1
|
Inui T, Uraya Y, Ueyama-Toba Y, Mizuguchi H. Air-liquid interface culture alters the characteristics and functions of monolayers generated from human iPS cell‑derived enterocyte‑like cell organoids. Eur J Cell Biol 2025; 104:151479. [PMID: 39922117 DOI: 10.1016/j.ejcb.2025.151479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
To evaluate the intestinal absorption and metabolism of orally administered drugs, human induced pluripotent stem (iPS) cell‑derived enterocyte‑like cells (ELCs) are expected to be useful. In a previous report, we succeeded in developing a highly functional monolayer platform (ELC-org-mono) from human iPS cell-derived ELCs through an organoid culture and demonstrated its suitability for pharmacokinetic studies. In recent years, the air-liquid interface (ALI) culture model was developed, allowing for the culture of epithelial tissue under conditions that mimic the in vivo environment. In the present study, we applied ALI culture to ELC-org-mono for further improvement of intestinal functions. ALI culture of ELC-org-mono greatly developed goblet cells and enhanced the gene expression levels of many drug-metabolizing enzymes, drug transporters and intestinal differentiation markers. However, their activities were not enhanced. RNA-seq analysis suggested that ALI culture increased the expression of genes related to metabolic processes but decreased glycolytic processes. Analysis of glycolytic capacity confirmed that ALI culture decreased glycolytic activities. Thus, there is room for some adjustment in the ALI culture model to optimize its applicability to pharmacokinetic studies using ELC-org-mono.
Collapse
Affiliation(s)
- Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusei Uraya
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Canhão PGM, Snoeys J, Geerinckx S, van Heerden M, Van den Bergh A, Holm C, Markus J, Ayehunie S, Monshouwer M, Evers R, Augustijns P, Kourula S. Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition. Eur J Pharm Sci 2025; 209:107025. [PMID: 39864598 DOI: 10.1016/j.ejps.2025.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (Papp). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [14C]mannitol were established to monitor microtissue integrity. Permeability of EpiColon for 20 benchmark drugs was compared with Caco-2 data, and the activity of pivotal efflux transporters, including multidrug resistance protein 1/P-glycoprotein (MDR1/P-gp), along with multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP), was evaluated using selective substrates. EpiColon exhibited a physiological barrier function (272.0 ± 53.05 Ω x cm2) and effectively discriminated between high (e.g., budesonide and [3H]metoprolol) and low permeable compounds (e.g., [3H]atenolol and [14C]mannitol). The model demonstrated functional activity for key efflux transporters, with efflux ratios of 2.32 for [3H]digoxin (MDR1/P-gp) and 3.34 for sulfasalazine (MRP2 and BCRP). Notably, EpiColon showed an enhanced dynamic range in the low permeability range, differentiating Papp between FD4 and FD10S, in contrast to Caco-2 monolayers. Significant positive correlations were observed between human fraction absorbed (fabs) and logarithmically transformed Papp [AP-BL] values for both EpiColon (rs = 0.68) and Caco-2 (rs = 0.68). Furthermore, EpiColon recapitulates some essential phenotypic and cellular features of the human colon, including the expression of critical marker genes (Pan-Cytokeratin+: epithelial/colonocytes, Vimentin+: mesenchymal/fibroblast, and Alcian Blue+: goblet cell/mucus). In conclusion, EpiColon is a promising platform that offers a valuable complement to conventional Caco-2 monolayers for studying colonic drug disposition. However, the presence of flat and some cuboidal cells, along with low throughput, must be addressed to improve its applicability in both academic research and pharmaceutical industry.
Collapse
Affiliation(s)
- Pedro G M Canhão
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium; Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Jan Snoeys
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Suzy Geerinckx
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Marjolein van Heerden
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - An Van den Bergh
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Camden Holm
- MatTek Corporation, 200 Homer Avenue, Ashland, MA, USA
| | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovak Republic
| | | | - Mario Monshouwer
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Raymond Evers
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Spring House, PA, USA
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Stephanie Kourula
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.
