA94305, USA
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Stem Cell Therapy Laboratory, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510 Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA94305, USA
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
- PorMedTec Co. Ltd., 2-3227 Mita, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan
| |
Collapse
|
7
|
Blake MJ, Steer CJ. Chimeric Livers: Interspecies Blastocyst Complementation and Xenotransplantation for End-Stage Liver Disease. Hepat Med 2024; 16:11-29. [PMID: 38379783 PMCID: PMC10878318 DOI: 10.2147/hmer.s440697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Orthotopic liver transplantation (OLT) currently serves as the sole definitive treatment for thousands of patients suffering from end-stage liver disease; and the existing supply of donor livers for OLT is drastically outpaced by the increasing demand. To alleviate this significant gap in treatment, several experimental approaches have been devised with the aim of either offering interim support to patients waiting on the transplant list or bioengineering complete livers for OLT by infusing them with fresh hepatic cells. Recently, interspecies blastocyst complementation has emerged as a promising method for generating complete organs in utero over a short timeframe. When coupled with gene editing technology, it has brought about a potentially revolutionary transformation in regenerative medicine. Blastocyst complementation harbors notable potential for generating complete human livers in large animals, which could be used for xenotransplantation in humans, addressing the scarcity of livers for OLT. Nevertheless, substantial experimental and ethical challenges still need to be overcome to produce human livers in larger domestic animals like pigs. This review compiles the current understanding of interspecies blastocyst complementation and outlines future possibilities for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
8
|
Wang H, Yin X, Xu J, Chen L, Karuppagounder SS, Xu E, Mao X, Dawson VL, Dawson TM. Interspecies chimerism with human embryonic stem cells generates functional human dopamine neurons at low efficiency. Stem Cell Reports 2024; 19:54-67. [PMID: 38134925 PMCID: PMC10828682 DOI: 10.1016/j.stemcr.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Interspecies chimeras offer great potential for regenerative medicine and the creation of human disease models. Whether human pluripotent stem cell-derived neurons in an interspecies chimera can differentiate into functional neurons and integrate into host neural circuity is not known. Here, we show, using Engrailed 1 (En1) as a development niche, that human naive-like embryonic stem cells (ESCs) can incorporate into embryonic and adult mouse brains. Human-derived neurons including tyrosine hydroxylase (TH)+ neurons integrate into the mouse brain at low efficiency. These TH+ neurons have electrophysiologic properties consistent with their human origin. In addition, these human-derived neurons in the mouse brain accumulate pathologic phosphorylated α-synuclein in response to α-synuclein preformed fibrils. Optimization of human/mouse chimeras could be used to study human neuronal differentiation and human brain disorders.
Collapse
Affiliation(s)
- Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jinchong Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Enquan Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Coppiello G, Barlabé P, Moya-Jódar M, Abizanda G, Pogontke C, Barreda C, Iglesias E, Linares J, Arellano-Viera E, Larequi E, San Martín-Úriz P, Carvajal-Vergara X, Pelacho B, Mazo MM, Pérez-Pomares JM, Ruiz-Villalba A, Ullate-Agote A, Prósper F, Aranguren XL. Generation of heart and vascular system in rodents by blastocyst complementation. Dev Cell 2023; 58:2881-2895.e7. [PMID: 37967560 DOI: 10.1016/j.devcel.2023.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Generating organs from stem cells through blastocyst complementation is a promising approach to meet the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here, we used a lineage-specific cell ablation system to produce mouse embryos unable to form both the cardiac and vascular systems. By mouse intraspecies blastocyst complementation, we rescued heart and vascular system development separately and in combination, obtaining complemented hearts with cardiomyocytes and endothelial cells of exogenous origin. Complemented chimeras were viable and reached adult stage, showing normal cardiac function and no signs of histopathological defects in the heart. Furthermore, we implemented the cell ablation system for rat-to-mouse blastocyst complementation, obtaining xenogeneic hearts whose cardiomyocytes were completely of rat origin. These results represent an advance in the experimentation towards the in vivo generation of transplantable organs.
Collapse
Affiliation(s)
- Giulia Coppiello
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain.
| | - Paula Barlabé
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Marta Moya-Jódar
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Gloria Abizanda
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain; Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Cristina Pogontke
- Department of Animal Biology, University of Málaga, Málaga 29010, Spain; Biomedical Research Institute of Málaga (IBIMA-Plataforma BIONAND), Málaga 29590, Spain
| | - Carolina Barreda
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Elena Iglesias
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Javier Linares
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Eduardo Larequi
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Patxi San Martín-Úriz
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Xonia Carvajal-Vergara
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Beatriz Pelacho
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Manuel Maria Mazo
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain; Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - José Maria Pérez-Pomares
- Department of Animal Biology, University of Málaga, Málaga 29010, Spain; Biomedical Research Institute of Málaga (IBIMA-Plataforma BIONAND), Málaga 29590, Spain
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, University of Málaga, Málaga 29010, Spain; Biomedical Research Institute of Málaga (IBIMA-Plataforma BIONAND), Málaga 29590, Spain
| | - Asier Ullate-Agote
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Felipe Prósper
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain; Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona 31008, Spain; Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid 28029, Spain; Red Española de Terapias Avanzadas (RICORS-TERAV), Madrid 28029, Spain
| | - Xabier L Aranguren
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain.
| |
Collapse
|
10
|
Otabi H, Miura H, Uryu H, Kobayashi-Harada R, Abe K, Nakano K, Umeyama K, Hasegawa K, Tsukahara T, Nagashima H, Inoue R. Development of a panel for detection of pathogens in xenotransplantation donor pigs. Xenotransplantation 2023; 30:e12825. [PMID: 37771249 DOI: 10.1111/xen.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
There have been high expectations in recent years of using xenotransplantation and regenerative medicine to treat humans, and pigs have been utilized as the donor model. Pigs used for these clinical applications must be microbiologically safe, that is, free of infectious pathogens, to prevent infections not only in livestock, but also in humans. Currently, however, the full spectrum of pathogens that can infect to the human host or cause disease in transplanted porcine organs/cells has not been fully defined. In the present study, we thus aimed to develop a larger panel for the detection of pathogens that could potentially infect xenotransplantation donor pigs. Our newly developed panel, which consisted of 76 highly sensitive PCR detection assays, was able to detect 41 viruses, 1 protozoa, and a broad range of bacteria (by use of universal 16S rRNA primers). The applicability of this panel was validated using blood samples from uterectomy-born piglets, and pathogens suspected to be vertically transmitted from sows to piglets were successfully detected. We estimate that, at least for viruses and bacteria, the number of target pathogens detected by the developed screening panel should suffice to meet the microbiological safety levels required worldwide for xenotransplantation and/or regenerative therapy. This panel provides greater diagnosis options to produce donor pigs so that it would render unnecessary to screen for all pathogens listed. Instead, the new panel could be utilized to detect only required pathogens within a given geographic range where the donor pigs for xenotransplantation have been and/or are being developed.
