1
|
Mungai RW, Hartman RJ, Jolin GE, Piskorowski KW, Billiar KL. Towards a more objective and high-throughput spheroid invasion assay quantification method. Sci Rep 2024; 14:31007. [PMID: 39730859 DOI: 10.1038/s41598-024-82191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent. The goal of this work is to develop a high-throughput quantification method of cell invasion into 3D matrices that minimizes sensitivity to initial spheroid size and cell spreading and provides precise integrative directionally-dependent metrics of invasion. By analyzing images of fluorescent cell nuclei, invasion metrics are automatically calculated at the pixel level. The initial spheroid boundary is segmented and automated calculations of the nuclear pixel distances from the initial boundary are used to compute common invasion metrics (i.e., the change in invasion area, mean distance) for the same spheroid at a later timepoint. We also introduce the area moment of inertia as an integrative metric of cell invasion that considers the invasion area as well as the pixel distances from the initial spheroid boundary. Further, we show that principal component analysis can be used to quantify the directional influence of a stimuli to invasion (e.g., due to a chemotactic gradient or contact guidance). To demonstrate the power of the analysis for cell types with different invasive potentials and the utility of this method for a variety of biological applications, the method is used to analyze the invasiveness of five different cell types. In all, implementation of this high-throughput quantification method results in consistent and objective analysis of 3D multicellular spheroid invasion. We provide the analysis code in both MATLAB and Python languages as well as a GUI for ease of use for researchers with a range of computer programming skills and for applications in a variety of biological research areas such as wound healing and cancer metastasis.
Collapse
Affiliation(s)
- Rozanne W Mungai
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | | | - Grace E Jolin
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Kevin W Piskorowski
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Mungai RW, Hartman II RJ, Jolin GE, Piskorowski KW, Billiar KL. Towards a More Objective and High-throughput Spheroid Invasion Assay Quantification Method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600893. [PMID: 39005385 PMCID: PMC11244881 DOI: 10.1101/2024.06.27.600893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent. The goal of this work is to develop a high-throughput quantification method of cell invasion into 3D matrices that minimizes sensitivity to initial spheroid size and cell spreading and provides precise integrative directionally-dependent metrics of invasion. By analyzing images of fluorescent cell nuclei, invasion metrics are automatically calculated at the pixel level. The initial spheroid boundary is segmented and automated calculations of the nuclear pixel distances from the initial boundary are used to compute common invasion metrics (i.e., the change in invasion area, mean distance) for the same spheroid at a later timepoint. We also introduce the area moment of inertia as an integrative metric of cell invasion that considers the invasion area as well as the pixel distances from the initial spheroid boundary. Further, we show that principal component analysis can be used to quantify the directional influence of a stimuli to invasion (e.g., due to a chemotactic gradient or contact guidance). To demonstrate the power of the analysis for cell types with different invasive potentials and the utility of this method for a variety of biological applications, the method is used to analyze the invasiveness of five different cell types. In all, implementation of this high throughput quantification method results in consistent and objective analysis of 3D multicellular spheroid invasion. We provide the analysis code in both MATLAB and Python languages as well as a GUI for ease of use for researchers with a range of computer programming skills and for applications in a variety of biological research areas such as wound healing and cancer metastasis.
Collapse
Affiliation(s)
- Rozanne W. Mungai
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 01605
| | | | - Grace E. Jolin
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 01605
| | - Kevin W. Piskorowski
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 01605
| | - Kristen L. Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 01605
| |
Collapse
|
3
|
Bae SJ, Choi SH, Im DJ. 3D Cell Culture Method in Channel-Free Water-in-Oil Droplets. SMALL METHODS 2024; 8:e2301145. [PMID: 38239079 DOI: 10.1002/smtd.202301145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Indexed: 07/21/2024]
Abstract
A new channel-free water-in-oil (WO) droplet 3D cell culture method is proposed to address the challenges while maintaining the advantages of the conventional 3D cell culture methods. The proposed WO method can fundamentally solve the constraint of spheroids size, a common challenge in conventional 3D culture, by using droplet size controllability. The 3D cell culture performance of the WO method is verified by comparing it with the conventional 3D cell culture methods. A systematic investigation of the culture conditions of the WO method confirms the working range of cell concentration and droplet size, as well as the scalability of spheroid size. Adjusting droplet size and cell concentration enables rapid spheroid formation with large and high cell concentration droplets or fast spheroid growth with small and low cell concentration droplets, providing control over the spheroid size and growth rate according to the purpose. Furthermore, long-term culture is demonstrated for 1 month with the proposed method, showing the largest spheroid culture and demonstrating the possibility that this method can be used not only for spheroid formation but also for organoid studies. Finally, if a WO-based automated 3D cell culture system is developed, it will be a useful tool for organoid research.