| |
Collapse
|
3
|
Saito T, Amako J, Watanabe T, Shiraki N, Kume S. Human pluripotent stem cell-derived intestinal organoids for pharmacokinetic studies. Eur J Cell Biol 2025; 104:151489. [PMID: 40199084 DOI: 10.1016/j.ejcb.2025.151489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
The human small intestine is essential for orally administered drugs' absorption, metabolism, and excretion. Human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cells (IECs) offer a useful model for evaluating drug candidate compounds. We previously reported a protocol to generate matured enterocyte-like cells that exhibit P-gp-mediated efflux and cytochrome P450 3A (CYP3A)-mediated metabolism from human iPSCs. However, under the current protocols, generating iPSC-derived intestinal enterocyte-like cells requires a multi-step differentiation procedure and is time-consuming. Recent progress in intestinal organoid (IO) study provides an understanding of the growth factors that enable the maintenance of adult stem cells. Here, we established an easily accessible protocol using a direct 3D cluster culture to derive IOs from hiPSCs (iPSC-IOs) with high self-proliferative ability. The hiPSC-IOs can be propagated for a long-term and maintained capacity to differentiate and can be cryopreserved. Upon seeding on a two-dimensional monolayer, hiPSC-IOs gave rise to the intestinal epithelial cells (IECs) containing mature cell types of the intestine. The hiPSC-IOs-derived IECs contain enterocytes that show CYP metabolizing enzyme and transporter activities and can be used for pharmacokinetic studies.
Collapse
Affiliation(s)
- Takumi Saito
- School of Life Science and Technology, Institute of Science Tokyo, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., 21 Suzukawa, Isehara, Kanagawa 259-1146, Japan
| | - Junichiro Amako
- School of Life Science and Technology, Institute of Science Tokyo, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Teruhiko Watanabe
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., 21 Suzukawa, Isehara, Kanagawa 259-1146, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Institute of Science Tokyo, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Shoen Kume
- School of Life Science and Technology, Institute of Science Tokyo, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
4
|
Yamazaki D, Ishida S. Global expansion of microphysiological systems (MPS) and Japan's initiatives: Innovation in pharmaceutical development and path to regulatory acceptance. Drug Metab Pharmacokinet 2025; 60:101047. [PMID: 39847978 DOI: 10.1016/j.dmpk.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025]
Abstract
Microphysiological systems (MPS) are gaining global attention as potential game-changers in pharmaceutical development. Since 2013, MPS suppliers from university laboratories in the United States and Europe have competed to develop these devices. After the development phase, the focus shifted to the accumulation of applications using MPS for pharmaceutical companies and end users. In Japan, the AMED-MPS project was launched in 2017, and since then, several MPS devices have been marketed by project participated suppliers. Initially, while Japanese pharmaceutical companies adopted foreign products, they also exhibited interest in domestically produced MPS devices. The utilization of new approach methodologies, including MPS, is expanding in the field of chemical substances risk assessment, and the Organization for Economic Co-operation and Development test guidelines are expected to adopt in vitro evaluation systems as alternatives to animal testing. This publication reviews global and Japanese trends surrounding MPS and outlines activities aimed at the regulatory acceptance of MPS as evaluation systems for medical drugs and chemicals.
Collapse
Affiliation(s)
- Daiju Yamazaki
- Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Seiichi Ishida
- Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan; Sojo University, Graduate School of Engineering, Department of Life Science, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto, 816-0082, Japan.
| |
Collapse
|
5
|
Jung N, Schreiner J, Baur F, Vogel-Kindgen S, Windbergs M. Predicting nanocarrier permeation across the human intestine in vitro: model matters. Biomater Sci 2024; 12:5775-5788. [PMID: 39402906 DOI: 10.1039/d4bm01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
For clinical translation of oral nanocarriers, simulation of the intestinal microenvironment during in vitro testing is crucial to evaluate interactions with the intestinal mucosa. However, studies are often conducted using simplistic cell culture models, overlooking key physiological factors, and potentially leading to an overestimation of nanocarrier permeation. In this study, we systematically investigate different tissue models of the human intestine under static cultivation and dynamic flow conditions and analyze the impact of altered tissue characteristics on nanocarrier permeation. Our results reveal that the selection of cell types as well as the respective culture condition have a notable impact on the physiological characteristics of the resulting tissues. Tissue layer thickness, mucus secretion, and barrier impairment, all increase with increasing amounts of goblet cells and the application of dynamic flow conditions. Permeation studies with poly(lactic-co-glycolic acid) (PLGA) nanocarriers with and without polyethylene glycol (PEG) coating elucidate that the amount of mucus present in the respective model is the limiting factor for the permeation of PLGA nanocarriers, while tissue topography presents the key factor influencing PEG-PLGA nanocarrier permeation. Furthermore, both nanocarriers exhibit diametrically opposite permeation kinetics compared to soluble compounds. In summary, these findings reveal the critical role of the implemented test systems on permeation assessment and emphasize that, in the context of preclinical nanocarrier testing, the choice of in vitro model matters.