Collapse
Affiliation(s)
- Hikari Otabi
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Hiroto Miura
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Haruka Uryu
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| | | | - Kanako Abe
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
11
|
Wang J, Xie W, Li N, Li W, Zhang Z, Fan N, Ouyang Z, Zhao Y, Lai C, Li H, Chen M, Quan L, Li Y, Jiang Y, Jia W, Fu L, Mazid MA, Zhu Y, Maxwell PH, Pan G, Esteban MA, Dai Z, Lai L. Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation. Cell Stem Cell 2023; 30:1235-1245.e6. [PMID: 37683604 DOI: 10.1016/j.stem.2023.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Heterologous organ transplantation is an effective way of replacing organ function but is limited by severe organ shortage. Although generating human organs in other large mammals through embryo complementation would be a groundbreaking solution, it faces many challenges, especially the poor integration of human cells into the recipient tissues. To produce human cells with superior intra-niche competitiveness, we combined optimized pluripotent stem cell culture conditions with the inducible overexpression of two pro-survival genes (MYCN and BCL2). The resulting cells had substantially enhanced viability in the xeno-environment of interspecies chimeric blastocyst and successfully formed organized human-pig chimeric middle-stage kidney (mesonephros) structures up to embryonic day 28 inside nephric-defective pig embryos lacking SIX1 and SALL1. Our findings demonstrate proof of principle of the possibility of generating a humanized primordial organ in organogenesis-disabled pigs, opening an exciting avenue for regenerative medicine and an artificial window for studying human kidney development.
Collapse
Affiliation(s)
- Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100039, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Wenguang Xie
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Nan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Wenjuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhishuai Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Chengdan Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Hao Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mengqi Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longquan Quan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Yunpan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yu Jiang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Wenqi Jia
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100039, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lixin Fu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Md Abdul Mazid
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Patrick H Maxwell
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0ST, UK
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100039, China.
| | - Miguel A Esteban
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100039, China.
| | - Zhen Dai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China; Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100039, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou 510530, China.
| |
Collapse
|
12
|
Watanabe M, Nagashima H. Genome Editing of Pig. Methods Mol Biol 2023; 2637:269-292. [PMID: 36773154 DOI: 10.1007/978-1-0716-3016-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Pigs have anatomical and physiological characteristics similar to humans; therefore, genetically modified pigs have the potential to become a valuable bioresource in biomedical research. In fact, considering the increasing need for translational research, pigs are useful for studying intractable diseases, organ transplantation, and regenerative medicine as large-scale experimental animals with excellent potential for extrapolation to humans. With the advent of zinc finger nucleases (ZFNs), breakthroughs in genome editing tools such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) have facilitated the efficient generation of genetically modified pigs. Genome editing has been used in pigs for more than 10 years; now, along with knockout pigs, knock-in pigs are also gaining increasing importance. In this chapter, we describe the establishment of gene-modified cells (nuclear donor cells), which are necessary for gene knockout and production of knock-in pigs via somatic cell nuclear transplantation, as well as the production of gene knockout pigs using a simple cytoplasmic injection method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan.,PorMedTec Co., Ltd., Kawasaki, Kanagawa, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan. .,Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
13
|
Sarmah H, Sawada A, Hwang Y, Miura A, Shimamura Y, Tanaka J, Yamada K, Mori M. Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Front Cell Dev Biol 2023; 11:1070560. [PMID: 36743411 PMCID: PMC9893295 DOI: 10.3389/fcell.2023.1070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer from end-stage refractory diseases. The ideal treatment option for terminally ill patients is organ transplantation. However, donor organs are in absolute shortage, and sadly, most patients die while waiting for a donor organ. To date, no technology has achieved long-term sustainable patient-derived organ generation. In this regard, emerging technologies of chimeric human organ production via blastocyst complementation (BC) holds great promise. To take human organ generation via BC and transplantation to the next step, we reviewed current emerging organ generation technologies and the associated efficiency of chimera formation in human cells from the standpoint of developmental biology.
Collapse
Affiliation(s)
- Hemanta Sarmah
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Anri Sawada
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Youngmin Hwang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Akihiro Miura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Munemasa Mori
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
14
|
Brown JL, Voth JP, Person K, Low WC. A Technological and Regulatory Review on Human-Animal Chimera Research: The Current Landscape of Biology, Law, and Public Opinion. Cell Transplant 2023; 32:9636897231183112. [PMID: 37599386 PMCID: PMC10467371 DOI: 10.1177/09636897231183112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 08/22/2023] Open
Abstract
Organ transplantation is a highly utilized treatment for many medical conditions, yet the number of patients waiting for organs far exceeds the number available. The challenges and limitations currently associated with organ transplantation and technological advances in gene editing techniques have led scientists to pursue alternate solutions to the donor organ shortage. Growing human organs in animals and harvesting those organs for transplantation into humans is one such solution. These chimeric animals usually have certain genes necessary for a specific organ's development inhibited at an early developmental stage, followed by the addition of cultured pluripotent human cells to fill that developmental niche. The result is a chimeric animal that contains human organs which are available for transplant into a patient, circumventing some of the limitations currently involved in donor organ transplantation. In this review, we will discuss both the current scientific and legal landscape of human-animal chimera (HAC) research. We present an overview of the technological advances that allow for the creation of HACs, the patents that currently exist on these methods, as well as current public attitude and understanding that can influence HAC research policy. We complement our scientific and public attitude discussion with a regulatory overview of chimera research at both the national and state level, while also contrasting current U.S. legislation with regulations in other countries. Overall, we provide a comprehensive analysis of the legal and scientific barriers to conducting research on HACs for the generation of transplantable human organs, as well as provide recommendations for the future.
