1
|
Ravindranath AG, Muralidhar A, Gambhir NN, Chatterjee J. Investigating the neuroprotective effects of strawberry extract against diesel soot-induced motor dysfunction in Drosophila: an in-vivo and in-silico study. In Silico Pharmacol 2025; 13:58. [PMID: 40255255 PMCID: PMC12003239 DOI: 10.1007/s40203-025-00344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Environmental pollutants including diesel soot, have been known to contribute to neurological disorders. Previous studies highlight the neuroprotective effects of strawberry-derived compounds. This work explores the impacts of diesel soot and strawberry extract in movement-related disorders. In-silico analysis assessed compounds from HPLC/GCMS in the literature of soot and strawberry extract for ADME properties and blood-brain barrier permeability, selecting six compounds and four motor function-related proteins (SOD1, TARDBP, FUS, MAPT) with D. melanogaster orthologs. Homology modeling generated protein structures, molecular docking assessed binding affinities. MLSD examined combined interactions, with RMSD validating accuracy. Docking scores matched neuroprotective controls (quercetin, resveratrol), while differed for negative control (formaldehyde). Phenanthrene and anthocyanin strongly bound to FUS (- 7.60 ± 0.26 kcal/mol, - 7.1 ± 0.26 kcal/mol) and cocoon (- 6.5 ± 0.39 kcal/mol, - 7.23 ± 0.45 kcal/mol). MLSD yielded - 3.00 ± 0.24 kcal/mol and - 3.12 ± 0.11 kcal/mol respectively. In-vivo assays in D. melanogaster exhibited soot impaired movement (p = 0.0006), while strawberry improved it (p = 0.0003) with partial recovery in combined exposure (p = 0.0003). Strawberry enhanced cold stress recovery (p = 0.0048), climbing (p < 0.0001), and vortex recovery (p = 0.0003). One-way ANOVA confirmed significant effects on crawling in males (F (9,20) = 37.67, p < 0.0001, η 2 = 0.53) and female flies (F (9,20) = 70.10, p < 0.0001), with normality confirmed by Shapiro-Wilk test (p > 0.05). Toxicant exposure accelerated mortality, while strawberry improved thermotolerance. Combined exposure provided partial protection with minor sex differences. Findings highlight strawberries' neuroprotective role in counteracting diesel soot toxicity, even under combined exposure. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00344-2.
Collapse
Affiliation(s)
| | - Ananya Muralidhar
- Department of Biotechnology, PES University, Bangalore, 560085 India
| | | | - Jhinuk Chatterjee
- Department of Biotechnology, PES University, Bangalore, 560085 India
| |
Collapse
|
2
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
3
|
Zhang Y, Li T, Wang G, Ma Y. Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease. Cell Mol Neurobiol 2024; 44:65. [PMID: 39387975 PMCID: PMC11467076 DOI: 10.1007/s10571-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
The incidence of central nervous system (CNS) disease has persistently increased over the last several years. There is an urgent need for effective methods to improve the cure rates of CNS disease. However, the precise molecular basis underlying the development and progression of major CNS diseases remains elusive. A complete molecular map will contribute to research on CNS disease treatment strategies. Emerging technologies such as single-cell RNA sequencing (scRNA-seq) and Spatial Transcriptomics (ST) are potent tools for exploring the molecular complexity, cell heterogeneity, and functional specificity of CNS disease. scRNA-seq and ST can provide insights into the disease at cellular and spatial transcription levels. This review presents a survey of scRNA-seq and ST studies on CNS diseases, such as chronic neurodegenerative diseases, acute CNS injuries, and others. These studies offer novel perspectives in treating and diagnosing CNS diseases by discovering new cell types or subtypes associated with the disease, proposing new pathophysiological mechanisms, uncovering novel therapeutic targets, and identifying putative biomarkers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Teng Li
- Department of Laboratory Medicine, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yabin Ma