Collapse
Affiliation(s)
- Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Florentin Baur
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Wei Q, Zhai X, Song W, Li Z, Pan Y, Li B, Jiao Z, Shi Z, Yu J. Metabolomics analysis of the effects of chelerythrine on Ustilaginoidea virens. JOURNAL OF PESTICIDE SCIENCE 2024; 49:104-113. [PMID: 38882710 PMCID: PMC11176050 DOI: 10.1584/jpestics.d23-065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 06/18/2024]
Abstract
Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.
Collapse
Affiliation(s)
- Qinghui Wei
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
| | - Xihai Zhai
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
| | - Weifeng Song
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
| | - Zhiyong Li
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
| | - Yaqing Pan
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
| | - Baoying Li
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
| | - Zhanli Jiao
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
| | - Zhenghao Shi
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
| | - Jiangtao Yu
- Yongyuan Town People's Government of Daowai District
| |
Collapse
|
7
|
Shirai K, Qiu S, Minowa H, Hashita T, Iwao T, Matsunaga T. Air-liquid interface culture and modified culture medium promote the differentiation of human induced pluripotent stem cells into intestinal epithelial cells. Drug Metab Pharmacokinet 2024; 55:100994. [PMID: 38452616 DOI: 10.1016/j.dmpk.2023.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 03/09/2024]
Abstract
An in vitro system that evaluates pharmacokinetics in the small intestine is crucial for the development of oral drugs. We produced human induced pluripotent stem cell-derived small intestinal epithelial cells (hiSIECs) with high drug metabolizing enzyme and drug transporter activities. However, the gene expression of our hiSIECs partially differed from that of the human small intestine, with low drug metabolizing enzyme activities. Therefore, we used air-liquid interface (ALI) culture and 5-aza-2'-deoxycytidine (5AZA)-free medium to generate hiSIECs (novel hiSIECs). Novel hiSIECs showed enhanced gene expression of drug metabolizing enzymes, such as cytochrome P450 (CYP)3A4, CYP2C9, CYP2C19, and carboxylesterase 2 that are highly expressed in the small intestine. In addition, the expression of genes involved in nutrient absorption-one of the major functions of the small intestine-also increased. The novel hiSIECs expressed ZO-1 and E-cadherin. Moreover, the novel hiSIECs exhibited a barrier function that allowed low lucifer yellow permeation. The novel hiSIECs showed high activities of CYP3A4, CYP2C9, and CYP2C19, which are abundantly expressed in the small intestine. In conclusion, the novel hiSIECs have great potential as an in vitro system to evaluate pharmacokinetics in the small intestine.
Collapse
Affiliation(s)
- Kotaro Shirai
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Shimeng Qiu
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Hanako Minowa
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
8
|
Inui T, Uraya Y, Yokota J, Yamashita T, Kawai K, Okada K, Ueyama-Toba Y, Mizuguchi H. Functional intestinal monolayers from organoids derived from human iPS cells for drug discovery research. Stem Cell Res Ther 2024; 15:57. [PMID: 38424603 PMCID: PMC10905936 DOI: 10.1186/s13287-024-03685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem (iPS) cell-derived enterocyte-like cells (ELCs) are expected to be useful for evaluating the intestinal absorption and metabolism of orally administered drugs. However, it is difficult to generate large amounts of ELCs with high quality because they cannot proliferate and be passaged. METHODS To solve the issue above, we have established intestinal organoids from ELCs generated using our protocol. Furthermore, monolayers were produced from the organoids. We evaluated the usefulness of the monolayers by comparing their functions with those of the original ELCs and the organoids. RESULTS We established organoids from ELCs (ELC-org) that could be passaged and maintained for more than a year. When ELC-org were dissociated into single cells and seeded on cell culture inserts (ELC-org-mono), they formed a tight monolayer in 3 days. Both ELC-org and ELC-org-mono were composed exclusively of epithelial cells. Gene expressions of many drug-metabolizing enzymes and drug transporters in ELC-org-mono were enhanced, as compared with those in ELC-org, to a level comparable to those in adult human small intestine. The CYP3A4 activity level in ELC-org-mono was comparable or higher than that in primary cryopreserved human small intestinal cells. ELC-org-mono had the efflux activities of P-gp and BCRP. Importantly, ELC-org-mono maintained high intestinal functions without any negative effects even after long-term culture (for more than a year) or cryopreservation. RNA-seq analysis showed that ELC-org-mono were more mature as intestinal epithelial cells than ELCs or ELC-org. CONCLUSIONS We have successfully improved the function and convenience of ELCs by utilizing organoid technology.