Collapse
Affiliation(s)
- Jennifer L. Brown
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Law School, University of Minnesota, Minneapolis, MN, USA
| | - Joseph P. Voth
- Department of Neuroscience, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Kennedy Person
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Choe YH, Sorensen J, Garry DJ, Garry MG. Blastocyst complementation and interspecies chimeras in gene edited pigs. Front Cell Dev Biol 2022; 10:1065536. [PMID: 36568986 PMCID: PMC9773398 DOI: 10.3389/fcell.2022.1065536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The only curative therapy for many endstage diseases is allograft organ transplantation. Due to the limited supply of donor organs, relatively few patients are recipients of a transplanted organ. Therefore, new strategies are warranted to address this unmet need. Using gene editing technologies, somatic cell nuclear transfer and human induced pluripotent stem cell technologies, interspecies chimeric organs have been pursued with promising results. In this review, we highlight the overall technical strategy, the successful early results and the hurdles that need to be addressed in order for these approaches to produce a successful organ that could be transplanted in patients with endstage diseases.
Collapse
Affiliation(s)
- Yong-ho Choe
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Sorensen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Mary G. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
KOGASAKA Y, MURAKAMI S, YAMASHITA S, KIMURA D, FURUMOTO Y, IGUCHI K, SENDAI Y. Generation of germ cell-deficient pigs by NANOS3 knockout. J Reprod Dev 2022; 68:361-368. [PMID: 36273893 PMCID: PMC9792658 DOI: 10.1262/jrd.2022-028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NANOS3 is an evolutionarily conserved gene expressed in primordial germ cells that is important for germ cell development. Germ cell deletion by NANOS3 knockout has been reported in several mammalian species, but its function in pigs is unclear. In the present study, we investigated the germline effects of NANOS3 knockout in pigs using CRISPR/Cas9. Embryo transfer of CRISPR/Cas9-modified embryos produced ten offspring, of which one showed wild-type NANOS3 alleles, eight had two mutant NANOS3 alleles, and the other exhibited mosaicism (four mutant alleles). Histological analysis revealed no germ cells in the testes or ovaries of any of the nine mutant pigs. These results demonstrated that NANOS3 is crucial for porcine germ cell production.
Collapse
Affiliation(s)
- Yuhei KOGASAKA
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Sho MURAKAMI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Shiro YAMASHITA
- Quality Control Research Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Daisuke KIMURA
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Yoshinori FURUMOTO
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Kana IGUCHI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Yutaka SENDAI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| |
Collapse
|
17
|
Zhao L, Li M, Yin Z, Lv L, Zhou M, Wang Y, Zhang M, Guo T, Guo X, Liu H, Cheng L, Liang X, Duo S, Li R. Development of a Lung Vacancy Mouse Model through CRISPR/Cas9-Mediated Deletion of Thyroid Transcription Factor 1 Exon 2. Cells 2022; 11:cells11233874. [PMID: 36497134 PMCID: PMC9740088 DOI: 10.3390/cells11233874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
A developmental niche vacancy in host embryos is necessary for stem cell complementation-based organ regeneration (SCOG). Thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor that regulates the embryonic development and differentiation of the thyroid and, more importantly, lungs; thus, it has been considered as a master gene to knockout in order to develop a lung vacancy host. TTF-1 knockout mice were originally produced by inserting a stop codon in Exon 3 of the gene (E3stop) through embryonic stem cell-based homologous recombination. The main problems of utilizing E3stop host embryos for lung SCOG are that these animals all have a tracheoesophageal fistula (TEF), which cannot be corrected by donor stem cells, and most of them have monolateral sac-like lungs. To improve the mouse model towards achieving SCOG-based lung generation, in this project, we used the CRISPR/Cas9 tool to remove Exon 2 of the gene by zygote microinjection and successfully produced TTF-1 knockout (E2del) mice. Similar to E3stop, E2del mice are birth-lethal due to retarded lung development with sac-like lungs and only a rudimentary bronchial tree, increased basal cells but without alveolar type II cells and blood vessels, and abnormal thyroid development. Unlike E3stop, 57% of the E2del embryos presented type I tracheal agenesis (TA, a kind of human congenital malformation) with a shortened trachea and clear separations of the trachea and esophagus, while the remaining 43% had TEF. Furthermore, all the E2del mice had bilateral sac-like lungs. Both TA and bilateral sac-like lungs are preferred in SCOG. Our work presents a new strategy for producing SCOG host embryos that may be useful for lung regeneration.
Collapse
Affiliation(s)
- Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Limin Lv
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yixi Wang
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Tianxu Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiyun Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Han Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Linxin Cheng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (S.D.); (R.L.)
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (S.D.); (R.L.)