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
4
|
Lee DY, Kwon YN, Lee K, Kim SJ, Sung JJ. Dual effects of TGF-β inhibitor in ALS - inhibit contracture and neurodegeneration. J Neurochem 2024; 168:2495-2514. [PMID: 38515326 DOI: 10.1111/jnc.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
As persistent elevation of transforming growth factor-β (TGF-β) promotes fibrosis of muscles and joints and accelerates disease progression in amyotrophic lateral sclerosis (ALS), we investigated whether inhibition of TGF-β would be effective against both exacerbations. The effects of TGF-β and its inhibitor on myoblasts and fibroblasts were tested in vitro and confirmed in vivo, and the dual action of a TGF-β inhibitor in ameliorating the pathogenic role of TGF-β in ALS mice was identified. In the peripheral neuromuscular system, fibrosis in the muscles and joint cavities induced by excessive TGF-β causes joint contracture and muscular degeneration, which leads to motor dysfunction. In an ALS mouse model, an increase in TGF-β in the central nervous system (CNS), consistent with astrocyte activity, was associated with M1 microglial activity and pro-inflammatory conditions, as well as with neuronal cell death. Treatment with the TGF-β inhibitor halofuginone could prevent musculoskeletal fibrosis, resulting in the alleviation of joint contracture and delay of motor deterioration in ALS mice. Halofuginone could also reduce glial cell-induced neuroinflammation and neuronal apoptosis. These dual therapeutic effects on both the neuromuscular system and the CNS were observed from the beginning to the end stages of ALS; as a result, treatment with a TGF-β inhibitor from the early stage of disease delayed the time of symptom exacerbation in ALS mice, which led to prolonged survival.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Nam Kwon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwangkook Lee
- Research Department, Curamys Co., Ltd., Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, South Korea
| |
Collapse
|
5
|
Guo R, Chen Y, Zhang J, Zhou Z, Feng B, Du X, Liu X, Ma J, Cui H. Neural Differentiation and spinal cord organoid generation from induced pluripotent stem cells (iPSCs) for ALS modelling and inflammatory screening. Mol Neurobiol 2024; 61:4732-4749. [PMID: 38127186 DOI: 10.1007/s12035-023-03836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
C9orf72 genetic mutation is the most common genetic cause of ALS/FTD accompanied by abnormal protein insufficiency. Induced pluripotent stem cell (iPSC)-derived two-dimensional (2D) and three-dimensional (3D) cultures are providing new approaches. Therefore, this study established neuronal cell types and generated spinal cord organoids (SCOs) derived from C9orf72 knockdown human iPSCs to model ALS disease and screen the unrevealed phenotype. Wild-type (WT) iPSC lines from three healthy donor fibroblasts were established, and pluripotency and differentiation ability were identified by RT-PCR, immunofluorescence and flow cytometry. After infection by the lentivirus with C9orf72-targeting shRNA, stable C9-knockdown iPSC colonies were selected and differentiated into astrocytes, motor neurons and SCOs. Finally, we analyzed the extracted RNA-seq data of human C9 mutant/knockout iPSC-derived motor neurons and astrocytes from the GEO database and the inflammatory regulation-related genes in function and pathways. The expression of inflammatory factors was measured by qRT-PCR. The results showed that both WT-iPSCs and edited C9-iPSCs maintained a similar ability to differentiate into the three germ layers, astrocytes and motor neurons, forming SCOs in a 3D culture system. The constructed C9-SCOs have features of spinal cord development and multiple neuronal cell types, including sensory neurons, motor neurons, and other neurons. Based on the bioinformatics analysis, proinflammatory factors were confirmed to be upregulated in C9-iPSC-derived 2D cells and 3D cultured SCOs. The above differentiated models exhibited low C9orf72 expression and the pathological characteristics of ALS, especially neuroinflammation.