Collapse
Affiliation(s)
- Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Yusei Uraya
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Okada
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Kurniawan DA, Leo S, Inamatsu M, Funaoka S, Aihara T, Aiko M, Rei I, Sakura T, Arakawa H, Kato Y, Matsugi T, Esashika K, Shiraki N, Kume S, Shinha K, Kimura H, Nishikawa M, Sakai Y. Gut-liver microphysiological systems revealed potential crosstalk mechanism modulating drug metabolism. PNAS NEXUS 2024; 3:pgae070. [PMID: 38384383 PMCID: PMC10879850 DOI: 10.1093/pnasnexus/pgae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
The small intestine and liver play important role in determining oral drug's fate. Both organs are also interconnected through enterohepatic circulation, which imply there are crosstalk through circulating factors such as signaling molecules or metabolites that may affect drug metabolism. Coculture of hepatocytes and intestinal cells have shown to increase hepatic drug metabolism, yet its crosstalk mechanism is still unclear. In this study, we aim to elucidate such crosstalk by coculturing primary human hepatocytes harvested from chimeric mouse (PXB-cells) and iPSc-derived intestinal cells in a microphysiological systems (MPS). Perfusion and direct oxygenation from the MPS were chosen and confirmed to be suitable features that enhanced PXB-cells albumin secretion, cytochrome P450 (CYP) enzymes activity while also maintaining barrier integrity of iPSc-derived intestine cells. Results from RNA-sequencing showed significant upregulation in gene ontology terms related to fatty acids metabolism in PXB-cells. One of such fatty acids, arachidonic acid, enhanced several CYP enzyme activity in similar manner as coculture. From the current evidences, it is speculated that the release of bile acids from PXB-cells acted as stimuli for iPSc-derived intestine cells to release lipoprotein which was ultimately taken by PXB-cells and enhanced CYP activity.
Collapse
Affiliation(s)
- Dhimas Agung Kurniawan
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Mutsumi Inamatsu
- PhoenixBio Co. Ltd., Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | | | | | - Mizuno Aiko
- Sumitomo Bakelite Co. Ltd., Tokyo 140-0002, Japan
| | - Inoue Rei
- Sumitomo Bakelite Co. Ltd., Tokyo 140-0002, Japan
| | | | - Hiroshi Arakawa
- Faculty of Pharmacy Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Kenta Shinha
- Micro/Nano Technology Center, Tokai University, Kanagawa 259-1292, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Kanagawa 259-1292, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Imakura Y, Mima S, Yamazaki N, Inomata A, Mochizuki S, Iwao T, Matsunaga T. Utility of human induced pluripotent stem cell-derived small intestinal epithelial cells for pharmacokinetic, toxicological, and immunological studies. Biochem Biophys Res Commun 2024; 692:149356. [PMID: 38071890 DOI: 10.1016/j.bbrc.2023.149356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024]
Abstract
The small intestine, which plays a crucial role in the absorption and metabolism of drugs and foods, serves as a target organ for drug-induced toxicity and immune interactions with functional foods and intestinal bacteria. Current alternative models of the human small intestine, such as Caco-2 cells and experimental animals, have limitations due to variations in the expression levels of metabolic enzymes, transporters, and receptors. This study presents investigations into the utility of human induced pluripotent stem cell-derived small intestinal epithelial cells (hiSIECs) for pharmacokinetic, toxicological, and immunological studies, respectively. While hiSIECs displayed small intestinal epithelial cell characteristics and barrier function, they demonstrated pharmacokinetic properties such as cytochrome P450 3A4/5 activity equivalent to human primary enterocytes and stable P-glycoprotein activity. These cells also demonstrated potential for assessing two forms of intestinal toxicity caused by anticancer drugs and gamma-secretase inhibitors, displaying immune responses mediated by toll-like and fatty acid receptors while serving as an inflammatory gut model through the addition of tumor necrosis factor alpha and interferon gamma. Overall, hiSIECs hold promise as an in vitro model for assessing pharmacokinetics, toxicity, and effects on the intestinal immunity of pharmaceuticals, functional foods, supplements, and intestinal bacteria.