| |
Collapse
|
18
|
Zhou J, Chen Y, Ma L, Zhou C, Zhe R. Correlation of liver and kidney indicators with foetal vital organ function. J OBSTET GYNAECOL 2022; 42:2912-2916. [PMID: 35998258 DOI: 10.1080/01443615.2022.2112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the correlation between indicators of liver and kidney function and foetal vital organ function. One hundred and eighty-five pregnant women who underwent cordocentesis and whose foetuses were diagnosed with abnormal foetal organ function were enrolled. The indicators of liver and kidney function were compared between foetuses with abnormal vital organ function and healthy foetuses. There was a significant difference between foetuses with and those without normal cardiovascular systems in terms of total protein, albumin, total bile acid, and creatinine levels (P < .05). A significant difference in aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels was observed in foetuses with and those without normal foetal urinary systems (P < .05). A difference between foetuses with normal and those without normal musculoskeletal systems was noted when comparing LDH levels. Further, there was a significant difference in gestational age and AST, alanine aminotransferase, albumin, total bilirubin, alkaline phosphatase, LDH, adenosine dehydrogenase, fibronectin, and creatinine levels between foetuses with normal versus abnormal blood systems (P < .05). Thus, hepatic and renal function indicators may be associated with abnormal foetal vital organ function.Impact statementWhat is already known on this subject? Foetal cardiac function is currently evaluated using colour Doppler ultrasound and magnetic resonance imaging in clinical practice, but there are few predictive indicators of the function of other vital organs. It is difficult to determine whether children have abnormalities in the urinary system, digestive system, nervous system, or other vital organs.What do the results of this study add? In this study, it was found that total protein, albumin, total bile acid, creatinine, aspartate aminotransferase, lactate dehydrogenase, fibronectin, alanine aminotransferase, total bilirubin, alkaline phosphatase, adenosine dehydrogenase, and other liver and kidney function indicators may be associated with foetal vital organ dysfunction. However, the forecast range of specific indicators must be further improved upon.What are the implications of these findings for clinical practice and/or further research? This study provides an additional reference for predicting foetal cardiac function.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Obstetrics, Shenzhen People's Hospital, Shenzhen, China
| | - Yuying Chen
- Department of Obstetrics, Shenzhen People's Hospital, Shenzhen, China
| | - Li Ma
- Department of Obstetrics, Shenzhen People's Hospital, Shenzhen, China
| | - Cuixiang Zhou
- Department of Obstetrics, Shenzhen People's Hospital, Shenzhen, China
| | - Ruilian Zhe
- Department of Obstetrics, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
19
|
Zvick J, Tarnowska-Sengül M, Ghosh A, Bundschuh N, Gjonlleshaj P, Hinte LC, Trautmann CL, Noé F, Qabrati X, Domenig SA, Kim I, Hennek T, von Meyenn F, Bar-Nur O. Exclusive generation of rat spermatozoa in sterile mice utilizing blastocyst complementation with pluripotent stem cells. Stem Cell Reports 2022; 17:1942-1958. [PMID: 35931077 PMCID: PMC9481912 DOI: 10.1016/j.stemcr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Blastocyst complementation denotes a technique that aims to generate organs, tissues, or cell types in animal chimeras via injection of pluripotent stem cells (PSCs) into genetically compromised blastocyst-stage embryos. Here, we report on successful complementation of the male germline in adult chimeras following injection of mouse or rat PSCs into mouse blastocysts carrying a mutation in Tsc22d3, an essential gene for spermatozoa production. Injection of mouse PSCs into Tsc22d3-Knockout (KO) blastocysts gave rise to intraspecies chimeras exclusively embodying PSC-derived functional spermatozoa. In addition, injection of rat embryonic stem cells (rESCs) into Tsc22d3-KO embryos produced interspecies mouse-rat chimeras solely harboring rat spermatids and spermatozoa capable of fertilizing oocytes. Furthermore, using single-cell RNA sequencing, we deconstructed rat spermatogenesis occurring in a mouse-rat chimera testis. Collectively, this study details a method for exclusive xenogeneic germ cell production in vivo, with implications that may extend to rat transgenesis, or endangered animal species conservation efforts.
Collapse
Affiliation(s)
- Joel Zvick
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Monika Tarnowska-Sengül
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Pjeter Gjonlleshaj
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Christine L Trautmann
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Seraina A Domenig
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Thomas Hennek
- ETH Phenomics Center, ETH Zurich, Zurich 8049, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
20
|
den Hollander NHM, Roep BO. From Disease and Patient Heterogeneity to Precision Medicine in Type 1 Diabetes. Front Med (Lausanne) 2022; 9:932086. [PMID: 35903316 PMCID: PMC9314738 DOI: 10.3389/fmed.2022.932086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) remains a devastating disease that requires much effort to control. Life-long daily insulin injections or an insulin pump are required to avoid severe complications. With many factors contributing to disease onset, T1D is a complex disease to cure. In this review, the risk factors, pathophysiology and defect pathways are discussed. Results from (pre)clinical studies are highlighted that explore restoration of insulin production and reduction of autoimmunity. It has become clear that treatment responsiveness depends on certain pathophysiological or genetic characteristics that differ between patients. For instance, age at disease manifestation associated with efficacy of immune intervention therapies, such as depleting islet-specific effector T cells or memory B cells and increasing immune regulation. The new challenge is to determine in whom to apply which intervention strategy. Within patients with high rates of insulitis in early T1D onset, therapy depleting T cells or targeting B lymphocytes may have a benefit, whereas slow progressing T1D in adults may be better served with more sophisticated, precise and specific disease modifying therapies. Genetic barcoding and immune profiling may help determining from which new T1D endotypes patients suffer. Furthermore, progressed T1D needs replenishment of insulin production besides autoimmunity reversal, as too many beta cells are already lost or defect. Recurrent islet autoimmunity and allograft rejection or necrosis seem to be the most challenging obstacles. Since beta cells are highly immunogenic under stress, treatment might be more effective with stress reducing agents such as glucagon-like peptide 1 (GLP-1) analogs. Moreover, genetic editing by CRISPR-Cas9 allows to create hypoimmunogenic beta cells with modified human leukocyte antigen (HLA) expression that secrete immune regulating molecules. Given the differences in T1D between patients, stratification of endotypes in clinical trials seems essential for precision medicines and clinical decision making.