Collapse
Affiliation(s)
- Ruiyun Guo
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Yimeng Chen
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Huixian Cui
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
6
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Rizzuti M, Sali L, Melzi V, Scarcella S, Costamagna G, Ottoboni L, Quetti L, Brambilla L, Papadimitriou D, Verde F, Ratti A, Ticozzi N, Comi GP, Corti S, Gagliardi D. Genomic and transcriptomic advances in amyotrophic lateral sclerosis. Ageing Res Rev 2023; 92:102126. [PMID: 37972860 DOI: 10.1016/j.arr.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. ALS shows substantial clinical and molecular heterogeneity. In vitro and in vivo models coupled with multiomic techniques have provided important contributions to unraveling the pathomechanisms underlying ALS. To date, despite promising results and accumulating knowledge, an effective treatment is still lacking. Here, we provide an overview of the literature on the use of genomics, epigenomics, transcriptomics and microRNAs to deeply investigate the molecular mechanisms developing and sustaining ALS. We report the most relevant genes implicated in ALS pathogenesis, discussing the use of different high-throughput sequencing techniques and the role of epigenomic modifications. Furthermore, we present transcriptomic studies discussing the most recent advances, from microarrays to bulk and single-cell RNA sequencing. Finally, we discuss the use of microRNAs as potential biomarkers and promising tools for molecular intervention. The integration of data from multiple omic approaches may provide new insights into pathogenic pathways in ALS by shedding light on diagnostic and prognostic biomarkers, helping to stratify patients into clinically relevant subgroups, revealing novel therapeutic targets and supporting the development of new effective therapies.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Scarcella
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Costamagna
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federico Verde
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Tsioras K, Smith KC, Edassery SL, Garjani M, Li Y, Williams C, McKenna ED, Guo W, Wilen AP, Hark TJ, Marklund SL, Ostrow LW, Gilthorpe JD, Ichida JK, Kalb RG, Savas JN, Kiskinis E. Analysis of proteome-wide degradation dynamics in ALS SOD1 iPSC-derived patient neurons reveals disrupted VCP homeostasis. Cell Rep 2023; 42:113160. [PMID: 37776851 PMCID: PMC10785776 DOI: 10.1016/j.celrep.2023.113160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023] Open
Abstract
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS) through gain-of-function effects, yet the mechanisms by which misfolded mutant SOD1 (mutSOD1) protein impairs human motor neurons (MNs) remain unclear. Here, we use induced-pluripotent-stem-cell-derived MNs coupled to metabolic stable isotope labeling and mass spectrometry to investigate proteome-wide degradation dynamics. We find several proteins, including the ALS-causal valosin-containing protein (VCP), which predominantly acts in proteasome degradation and autophagy, that degrade slower in mutSOD1 relative to isogenic control MNs. The interactome of VCP is altered in mutSOD1 MNs in vitro, while VCP selectively accumulates in the affected motor cortex of ALS-SOD1 patients. Overexpression of VCP rescues mutSOD1 toxicity in MNs in vitro and in a C. elegans model in vivo, in part due to its ability to modulate the degradation of insoluble mutSOD1. Our results demonstrate that VCP contributes to mutSOD1-dependent degeneration, link two distinct ALS-causal genes, and highlight selective protein degradation impairment in ALS pathophysiology.
Collapse
Affiliation(s)
- Konstantinos Tsioras
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin C Smith
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seby L Edassery
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mehraveh Garjani
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Elizabeth D McKenna
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenxuan Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Anika P Wilen
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Timothy J Hark
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Robert G Kalb
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Falker-Gieske C. Transcriptome driven discovery of novel candidate genes for human neurological disorders in the telomer-to-telomer genome assembly era. Hum Genomics 2023; 17:94. [PMID: 37872607 PMCID: PMC10594789 DOI: 10.1186/s40246-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND With the first complete draft of a human genome, the Telomere-to-Telomere Consortium unlocked previously concealed genomic regions for genetic analyses. These regions harbour nearly 2000 potential novel genes with unknown function. In order to uncover candidate genes associated with human neurological pathologies, a comparative transcriptome study using the T2T-CHM13 and the GRCh38 genome assemblies was conducted on previously published datasets for eight distinct human neurological disorders. RESULTS The analysis of differential expression in RNA sequencing data led to the identification of 336 novel candidate genes linked to human neurological disorders. Additionally, it was revealed that, on average, 3.6% of the differentially expressed genes detected with the GRCh38 assembly may represent potential false positives. Among the noteworthy findings, two novel genes were discovered, one encoding a pore-structured protein and the other a highly ordered β-strand-rich protein. These genes exhibited upregulation in multiple epilepsy datasets and hold promise as candidate genes potentially modulating the progression of the disease. Furthermore, an analysis of RNA derived from white matter lesions in multiple sclerosis patients indicated significant upregulation of 26 rRNA encoding genes. Additionally, putative pathology related genes were identified for Alzheimer's disease, amyotrophic lateral sclerosis, glioblastoma, glioma, and conditions resulting from the m.3242 A > G mtDNA mutation. CONCLUSION The results presented here underline the potential of the T2T-CHM13 assembly in facilitating the discovery of candidate genes from transcriptome data in the context of human disorders. Moreover, the results demonstrate the value of remapping sequencing data to a superior genome assembly. Numerous potential pathology related genes, either as causative factors or related elements, have been unveiled, warranting further experimental validation.