Collapse
Affiliation(s)
- Yuki Imakura
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan; Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Shinji Mima
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Nao Yamazaki
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Akira Inomata
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Seiichi Mochizuki
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8577, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
11
|
Leo S, Kato Y, Wu Y, Yokota M, Koike M, Yui S, Tsuchiya K, Shiraki N, Kume S. The Effect of Vitamin D3 and Valproic Acid on the Maturation of Human-Induced Pluripotent Stem Cell-Derived Enterocyte-Like Cells. Stem Cells 2023; 41:775-791. [PMID: 37228023 DOI: 10.1093/stmcls/sxad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) is involved in first-pass metabolism in the small intestine and is heavily implicated in oral drug bioavailability and pharmacokinetics. We previously reported that vitamin D3 (VD3), a known CYP enzyme inducer, induces functional maturation of iPSC-derived enterocyte-like cells (iPSC-ent). Here, we identified a Notch activator and CYP modulator valproic acid (VPA), as a promotor for the maturation of iPSC-ent. We performed bulk RNA sequencing to investigate the changes in gene expression during the differentiation and maturation periods of these cells. VPA potentiated gene expression of key enterocyte markers ALPI, FABP2, and transporters such as SULT1B1. RNA-sequencing analysis further elucidated several function-related pathways involved in fatty acid metabolism, significantly upregulated by VPA when combined with VD3. Particularly, VPA treatment in tandem with VD3 significantly upregulated key regulators of enterohepatic circulation, such as FGF19, apical bile acid transporter SLCO1A2 and basolateral bile acid transporters SLC51A and SLC51B. To sum up, we could ascertain the genetic profile of our iPSC-ent cells to be specialized toward fatty acid absorption and metabolism instead of transporting other nutrients, such as amino acids, with the addition of VD3 and VPA in tandem. Together, these results suggest the possible application of VPA-treated iPSC-ent for modelling enterohepatic circulation.
Collapse
Affiliation(s)
- Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yusuke Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yumeng Wu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
12
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
13
|
Inui T, Yamashita T, Tomita J, Yokota J, Kishimoto W, Nakase H, Mizuguchi H. Comparison of human biopsy-derived and human iPS cell-derived intestinal organoids established from a single individual. Drug Metab Pharmacokinet 2023; 48:100482. [PMID: 36653202 DOI: 10.1016/j.dmpk.2022.100482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022]
Abstract
Rodent-derived intestinal tissues or human colon cancer-derived Caco-2 cells are widely used for in vitro pharmacokinetic tests. However, both entail problems such as species differences from humans and low expression levels of specific pharmacokinetic-related factors, respectively. To solve these problems, many groups, including ours, have been focusing on human biopsy-derived intestinal organoids (b-IOs) and human iPS cell-derived intestinal organoids (i-IOs). However, no reports directly compare the two. Therefore, we established both from a single individual and conducted a comparative study. b-IOs had a shorter doubling time than i-IOs: about 59 h vs 148 h. b-IOs also had higher gene expression levels of major drug transporters and drug-metabolizing enzymes than i-IOs. To evaluate their applicability to pharmacokinetics, both organoids were two-dimensionally cultured. Although the b-IO monolayer had a lower transepithelial electrical resistance than the i-IO monolayer, it had higher gene expression levels of many drug transporters and major drug-metabolizing enzymes than the i-IO monolayer. RNA-seq analysis showed that the i-IOs monolayer had a more complex structure than the b-IOs monolayer because the former contained neuronal and vascular endothelial cells. This study provides basic information for pharmacokinetic applications of human biopsy-derived and human iPS cell-derived intestinal organoids.
Collapse
Affiliation(s)
- Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Junya Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Wataru Kishimoto
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, 650-0047, Japan.
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan.