Collapse
Affiliation(s)
- Nicoline H M den Hollander
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.,Graduate School, Utrecht University, Utrecht, Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
21
|
Moya-Jódar M, Coppiello G, Rodríguez-Madoz JR, Abizanda G, Barlabé P, Vilas-Zornoza A, Ullate-Agote A, Luongo C, Rodríguez-Tobón E, Navarro-Serna S, París-Oller E, Oficialdegui M, Carvajal-Vergara X, Ordovás L, Prósper F, García-Vázquez FA, Aranguren XL. One-Step In Vitro Generation of ETV2-Null Pig Embryos. Animals (Basel) 2022; 12:ani12141829. [PMID: 35883376 PMCID: PMC9311767 DOI: 10.3390/ani12141829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One of the latest goals in regenerative medicine is to use pluripotent stem cells to generate whole organs in vivo through the blastocyst complementation technique. This method consists of the microinjection of pluripotent stem cells into preimplantation embryos that have been genetically modified to ablate the development of a target organ. By taking advantage of the spatiotemporal clues present in the developing embryo, pluripotent stem cells are able to colonize the empty developmental niche and create the missing organ. Combining human pluripotent stem cells with genetically engineered pig embryos, it would be possible to obtain humanized organs that could be used for transplantation, and, therefore, solve the worldwide issue of insufficient availability of transplantable organs. As endothelial cells play a critical role in xenotransplantation rejection in all organs, in this study, we optimized a protocol to generate a vascular-disabled preimplantation pig embryo using the CRISPR/Cas9 system. This protocol could be used to generate avascular embryos for blastocyst complementation experiments and work towards the generation of rejection-free humanized organs in pigs. Abstract Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor ETV2 via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine ETV2 gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs.
Collapse
Affiliation(s)
- Marta Moya-Jódar
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Giulia Coppiello
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Juan Roberto Rodríguez-Madoz
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Gloria Abizanda
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Paula Barlabé
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Amaia Vilas-Zornoza
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Asier Ullate-Agote
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Chiara Luongo
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Ernesto Rodríguez-Tobón
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Sergio Navarro-Serna
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Evelyne París-Oller
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | | | - Xonia Carvajal-Vergara
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Laura Ordovás
- Aragon Agency for Research and Development (ARAID), 50018 Zaragoza, Spain;
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Institute of Engineering Research (I3A), University of Zaragoza & Instituto de Investigación Sanitaria (IIS), 50018 Zaragoza, Spain
| | - Felipe Prósper
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Hematology and Cell Therapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Francisco Alberto García-Vázquez
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
- Correspondence: (F.A.G.-V.); (X.L.A.)
| | - Xabier L. Aranguren
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
- Correspondence: (F.A.G.-V.); (X.L.A.)
| |
Collapse
|
22
|
Saito Y, Yamanaka S, Matsumoto N, Takamura T, Fujimoto T, Matsui K, Tajiri S, Matsumoto K, Kobayashi E, Yokoo T. Generation of functional chimeric kidney containing exogenous progenitor-derived stroma and nephron via a conditional empty niche. Cell Rep 2022; 39:110933. [PMID: 35705028 DOI: 10.1016/j.celrep.2022.110933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Generation of new kidneys can be useful in various research fields, including organ transplantation. However, generating renal stroma, an important component tissue for structural support, endocrine function, and kidney development, remains difficult. Organ generation using an animal developmental niche can provide an appropriate in vivo environment for renal stroma differentiation. Here, we generate rat renal stroma with endocrine capacity by removing mouse stromal progenitor cells (SPCs) from the host developmental niche and transplanting rat SPCs. Furthermore, we develop a method to replace both nephron progenitor cells (NPCs) and SPCs, called the interspecies dual replacement of the progenitor (i-DROP) system, and successfully generate functional chimeric kidneys containing rat nephrons and stroma. This method can generate renal tissue from progenitors and reduce xenotransplant rejection. Moreover, it is a safe method, as donor cells do not stray into nontarget organs, thus accelerating research on stem cells, chimeras, and xenotransplantation.
Collapse
Affiliation(s)
- Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoto Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Takamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
23
|
In vitro and in vivo functions of T cells produced in complemented thymi of chimeric mice generated by blastocyst complementation. Sci Rep 2022; 12:3242. [PMID: 35217706 PMCID: PMC8881621 DOI: 10.1038/s41598-022-07159-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Blastocyst complementation is an intriguing way of generating humanized animals for organ preparation in regenerative medicine and establishing novel models for drug development. Confirming that complemented organs and cells work normally in chimeric animals is critical to demonstrating the feasibility of blastocyst complementation. Here, we generated thymus-complemented chimeric mice, assessed the efficacy of anti-PD-L1 antibody in tumor-bearing chimeric mice, and then investigated T-cell function. Thymus-complemented chimeric mice were generated by injecting C57BL/6 (B6) embryonic stem cells into Foxn1nu/nu morulae or blastocysts. Flow cytometry data showed that the chimeric mouse thymic epithelial cells (TECs) were derived from the B6 cells. T cells appeared outside the thymi. Single-cell RNA-sequencing analysis revealed that the TEC gene-expression profile was comparable to that in B6 mice. Splenic T cells of chimeric mice responded very well to anti-CD3 stimulation in vitro; CD4+ and CD8+ T cells proliferated and produced IFNγ, IL-2, and granzyme B, as in B6 mice. Anti-PD-L1 antibody treatment inhibited MC38 tumor growth in chimeric mice. Moreover, in the chimeras, anti-PD-L1 antibody restored T-cell activation by significantly decreasing PD-1 expression on T cells and increasing IFNγ-producing T cells in the draining lymph nodes and tumors. T cells produced by complemented thymi thus functioned normally in vitro and in vivo. To successfully generate humanized animals by blastocyst complementation, both verification of the function and gene expression profiling of complemented organs/cells in interspecific chimeras will be important in the near future.
Collapse
|
24
|
From genome editing to blastocyst complementation: a new horizon in heart transplantation? JTCVS Tech 2022; 12:177-184. [PMID: 35403039 PMCID: PMC8987386 DOI: 10.1016/j.xjtc.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
|
25
|
Kano M, Mizutani E, Homma S, Masaki H, Nakauchi H. Xenotransplantation and interspecies organogenesis: current status and issues. Front Endocrinol (Lausanne) 2022; 13:963282. [PMID: 35992127 PMCID: PMC9388829 DOI: 10.3389/fendo.2022.963282] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreas (and islet) transplantation is the only curative treatment for type 1 diabetes patients whose β-cell functions have been abolished. However, the lack of donor organs has been the major hurdle to save a large number of patients. Therefore, transplantation of animal organs is expected to be an alternative method to solve the serious shortage of donor organs. More recently, a method to generate organs from pluripotent stem cells inside the body of other species has been developed. This interspecies organ generation using blastocyst complementation (BC) is expected to be the next-generation regenerative medicine. Here, we describe the recent advances and future prospects for these two approaches.