Collapse
Affiliation(s)
- Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| | - Seung Hui Choi
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| |
Collapse
|
4
|
Drydale E, Rath P, Holden K, Holt G, Havins L, Johnson T, Bancroft J, Handunnetthi L. Stem-cell derived neurosphere assay highlights the effects of viral infection on human cortical development. Brain Behav Immun 2024; 115:718-726. [PMID: 37995835 DOI: 10.1016/j.bbi.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Aberrant cortical development is a key feature of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. Both genetic and environmental risk factors are thought to contribute to defects in cortical development; however, model systems that can capture the dynamic process of human cortical development are not well established. To address this challenge, we combined recent progress in induced pluripotent stem cell differentiation with advanced live cell imaging techniques to establish a novel three-dimensional neurosphere assay, amenable to genetic and environmental modifications, to investigate key aspects of human cortical development in real-time. For the first time, we demonstrate the ability to visualise and quantify radial glial extension and neural migration through live cell imaging. To show proof-of-concept, we used our neurosphere assay to study the effect of a simulated viral infection, a well-established environmental risk factor in neurodevelopmental disorders, on cortical development. This was achieved by exposing neurospheres to the viral mimic, polyinosinic:polycytidylic acid. The results showed significant reductions in radial glia growth and neural migration in three independent differentiations. Further, fixed imaging highlighted reductions in the HOPX-expressing outer radial glia scaffolding and a consequent decrease in the migration of CTIP2-expressing cortical cells. Overall, our results provide new insight into how infections may exert deleterious effects on the developing human cortex.
Collapse
Affiliation(s)
- Edward Drydale
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 9DU, United Kingdom
| | - Phalguni Rath
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 9DU, United Kingdom
| | - Katie Holden
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 9DU, United Kingdom
| | - Gregory Holt
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 9DU, United Kingdom
| | - Laurissa Havins
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 9DU, United Kingdom; Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom
| | - Thomas Johnson
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 9DU, United Kingdom
| | - James Bancroft
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 9DU, United Kingdom
| | - Lahiru Handunnetthi
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 9DU, United Kingdom; Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom.
| |
Collapse
|
5
|
Ngo TKN, Yang SJ, Mao BH, Nguyen TKM, Ng QD, Kuo YL, Tsai JH, Saw SN, Tu TY. A deep learning-based pipeline for analyzing the influences of interfacial mechanochemical microenvironments on spheroid invasion using differential interference contrast microscopic images. Mater Today Bio 2023; 23:100820. [PMID: 37810748 PMCID: PMC10558776 DOI: 10.1016/j.mtbio.2023.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/16/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. During this process, cancer cells are likely to navigate discrete tissue-tissue interfaces, enabling them to infiltrate and spread throughout the body. Three-dimensional (3D) spheroid modeling is receiving more attention due to its strengths in studying the invasive behavior of metastatic cancer cells. While microscopy is a conventional approach for investigating 3D invasion, post-invasion image analysis, which is a time-consuming process, remains a significant challenge for researchers. In this study, we presented an image processing pipeline that utilized a deep learning (DL) solution, with an encoder-decoder architecture, to assess and characterize the invasion dynamics of tumor spheroids. The developed models, equipped with feature extraction and measurement capabilities, could be successfully utilized for the automated segmentation of the invasive protrusions as well as the core region of spheroids situated within interfacial microenvironments with distinct mechanochemical factors. Our findings suggest that a combination of the spheroid culture and DL-based image analysis enable identification of time-lapse migratory patterns for tumor spheroids above matrix-substrate interfaces, thus paving the foundation for delineating the mechanism of local invasion during cancer metastasis.