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 567-0085, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Li H, Wang X, Wang Y, Zhang M, Hong F, Wang H, Cui A, Zhao J, Ji W, Chen YG. Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium. CELL REGENERATION 2022; 11:19. [PMID: 35511361 PMCID: PMC9072607 DOI: 10.1186/s13619-022-00118-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
AbstractAnimal models are widely used for biomedical studies and drug evaluation. The small intestine plays key roles in nutrient absorption, hormone secretion, microbiota defense and drug absorption and metabolism. Although the intestinal structure of mammals is conserved, the differences on epithelial cell composition, functional assignments and drug absorption among mammals are largely unknown. Here, cross-species analysis of single-cell transcriptomic atlas of the ileum epithelium from mouse, rat, pig, macaque and human reveals the conserved and differential cell types and functions among species, identifies a new CA7+ cell type in pig, macaque and human ileum, uncovers the distinct expression pattern in enterocytes, enteroendocrine cells and Paneth cells, and defines the conserved and species-specific intestinal stem cell signature genes. The examination of drug absorption across species suggests that drug metabolism in mouse ileum is closer to human while drug transport in macaque ileum is more similar to human. Together, our data provide the comprehensive information about cell composition and functional assignments in five species, and offer the valuable guidance for animal model selection and drug testing.
Collapse
|
15
|
Liu L, Liu Y, Zhou X, Xu Z, Zhang Y, Ji L, Hong C, Li C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front Pharmacol 2022; 13:962718. [PMID: 36278150 PMCID: PMC9585159 DOI: 10.3389/fphar.2022.962718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Hou Z, Meng R, Chen G, Lai T, Qing R, Hao S, Deng J, Wang B. Distinct accumulation of nanoplastics in human intestinal organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155811. [PMID: 35597345 DOI: 10.1016/j.scitotenv.2022.155811] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Plastic particles, especially nanoplastics, represent an emerging concern of threat to human health, oral uptake is an important pathway for the plastic particles ingestion by human. While their fate and adverse effects in animal gastrointestinal tract are increasingly investigated, knowledge about their uptake and toxicity in human intestine is still limited. Here, by exposing human intestinal organoids to polystyrene nanoplastics (PS-NPs, ~50 nm in size) with concentrations of 10 and 100 μg/mL, we present evidence of their distinct accumulation in various type cells in intestinal organoids, then causing the cell apoptosis and inflammatory response. Our results further revealed that the effective inhibition of PS-NPs accumulation in secretive cells through co-exposure to a clathrin-mediated endocytosis inhibitor (chlorpromazine), and proved the essential role of active endocytosis in the PS-NPs uptaking into enterocyte cells. Our work not only elucidated the potential uptake and toxicity of PS-NPs in human intestinal cells and the underlying mechanism, but also provide a potential therapeutic approach to relieve the toxicity of PS-NPs to human through the endocytosis inhibition.
Collapse
Affiliation(s)
- Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ganghua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Tangmin Lai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Rui Qing
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
17
|
Michiba K, Maeda K, Shimomura O, Miyazaki Y, Hashimoto S, Oda T, Kusuhara H. Usefulness of Human Jejunal Spheroid-Derived Differentiated Intestinal Epithelial Cells for the Prediction of Intestinal Drug Absorption in Humans. Drug Metab Dispos 2022; 50:204-213. [PMID: 34992074 DOI: 10.1124/dmd.121.000796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to demonstrate the usefulness of human jejunal spheroid-derived differentiated intestinal epithelial cells as a novel in vitro model for clarifying the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. Three-dimensional human intestinal spheroids were successfully established from surgical human jejunal specimens and expanded for a long period using L-WRN-conditioned medium, which contains Wnt3a, R-spondin 3, and noggin. The mRNA expression levels of intestinal pharmacokinetics-related genes in the human jejunal spheroid-derived differentiated intestinal epithelial cells were drastically increased over a 5-day period after seeding compared with those in human jejunal spheroids and were approximately the same as those in human jejunal tissue over a culture period of at least 13 days. Activities of typical drug-metabolizing enzymes [cytochrome P450 (CYP) 3A, CYP2C9, uridine 5'-diphospho-glucuronosyltransferase 1A, and carboxylesterase 2] and uptake/efflux transporters [peptide transporter 1/solute carrier 15A1], P-glycoprotein, and breast cancer resistance protein) in the differentiated cells were confirmed. Furthermore, intestinal availability (Fg) values estimated from the apical-to-basolateral permeation clearance across cell monolayer showed a good correlation with the in vivo Fg values in humans for five CYP3A substrate drugs (Fg range, 0.35-0.98). In conclusion, the functions of major intestinal drug-metabolizing enzymes and transporters could be maintained in human jejunal spheroid-derived differentiated intestinal epithelial cells. This model would be useful for the quantitative evaluation of the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. SIGNIFICANCE STATEMENT: Limited information is available regarding the quantitative prediction of the impact of drug-metabolizing enzymes and transporters on the human intestinal absorption of substrates using in vitro assays with differentiated cells derived from human intestinal spheroids/organoids. This study confirmed the functions of typical drug-metabolizing enzymes and transporters in human jejunal spheroid-derived differentiated intestinal epithelial cells and demonstrated that intestinal availability (Fg) estimated from apical-to-basolateral permeation clearance across cell monolayers showed a good correlation with in vivo human Fg for CYP3A substrates.