Collapse
Affiliation(s)
- Mayuko Kano
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eiji Mizutani
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shota Homma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Hideki Masaki
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Hiromitsu Nakauchi, ; Hideki Masaki,
| | - Hiromitsu Nakauchi
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Hiromitsu Nakauchi, ; Hideki Masaki,
| |
Collapse
|
26
|
Xie Y, Yao J, Jin W, Ren L, Li X. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges. Front Cell Dev Biol 2021; 9:765980. [PMID: 34901010 PMCID: PMC8662991 DOI: 10.3389/fcell.2021.765980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Weilin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
27
|
Larson EL, Joo DJ, Nelson ED, Amiot BP, Aravalli RN, Nyberg SL. Fumarylacetoacetate hydrolase gene as a knockout target for hepatic chimerism and donor liver production. Stem Cell Reports 2021; 16:2577-2588. [PMID: 34678209 PMCID: PMC8581169 DOI: 10.1016/j.stemcr.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
A reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis. Interspecies blastocyst complementation using porcine recipients for primate donors has been achieved, although percentages of chimerism remain persistently low. Recent investigation into the dynamic transcriptomes of pigs and primates have created new opportunities to intimately match the stage of developing animal embryos with one of the many varieties of human induced pluripotent stem cell. We discuss techniques for decreasing donor cell apoptosis, targeting donor tissue to endodermal structures to avoid neural or germline chimerism, and decreasing the immunogenicity of chimeric organs by generating donor endothelium.
Collapse
Affiliation(s)
- Ellen L Larson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Jin Joo
- Department of Surgery, Division of Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Erek D Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bruce P Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Founta KM, Papanayotou C. In Vivo Generation of Organs by Blastocyst Complementation: Advances and Challenges. Int J Stem Cells 2021; 15:113-121. [PMID: 34711704 PMCID: PMC9148837 DOI: 10.15283/ijsc21122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 11/09/2022] Open
Abstract
The ultimate goal of regenerative medicine is to replace damaged cells, tissues or whole organs, in order to restore their proper function. Stem cell related technologies promise to generate transplants from the patients' own cells. Novel approaches such as blastocyst complementation combined with genome editing open up new perspectives for organ replacement therapies. This review summarizes recent advances in the field and highlights the challenges that still remain to be addressed.
Collapse
Affiliation(s)
- Konstantina-Maria Founta
- Department of Basic Science, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Costis Papanayotou
- Department of Basic Science, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
29
|
Abstract
Technological advancements in blood glucose monitoring and therapeutic insulin administration have improved the quality of life for people with type 1 diabetes. However, these efforts fall short of replicating the exquisite metabolic control provided by native islets. We examine the integrated advancements in islet cell replacement and immunomodulatory therapies that are coalescing to enable the restoration of endogenous glucose regulation. We highlight advances in stem cell biology and graft site design, which offer innovative sources of cellular material and improved engraftment. We also cover cutting-edge approaches for preventing allograft rejection and recurrent autoimmunity. These insights reflect a growing understanding of type 1 diabetes etiology, β cell biology, and biomaterial design, together highlighting therapeutic opportunities to durably replace the β cells destroyed in type 1 diabetes.
Collapse
Affiliation(s)
- Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, and Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL 32610, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cherie L Stabler
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
30
|
Nelson ED, Larson E, Joo DJ, Mao S, Glorioso J, Abu Rmilah A, Zhou W, Jia Y, Mounajjed T, Shi M, Bois M, Wood A, Jin F, Whitworth K, Wells K, Spate A, Samuel M, Minshew A, Walters E, Rinaldo P, Lillegard J, Johnson A, Amiot B, Hickey R, Prather R, Platt JL, Nyberg SL. Limited Expansion of Human Hepatocytes in FAH/RAG2-Deficient Swine. Tissue Eng Part A 2021; 28:150-160. [PMID: 34309416 PMCID: PMC8892989 DOI: 10.1089/ten.tea.2021.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The mammalian liver's regenerative ability has led researchers to engineer animals as incubators for expansion of human hepatocytes. The expansion properties of human hepatocytes in immunodeficient mice are well known. However, little has been reported about larger animals that are more scalable and practical for clinical purposes. Therefore, we engineered immunodeficient swine to support expansion of human hepatocytes and identify barriers to their clinical application. METHODS Immunodeficient swine were engineered by knockout of recombinase activating gene 2 (RAG2) and fumarylacetoacetate hydrolase (FAH). Immature human hepatocytes (ihHCs) were injected into fetal swine by intrauterine cell transplantation (IUCT) at day 40 of gestation. Human albumin was measured as a marker of engraftment. Cytotoxicity against ihHCs was measured in transplanted piglets and control swine. RESULTS Higher levels of human albumin were detected in cord blood of newborn FAH/RAG2-deficient (FR) pigs compared to immunocompetent controls (196.26 ng/dL vs 39.29 ng/dL, p = 0.008), indicating successful engraftment of ihHC after IUCT and adaptive immunity in the fetus. Although rare hepatocytes staining positively for human albumin were observed, levels of human albumin did not rise after birth but declined suggesting rejection of xenografted ihHCs. Cytotoxicity against ihHCs increased after birth 3.8% (95% CI: [2.1%, 5.4%], p < 0.001) and correlated inversely to declining levels of human albumin (p = 2.1 x 10-5, R2 = 0.17). Circulating numbers of T-cells and B-cells were negligible in FR pigs. However, circulating natural killer (NK) cells exerted cytotoxicity against ihHCs. NK cell activity was lower in immunodeficient piglets after IUCT than naive controls (30.4% vs 40.1% (p = 0.011, 95% CI for difference [2.7%, 16.7%]). CONCLUSION Immature human hepatocytes successfully engrafted in FR swine after IUCT. NK cells were a significant barrier to expansion of hepatocytes. New approaches are needed to overcome this hurdle and allow large scale expansion of human hepatocytes in immunodeficient swine.