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Division of Functional Breeding, Department of Animal Sciences, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| |
Collapse
|
10
|
Xie M, Pallegar PN, Parusel S, Nguyen AT, Wu LJ. Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms. Mol Neurodegener 2023; 18:75. [PMID: 37858176 PMCID: PMC10585818 DOI: 10.1186/s13024-023-00665-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, resulting in muscle weakness, atrophy, paralysis, and eventually death. Motor cortical hyperexcitability is a common phenomenon observed at the presymptomatic stage of ALS. Both cell-autonomous (the intrinsic properties of motor neurons) and non-cell-autonomous mechanisms (cells other than motor neurons) are believed to contribute to cortical hyperexcitability. Decoding the pathological relevance of these dynamic changes in motor neurons and glial cells has remained a major challenge. This review summarizes the evidence of cortical hyperexcitability from both clinical and preclinical research, as well as the underlying mechanisms. We discuss the potential role of glial cells, particularly microglia, in regulating abnormal neuronal activity during the disease progression. Identifying early changes such as neuronal hyperexcitability in the motor system may provide new insights for earlier diagnosis of ALS and reveal novel targets to halt the disease progression.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Praveen N Pallegar
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Sebastian Parusel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Provasek VE, Kodavati M, Guo W, Wang H, Boldogh I, Van Den Bosch L, Britz G, Hegde ML. lncRNA Sequencing Reveals Neurodegeneration-Associated FUS Mutations Alter Transcriptional Landscape of iPS Cells That Persists in Motor Neurons. Cells 2023; 12:2461. [PMID: 37887305 PMCID: PMC10604943 DOI: 10.3390/cells12202461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Fused-in sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L) on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons (iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs) and differentially expressed lncRNAs (DELs) and subsequently predicted lncRNA-mRNA target pairs (TAR pairs). Our results show that FUS mutations significantly altered the expression profiles of mRNAs and lncRNAs in iPSCs. Using this large dataset, we identified and verified six key differentially regulated TAR pairs in iPSCs that were also altered in iMNs. These target transcripts included: GPR149, NR4A, LMO3, SLC15A4, ZNF404, and CRACD. These findings indicated that selected mutant FUS-induced transcriptional alterations persist from iPSCs into differentiated iMNs. Functional enrichment analyses of DEGs indicated pathways associated with neuronal development and carcinogenesis as likely altered by these FUS mutations. Furthermore, ingenuity pathway analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations between RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into potential molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations and suggest potential therapeutic targets for the treatment of ALS.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
| | - Wenting Guo
- INSERM, UMR-S1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, CRBS, 67000 Strasbourg, France;
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Haibo Wang
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Ludo Van Den Bosch
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Gavin Britz
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Muralidhar L. Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
12
|
Catanese A, Rajkumar S, Sommer D, Masrori P, Hersmus N, Van Damme P, Witzel S, Ludolph A, Ho R, Boeckers TM, Mulaw M. Multiomics and machine-learning identify novel transcriptional and mutational signatures in amyotrophic lateral sclerosis. Brain 2023; 146:3770-3782. [PMID: 36883643 PMCID: PMC10473564 DOI: 10.1093/brain/awad075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023] Open
Abstract
Amyotrophic lateral sclerosis is a fatal and incurable neurodegenerative disease that mainly affects the neurons of the motor system. Despite the increasing understanding of its genetic components, their biological meanings are still poorly understood. Indeed, it is still not clear to which extent the pathological features associated with amyotrophic lateral sclerosis are commonly shared by the different genes causally linked to this disorder. To address this point, we combined multiomics analysis covering the transcriptional, epigenetic and mutational aspects of heterogenous human induced pluripotent stem cell-derived C9orf72-, TARDBP-, SOD1- and FUS-mutant motor neurons as well as datasets from patients' biopsies. We identified a common signature, converging towards increased stress and synaptic abnormalities, which reflects a unifying transcriptional program in amyotrophic