Collapse
Affiliation(s)
- Thi Kim Ngan Ngo
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sze Jue Yang
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bin-Hsu Mao
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Thi Kim Mai Nguyen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Qi Ding Ng
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yao-Lung Kuo
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, Tainan, 70101, Taiwan
| | - Jui-Hung Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 70101, Taiwan
| | - Shier Nee Saw
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
6
|
Castro-Abril H, Heras J, Del Barrio J, Paz L, Alcaine C, Aliácar MP, Garzón-Alvarado D, Doblaré M, Ochoa I. The Role of Mechanical Properties and Structure of Type I Collagen Hydrogels on Colorectal Cancer Cell Migration. Macromol Biosci 2023; 23:e2300108. [PMID: 37269065 DOI: 10.1002/mabi.202300108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Mechanical interactions between cells and their microenvironment play an important role in determining cell fate, which is particularly relevant in metastasis, a process where cells invade tissue matrices with different mechanical properties. In vitro, type I collagen hydrogels have been commonly used for modeling the microenvironment due to its ubiquity in the human body. In this work, the combined influence of the stiffness of these hydrogels and their ultrastructure on the migration patterns of HCT-116 and HT-29 spheroids are analyzed. For this, six different types of pure type I collagen hydrogels by changing the collagen concentration and the gelation temperature are prepared. The stiffness of each sample is measured and its ultrastructure is characterized. Cell migration studies are then performed by seeding the spheroids in three different spatial conditions. It is shown that changes in the aforementioned parameters lead to differences in the mechanical stiffness of the matrices as well as the ultrastructure. These differences, in turn, lead to distinct cell migration patterns of HCT-116 and HT-29 spheroids in either of the spatial conditions tested. Based on these results, it is concluded that the stiffness and the ultrastructural organization of the matrix can actively modulate cell migration behavior in colorectal cancer spheroids.
Collapse
Affiliation(s)
- Hector Castro-Abril
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Biomimetics Lab, National University of Colombia, Bogotá, 111321, Colombia
| | - Jónathan Heras
- Grupo de Informática, University of La Rioja, La Rioja, 26006, Spain
| | - Jesús Del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), Department of Organic Chemistry, CSIC-University of Zaragoza, Zaragoza, 50018, Spain
| | - Laura Paz
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
| | - Clara Alcaine
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
| | - Marina Pérez Aliácar
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
| | | | - Manuel Doblaré
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
- Nanjing Tech University, Nanjing, 50018, China
| | - Ignacio Ochoa
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
- Nanjing Tech University, Nanjing, 50018, China
| |
Collapse
|
7
|
Shabalina EY, Skorova EY, Chudakova DA, Anikin VB, Reshetov IV, Mynbaev OA, Petersen EV. The matrix-dependent 3D spheroid model of the migration of non-small cell lung cancer: a step towards a rapid automated screening. Front Mol Biosci 2021; 8:610407. [PMID: 34422897 PMCID: PMC8378843 DOI: 10.3389/fmolb.2021.610407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/11/2021] [Indexed: 12/03/2022] Open
Abstract
In vitro 3D cell culture systems utilizing multicellular tumor spheroids (MCTS) are widely used in translational oncology, including for studying cell migration and in personalized therapy. However, early stages of cellular migration from MCTS and cross-talk between spheroids are overlooked, which was addressed in the current study. Here, we investigated cell migration from MCTS derived from human non-small cell lung cancer (NSCLC) cell line A549 cultured on different substrates, collagen gel or plastic, at different time points. We found that migration starts at 4–16 h time points after the seeding and its speed is substrate-dependent. We also demonstrated that co-culture of two NSCLC-derived MCTS on collagen gel, but not on plastic, facilitates cell migration compared with single MTCS. This finding should be considered when designing MCTS-based functional assays for personalized therapeutic approach and drug screenings. Overall, our work characterizes the in vitro 3D cell culture model resembling NSCLC cell migration from the clusters of CTCs into surgical wound, and describes microscopy-based tools and approaches for image data analysis with a potential for further automation. These tools and approaches also might be used to predict patterns of CTCs migration based on ex vivo analysis of patient biopsy in a 3D culture system.
Collapse
Affiliation(s)
- Evgenya Y Shabalina
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| | - Ekaterina Yu Skorova
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| | - D A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - V B Anikin
- Brunel University London, Uxbridge, United Kingdom.,First Moscow State Medical University, Moscow, Russia
| | - I V Reshetov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia.,First Moscow State Medical University, Moscow, Russia
| | - O A Mynbaev
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| | - E V Petersen
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| |
Collapse
|
8
|
Park Y, Huh KM, Kang SW. Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. Int J Mol Sci 2021; 22:2491. [PMID: 33801273 PMCID: PMC7958286 DOI: 10.3390/ijms22052491] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.
Collapse
Affiliation(s)
- Yujin Park
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34114, Korea
| |
Collapse
|