Collapse
Affiliation(s)
- Erek David Nelson
- Mayo Clinic Minnesota, 4352, Surgery, 100 First St NW, Rochester, Rochester, Minnesota, United States, 55905-0002;
| | - Ellen Larson
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Dong Jin Joo
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Shennen Mao
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Jaime Glorioso
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Anan Abu Rmilah
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Wei Zhou
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Yao Jia
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Taofic Mounajjed
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Min Shi
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Melanie Bois
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Adam Wood
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Fang Jin
- Mayo Clinic Minnesota, 4352, Immunology, Rochester, Minnesota, United States;
| | - Kristin Whitworth
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Kevin Wells
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Anna Spate
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Melissa Samuel
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Anna Minshew
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Eric Walters
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Piero Rinaldo
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Joeseph Lillegard
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Aaron Johnson
- Mayo Clinic Minnesota, 4352, Immunology, Rochester, Minnesota, United States;
| | - Bruce Amiot
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Raymond Hickey
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Randall Prather
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Jeffrey L Platt
- University of Michigan Michigan Medicine, 21614, Surgery, Ann Arbor, Michigan, United States;
| | - Scott Lyle Nyberg
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| |
Collapse
|
31
|
Zheng C, Ballard EB, Wu J. The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development 2021; 148:dev195792. [PMID: 34132325 PMCID: PMC10656466 DOI: 10.1242/dev.195792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing human organs in animals sounds like something from the realm of science fiction, but it may one day become a reality through a technique known as interspecies blastocyst complementation. This technique, which was originally developed to study gene function in development, involves injecting donor pluripotent stem cells into an organogenesis-disabled host embryo, allowing the donor cells to compensate for missing organs or tissues. Although interspecies blastocyst complementation has been achieved between closely related species, such as mice and rats, the situation becomes much more difficult for species that are far apart on the evolutionary tree. This is presumably because of layers of xenogeneic barriers that are a result of divergent evolution. In this Review, we discuss the current status of blastocyst complementation approaches and, in light of recent progress, elaborate on the keys to success for interspecies blastocyst complementation and organ generation.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Emily B. Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Ruiz-Estevez M, Crane AT, Rodriguez-Villamil P, Ongaratto FL, You Y, Steevens AR, Hill C, Goldsmith T, Webster DA, Sherry L, Lim S, Denman N, Low WC, Carlson DF, Dutton JR, Steer CJ, Gafni O. Liver development is restored by blastocyst complementation of HHEX knockout in mice and pigs. Stem Cell Res Ther 2021; 12:292. [PMID: 34011403 PMCID: PMC8132445 DOI: 10.1186/s13287-021-02348-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background There are over 17,000 patients in the US waiting to receive liver transplants, and these numbers are increasing dramatically. Significant effort is being made to obtain functional hepatocytes and liver tissue that can for therapeutic use in patients. Blastocyst complementation is a challenging, innovative technology that could fundamentally change the future of organ transplantation. It requires the knockout (KO) of genes essential for cell or organ development in early stage host embryos followed by injection of donor pluripotent stem cells (PSCs) into host blastocysts to generate chimeric offspring in which progeny of the donor cells populate the open niche to develop functional tissues and organs. Methods The HHEX gene is necessary for proper liver development. We engineered loss of HHEX gene expression in early mouse and pig embryos and performed intraspecies blastocyst complementation of HHEX KO embryos with eGFP-labeled PSCs in order to rescue the loss of liver development. Results Loss of HHEX gene expression resulted in embryonic lethality at day 10.5 in mice and produced characteristics of lethality at day 18 in pigs, with absence of liver tissue in both species. Analyses of mouse and pig HHEX KO fetuses confirmed significant loss of liver-specific gene and protein expression. Intraspecies blastocyst complementation restored liver formation and liver-specific proteins in both mouse and pig. Livers in complemented chimeric fetuses in both species were comprised of eGFP-labeled donor-derived cells and survived beyond the previously observed time of HHEX KO embryonic lethality. Conclusions This work demonstrates that loss of liver development in the HHEX KO can be rescued via blastocyst complementation in both mice and pigs. This complementation strategy is the first step towards generating interspecies chimeras for the goal of producing human liver cells, tissues, and potentially complete organs for clinical transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02348-z.
Collapse
Affiliation(s)
- M Ruiz-Estevez
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - A T Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - P Rodriguez-Villamil
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - F L Ongaratto
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - Yun You
- Mouse Genetics Laboratory, University of Minnesota, Minneapolis, USA
| | - A R Steevens
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - C Hill
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - T Goldsmith
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - D A Webster
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - L Sherry
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - S Lim
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - N Denman
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
| | - W C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - D F Carlson
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - J R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
| | - C J Steer
- Stem Cell Institute, University of Minnesota, Minneapolis, USA. .,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA. .,Department of Medicine, University of Minnesota, 420 Delaware Street SE, MMC 36, Minneapolis, MN, 55455, USA.
| | - O Gafni
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA.
| |
Collapse
|
33
|
Nagaya M, Hasegawa K, Uchikura A, Nakano K, Watanabe M, Umeyama K, Matsunari H, Osafune K, Kobayashi E, Nakauchi H, Nagashima H. Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes. World J Diabetes 2021; 12:306-330. [PMID: 33889282 PMCID: PMC8040081 DOI: 10.4239/wjd.v12.i4.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes is among the top 10 causes of death in adults and caused approximately four million deaths worldwide in 2017. The incidence and prevalence of diabetes is predicted to increase. To alleviate this potentially severe situation, safer and more effective therapeutics are urgently required. Mice have long been the mainstay as preclinical models for basic research on diabetes, although they are not ideally suited for translating basic knowledge into clinical applications. To validate and optimize novel therapeutics for safe application in humans, an appropriate large animal model is needed. Large animals, especially pigs, are well suited for biomedical research and share many similarities with humans, including body size, anatomical features, physiology, and pathophysiology. Moreover, pigs already play an important role in translational studies, including clinical trials for xenotransplantation. Progress in genetic engineering over the past few decades has facilitated the development of transgenic animals, including porcine models of diabetes. This article discusses features that attest to the attractiveness of genetically modified porcine models of diabetes for testing novel treatment strategies using recent technical advances.