lateral sclerosis despite the specific profiles due to the underlying pathogenic gene. In addition, whole genome bisulphite sequencing linked the altered gene expression observed in mutant cells to their methylation profile, highlighting deep epigenetic alterations as part of the abnormal transcriptional signatures linked to amyotrophic lateral sclerosis. We then applied multi-layer deep machine-learning to integrate publicly available blood and spinal cord transcriptomes and found a statistically significant correlation between their top predictor gene sets, which were significantly enriched in toll-like receptor signalling. Notably, the overrepresentation of this biological term also correlated with the transcriptional signature identified in mutant human induced pluripotent stem cell-derived motor neurons, highlighting novel insights into amyotrophic lateral sclerosis marker genes in a tissue-independent manner. Finally, using whole genome sequencing in combination with deep learning, we generated the first mutational signature for amyotrophic lateral sclerosis and defined a specific genomic profile for this disease, which is significantly correlated to ageing signatures, hinting at age as a major player in amyotrophic lateral sclerosis. This work describes innovative methodological approaches for the identification of disease signatures through the combination of multiomics analysis and provides novel knowledge on the pathological convergencies defining amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Daniel Sommer
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Pegah Masrori
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Nicole Hersmus
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Philip Van Damme
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Simon Witzel
- Department of Neurology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Albert Ludolph
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
- Department of Neurology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Medical Faculty, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
13
|
Provasek VE, Kodavati M, Guo W, Wang H, Boldogh I, Van Den Bosch L, Britz G, Hegde M. lncRNA Sequencing Reveals Neurodegeneration-associated FUS Mutations Alter Transcriptional Landscape of iPS Cells That Persists In Motor Neurons. RESEARCH SQUARE 2023:rs.3.rs-3112246. [PMID: 37461717 PMCID: PMC10350127 DOI: 10.21203/rs.3.rs-3112246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Fused-in Sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L) on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons (iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and subsequently predicted lncRNA-mRNA target pairs (TAR pairs). Our results show that FUS mutations significantly altered expression profiles of mRNAs and lncRNAs in iPSCs. We identified key differentially regulated TAR pairs, including LMO3, TMEM132D, ERMN, GPR149, CRACD, and ZNF404 in mutant FUS iPSCs. We performed reverse transcription PCR (RT-PCR) validation in iPSCs and iMNs. Validation confirmed RNA-Seq findings and suggested that mutant FUS-induced transcriptional alterations persisted from iPSCs into differentiated iMNs. Functional enrichment analyses of DEGs indicated pathways associated with neuronal development and carcinogenesis that were likely altered by FUS mutations. Ingenuity Pathway Analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations related to RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into the molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations and suggest potential therapeutic targets for the treatment of ALS.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Wenting Guo
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, 3000, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Haibo Wang
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ludo Van Den Bosch
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, 3000, Belgium
| | - Gavin Britz
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Muralidhar Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
14
|
Ho NJ, Chen X, Lei Y, Gu S. Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling. Zool Res 2023; 44:650-662. [PMID: 37161652 PMCID: PMC10236304 DOI: 10.24272/j.issn.2095-8137.2022.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/10/2023] [Indexed: 05/11/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of genetic motor neuron diseases resulting from length-dependent axonal degeneration of the corticospinal upper motor neurons. Due to the advancement of next-generation sequencing, more than 70 novel HSP disease-causing genes have been identified in the past decade. Despite this, our understanding of HSP physiopathology and the development of efficient management and treatment strategies remain poor. One major challenge in studying HSP pathogenicity is selective neuronal vulnerability, characterized by the manifestation of clinical symptoms that are restricted to specific neuronal populations, despite the presence of germline disease-causing variants in every cell of the patient. Furthermore, disease genes may exhibit ubiquitous expression patterns and involve a myriad of different pathways to cause motor neuron degeneration. In the current review, we explore the correlation between transcriptomic data and clinical manifestations, as well as the importance of interspecies models by comparing tissue-specific transcriptomic profiles of humans and mice, expression patterns of different genes in the brain during development, and single-cell transcriptomic data from related tissues. Furthermore, we discuss the potential of emerging single-cell RNA sequencing technologies to resolve unanswered questions related to HSP pathogenicity.