Collapse
Affiliation(s)
- Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Osamu Shimomura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Yoshihiro Miyazaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Shinji Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Tatsuya Oda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| |
Collapse
|
18
|
Kitaguchi T, Mizota T, Ito M, Ohno K, Kobayashi K, Ogawa I, Qiu S, Iwao T, Hanioka N, Tanaka M, Matsunaga T. Simultaneous Evaluation of Membrane Permeability and UDP-Glucuronosyltransferase-Mediated Metabolism of Food-Derived Compounds Using Human Induced Pluripotent Stem Cell-Derived Small Intestinal Epithelial Cells. Drug Metab Dispos 2022; 50:17-23. [PMID: 34670778 DOI: 10.1124/dmd.121.000605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Pharmacokinetic prediction after oral ingestion is important for quantitative risk assessment of food-derived compounds. To evaluate the utility of human intestinal absorption prediction, we compared the membrane permeability and metabolic activities of human induced pluripotent stem cell-derived small intestinal epithelial cells (hiPSC-SIECs) with Caco-2 cells or human primary enterocytes (hPECs). We found that membrane permeability in hiPSC-SIECs had better predictivity than that in Caco-2 cells against 21 drugs with known human intestinal availability (r = 0.830 and 0.401, respectively). Membrane permeability in hiPSC-SIECs was only 0.019-0.25-fold as compared with that in Caco-2 cells for 7 in 15 food-derived compounds, primarily those that were reported to undergo glucuronidation metabolism. The metabolic rates of the glucuronide conjugate were similar or higher in hiPSC-SIECs as compared with hPECs but lower in Caco-2 cells. Expression levels of UDP-glucuronosyltransferase (UGT) isoform mRNA in hiPSC-SIECs were similar or higher as compared with hPECs. Therefore, hiPSC-SIECs could be a useful tool for predicting human intestinal absorption to simultaneously evaluate membrane permeability and UGT-mediated metabolism. SIGNIFICANCE STATEMENT: Gastrointestinal absorption is an important step for predicting the internal exposure of food-derived compounds. This research revealed that human induced pluripotent stem cell-derived small intestinal cells (hiPSC-SIECs) had better predictivity of intestinal availability than Caco-2 cells; furthermore, the metabolic rates of UDP-glucuronosyltransferase (UGT) substrates of hiPSC-SIECs were closer to those of human primary enterocytes than those of Caco-2 cells. Therefore, hiPSC-SIECs could be a useful tool for predicting human intestinal absorption to simultaneously evaluate membrane permeability and UGT-mediated metabolism.
Collapse
Affiliation(s)
- Takashi Kitaguchi
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Taisei Mizota
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Mina Ito
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Katsutoshi Ohno
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Kazuhiro Kobayashi
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Isamu Ogawa
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Shimeng Qiu
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Takahiro Iwao
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Nobumitsu Hanioka
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Mitsuru Tanaka
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| | - Tamihide Matsunaga
- Global Food Safety Institute, Nissin Foods Holdings Co., Ltd., Hachioji, Japan (T.K., T.M., M.I., K.O., K.K., M.T.); Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan (I.O., S.Q., T.I., T.M.); and Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan (N.H.)