Collapse
Affiliation(s)
- Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Department of Immunology, St. Marianna University School of Medicine, Kawasaki 261-8511, Kanagawa, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Ayuko Uchikura
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Kyoto, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Shinjuku 160-8582, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, United States
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato 108-8639, Tokyo, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
34
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
35
|
Aravalli RN. Generating liver using blastocyst complementation: Opportunities and challenges. Xenotransplantation 2020; 28:e12668. [PMID: 33372360 DOI: 10.1111/xen.12668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Orthotopic liver transplantation (OLT) is the only definitive treatment option for many patients with end-stage liver disease. Current supply of donor livers for OLT is not keeping up with the growing demand. To overcome this problem, a number of experimental strategies have been developed either to provide a bridge to transplant for patients on the waiting list or to bioengineer whole livers for OLT by replenishing them with fresh supplies of hepatic cells. In recent years, blastocyst complementation has emerged as the most promising approach for generating whole organs and, in combination with gene editing technology, it has revolutionized regenerative medicine. This methodology was successful in producing xenogeneic organs in animal hosts. Blastocyst complementation has the potential to produce whole livers in large animals that could be xenotransplanted in humans, thereby reducing the shortage of livers for OLT. However, significant experimental and ethical barriers remain for the production of human livers in domestic animals, such as the pig. This review summarizes the current knowledge and provides future perspectives for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
Babochkina TI, Gerlinskaya LA, Moshkin MP. Generation of donor organs in chimeric animals via blastocyst complementation. Vavilovskii Zhurnal Genet Selektsii 2020; 24:913-921. [PMID: 35088005 PMCID: PMC8763716 DOI: 10.18699/vj20.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
The lack of organs for transplantation is an important problem in medicine today. The growth of organs
in chimeric animals may be the solution of this. The proposed technology is the interspecific blastocyst complementation method in combination with genomic editing for obtaining “free niches” and pluripotent stem cell
production methods. The CRISPR/Cas9 method allows the so-called “free niches” to be obtained for blastocyst
complementation. The technologies of producing induced pluripotent stem cells give us the opportunity to obtain human donor cells capable of populating a “free niche”. Taken together, these technologies allow interspecific
blastocyst complementation between humans and other animals, which makes it possible in the future to grow
human organs for transplantations inside chimeric animals. However, in practice, in order to achieve successful
interspecific blastocyst complementation, it is necessary to solve a number of problems: to improve methods for
producing “chimeric competent” cells, to overcome specific interspecific barriers, to select compatible cell developmental stages for injection and the corresponding developmental stage of the host embryo, to prevent apoptosis of donor cells and to achieve effective proliferation of the human donor cells in the host animal. Also, it is
very important to analyze the ethical aspects related to developing technologies of chimeric organisms with the
participation of human cells. Today, many researchers are trying to solve these problems and also to establish new
approaches in the creation of interspecific chimeric organisms in order to grow human organs for transplantation.
In the present review we described the historical stages of the development of the blastocyst complementation
method, examined in detail the technologies that underlie modern blastocyst complementation, and analyzed
current progress that gives us the possibility to grow human organs in chimeric animals. We also considered the
barriers and issues preventing the successful implementation of interspecific blastocyst complementation in practice, and discussed the further development of this method
Collapse
Affiliation(s)
- T I Babochkina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Gerlinskaya
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M P Moshkin
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
37
|
Matsumoto S, Shimoda M. Current situation of clinical islet transplantation from allogeneic toward xenogeneic. J Diabetes 2020; 12:733-741. [PMID: 32246528 DOI: 10.1111/1753-0407.13041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
Currently, type 1 diabetes requires lifelong insulin injection and careful blood glucose control to prevent secondary complications, but islet transplantation could make a type 1 diabetic patient insulin independent. On the other hand, islet transplantation needs human donors and donor shortage is the most serious issue. To alleviate the donor shortage, non-heart-beating and living donors were used; in addition, the efficacy of islet isolation and transplantation has been improved. However, the donor shortage issue will not be solved as long as human donors are the only source. To solve the donor shortage issue, islet xenotransplantation using porcine islets was initiated in 1994. Islet xenotransplantation has a potential to cure many type 1 diabetic patients, although there is the risk of developing serious or novel infection. Therefore, the World Health Organization has been interested in xenotransplantation, and the International Xenotransplantation Association (IXA) has published consensus statements to initiate xenogeneic islet transplantation. Clinical islet xenotransplantation was conducted under the official regulation, and safety and efficacy data have been accumulated. Currently an efficient method to overcome xenorejection is an important research target. In addition to traditional immunosuppressive drugs and immune isolation methods, the gene modification with CRISPR and blastocyst complementation have been investigated with promising outcomes. Once the xenorejection issue is overcome, islet xenotransplantation should become a curative treatment for type 1 diabetic patients.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Islet Transplantation Project, National Institute for Global Health and Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Islet Transplantation Project, National Institute for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Yokoo T, Yamanaka S, Kobayashi E. Xeno‐regenerative medicine: A novel concept for donor kidney fabrication. Xenotransplantation 2020; 27:e12622. [DOI: 10.1111/xen.12622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Takashi Yokoo
- Division of Nephrology and Hypertension Department of Internal Medicine The Jikei University School of Medicine Tokyo Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension Department of Internal Medicine The Jikei University School of Medicine Tokyo Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication Keio University School of Medicine Tokyo Japan
| |
Collapse
|
39
|
Płusa B, Piliszek A. Common principles of early mammalian embryo self-organisation. Development 2020; 147:147/14/dev183079. [PMID: 32699138 DOI: 10.1242/dev.183079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pre-implantation mammalian development unites extreme plasticity with a robust outcome: the formation of a blastocyst, an organised multi-layered structure ready for implantation. The process of blastocyst formation is one of the best-known examples of self-organisation. The first three cell lineages in mammalian development specify and arrange themselves during the morphogenic process based on cell-cell interactions. Despite decades of research, the unifying principles driving early mammalian development are still not fully defined. Here, we discuss the role of physical forces, and molecular and cellular mechanisms, in driving self-organisation and lineage formation that are shared between eutherian mammals.
Collapse
Affiliation(s)
- Berenika Płusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
40
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|