Collapse
Affiliation(s)
- Nicolas James Ho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058 China
| | - Yong Lei
- School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
- The Chinese University of Hong Kong (Shenzhen), Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518172, China. E-mail:
| | - Shen Gu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China. E-mail:
| |
Collapse
|
15
|
Du H, Huo Z, Chen Y, Zhao Z, Meng F, Wang X, Liu S, Zhang H, Zhou F, Liu J, Zhang L, Zhou S, Guan Y, Wang X. Induced Pluripotent Stem Cells and Their Applications in Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12060971. [PMID: 36980310 PMCID: PMC10047679 DOI: 10.3390/cells12060971] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Most studies have applied animal or single-gene intervention cell lines as ALS disease models, but they cannot accurately reflect the pathological characteristics of ALS. Induced pluripotent stem cells (iPSCs) can be reprogrammed from somatic cells, possessing the ability to self-renew and differentiate into a variety of cells. iPSCs can be obtained from ALS patients with different genotypes and phenotypes, and the genetic background of the donor cells remains unchanged during reprogramming. iPSCs can differentiate into neurons and glial cells related to ALS. Therefore, iPSCs provide an excellent method to evaluate the impact of diseases on ALS patients. Moreover, patient-derived iPSCs are obtained from their own somatic cells, avoiding ethical concerns and posing only a low risk of immune rejection. The iPSC technology creates new hope for ALS treatment. Here, we review recent studies on iPSCs and their applications in disease modeling, drug screening and cell therapy in ALS, with a particular focus on the potential for ALS treatment.
Collapse
Affiliation(s)
- Hongmei Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhenhan Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Fandi Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Xuemei Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Shiyue Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Shuanhu Zhou
- Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
| | - Yingjun Guan
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Xin Wang
- Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Dash BP, Freischmidt A, Weishaupt JH, Hermann A. Downstream Effects of Mutations in SOD1 and TARDBP Converge on Gene Expression Impairment in Patient-Derived Motor Neurons. Int J Mol Sci 2022; 23:ijms23179652. [PMID: 36077049 PMCID: PMC9456253 DOI: 10.3390/ijms23179652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease marked by death of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Despite extensive research, the reason for neurodegeneration is still not understood. To generate novel hypotheses of putative underlying molecular mechanisms, we used human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to perform high-throughput RNA-sequencing (RNA-Seq). An integrated bioinformatics approach was employed to identify differentially expressed genes (DEGs) and key pathways underlying these familial forms of the disease (fALS). In TDP43-ALS, we found dysregulation of transcripts encoding components of the transcriptional machinery and transcripts involved in splicing regulation were particularly affected. In contrast, less is known about the role of SOD1 in RNA metabolism in motor neurons. Here, we found that many transcripts relevant for mitochondrial function were specifically altered in SOD1-ALS, indicating that transcriptional signatures and expression patterns can vary significantly depending on the causal gene that is mutated. Surprisingly, however, we identified a clear downregulation of genes involved in protein translation in SOD1-ALS suggesting that ALS-causing SOD1 mutations shift cellular RNA abundance profiles to cause neural dysfunction. Altogether, we provided here an extensive profiling of mRNA expression in two ALS models at the cellular level, corroborating the major role of RNA metabolism and gene expression as a common pathomechanism in ALS.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| | | | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)381-494-9541; Fax: +49-(0)381-494-9542
| |
Collapse
|
17
|
Ahmadi A, Gispert JD, Navarro A, Vilor-Tejedor N, Sadeghi I. Single-cell Transcriptional Changes in Neurodegenerative Diseases. Neuroscience 2021; 479:192-205. [PMID: 34748859 DOI: 10.1016/j.neuroscience.2021.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/25/2023]
Abstract
In recent decades, our understanding of the molecular changes involved in neurodegenerative diseases has been transformed. Single-cell RNA sequencing and single-nucleus RNA sequencing technologies have been applied to provide cellular and molecular details of the brain at the single-cell level. This has expanded our knowledge of the central nervous system and provided insights into the molecular vulnerability of brain cell types and underlying mechanisms in neurodegenerative diseases. In this review, we highlight the recent advances and findings related to neurodegenerative diseases using these cutting-edge technologies.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- Department of Biology, Faculty of Nano and BioScience and Technology, Persian Gulf University, Bushehr 75169, Iran
| | - Juan D Gispert
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Arcadi Navarro
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Erasmus MC University Medical Center. Department of Clinical Genetics, Rotterdam, the Netherlands.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|