| |
Collapse
|
19
|
Hashimoto Y, Michiba K, Maeda K, Kusuhara H. Quantitative prediction of pharmacokinetic properties of drugs in humans: Recent advance in in vitro models to predict the impact of efflux transporters in the small intestine and blood-brain barrier. J Pharmacol Sci 2021; 148:142-151. [PMID: 34924119 DOI: 10.1016/j.jphs.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Efflux transport systems are essential to suppress the absorption of xenobiotics from the intestinal lumen and protect the critical tissues at the blood-tissue barriers, such as the blood-brain barrier. The function of drug efflux transport is dominated by various transporters. Accumulated clinical evidences have revealed that genetic variations of the transporters, together with coadministered drugs, affect the expression and/or function of transporters and subsequently the pharmacokinetics of substrate drugs. Thus, in the preclinical stage of drug development, quantitative prediction of the impact of efflux transporters as well as that of uptake transporters and metabolic enzymes on the pharmacokinetics of drugs in humans has been performed using various in vitro experimental tools. Various kinds of human-derived cell systems can be applied to the precise prediction of drug transport in humans. Mathematical modeling consisting of each intrinsic metabolic or transport process enables us to understand the disposition of drugs both at the organ level and at the level of the whole body by integrating a variety of experimental results into model parameters. This review focuses on the role of efflux transporters in the intestinal absorption and brain distribution of drugs, in addition to recent advances in predictive tools and methodologies.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Negoro R, Yamada N, Watanabe K, Kono Y, Fujita T. Generation of Caco-2 cells stably expressing CYP3A4·POR·UGT1A1 and CYP3A4·POR·UGT1A1*6 using a PITCh system. Arch Toxicol 2021; 96:499-510. [PMID: 34654938 DOI: 10.1007/s00204-021-03175-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
The small intestine plays a critical role in the absorption and metabolism of orally administered drugs. Therefore, a model capable of evaluating drug absorption and metabolism in the small intestine would be useful for drug discovery. Patients with genotype UGT1A1*6 (exon 1, 211G > A) treated with the antineoplastic drug SN-38 have been reported to exhibit decreased glucuronide conjugation and increased incidence of intestinal toxicity and its severe side effects, including severe diarrhea. To ensure the safety of drugs, we must develop a drug metabolism and toxicity evaluation model which considers UGT1A1*6. In this study, we generated CYP3A4·POR·UGT1A1 KI- and CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells for pharmaceutical research using a PITCh system. The CYP3A4·POR·UGT1A1 KI-Caco-2 cells were shown to express functional CYP3A4 and UGT1A1. The CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells were sensitive to SN-38-induced intestinal toxicity. We thus succeeded in generating CYP3A4·POR·UGT1A1 KI- and CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells, which can be used in pharmaceutical research. We also developed an intestinal epithelial cell model of patients with UGT1A1*6 and showed that it was useful as a tool for drug discovery.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Naoki Yamada
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Keita Watanabe
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Kono
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.,Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.,Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
21
|
Shinohara M, Arakawa H, Oda Y, Shiraki N, Sugiura S, Nishiuchi T, Satoh T, Iino K, Leo S, Kato Y, Araya K, Kawanishi T, Nakatsuji T, Mitsuta M, Inamura K, Goto T, Shinha K, Nihei W, Komori K, Nishikawa M, Kume S, Kato Y, Kanamori T, Sakai Y, Kimura H. Coculture with hiPS-derived intestinal cells enhanced human hepatocyte functions in a pneumatic-pressure-driven two-organ microphysiological system. Sci Rep 2021; 11:5437. [PMID: 33686099 PMCID: PMC7940409 DOI: 10.1038/s41598-021-84861-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
Examining intestine-liver interactions is important for achieving the desired physiological drug absorption and metabolism response in in vitro drug tests. Multi-organ microphysiological systems (MPSs) constitute promising tools for evaluating inter-organ interactions in vitro. For coculture on MPSs, normal cells are challenging to use because they require complex maintenance and careful handling. Herein, we demonstrated the potential of coculturing normal cells on MPSs in the evaluation of intestine-liver interactions. To this end, we cocultured human-induced pluripotent stem cell-derived intestinal cells and fresh human hepatocytes which were isolated from PXB mice with medium circulation in a pneumatic-pressure-driven MPS with pipette-friendly liquid-handling options. The cytochrome activity, albumin production, and liver-specific gene expressions in human hepatocytes freshly isolated from a PXB mouse were significantly upregulated via coculture with hiPS-intestinal cells. Our normal cell coculture shows the effects of the interactions between the intestine and liver that may occur in vivo. This study is the first to demonstrate the coculturing of hiPS-intestinal cells and fresh human hepatocytes on an MPS for examining pure inter-organ interactions. Normal-cell coculture using the multi-organ MPS could be pursued to explore unknown physiological mechanisms of inter-organ interactions in vitro and investigate the physiological response of new drugs.
Collapse
Affiliation(s)
- Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuuichi Oda
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takumi Nishiuchi
- Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Keita Iino
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yusuke Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Karin Araya
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takumi Kawanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomoki Nakatsuji
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Manami Mitsuta
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Inamura
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomomi Goto
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Kenta Shinha
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Wataru Nihei
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Kikuo Komori
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan.
| |
Collapse
|