1
|
Okano Y, Okano H, Kase Y. Spinal cord injury regenerative therapy development: integration of design of experiments. Neural Regen Res 2025; 20:2571-2573. [PMID: 39503418 PMCID: PMC11801298 DOI: 10.4103/nrr.nrr-d-24-00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 02/08/2025] Open
Affiliation(s)
- Yuji Okano
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University, Kutsukake-Cho, Toyoake-Shi, Aichi, Japan
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Shinanomachi, Shinjuku-Ku, Tokyo, Japan
| | - Hideyuki Okano
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University, Kutsukake-Cho, Toyoake-Shi, Aichi, Japan
- Keio University Regenerative Medicine Research Center, Kawasaki-ku, Kawasaki-shi, Japan
| | - Yoshitaka Kase
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University, Kutsukake-Cho, Toyoake-Shi, Aichi, Japan
- Keio University Regenerative Medicine Research Center, Kawasaki-ku, Kawasaki-shi, Japan
| |
Collapse
|
2
|
Tucker A, Baltazar A, Eisdorfer JT, Thackray JK, Vo K, Thomas H, Tandon A, Moses J, Singletary B, Gillespie T, Smith A, Pauken A, Nadella S, Pitonak M, Letchuman S, Jang J, Totty M, Jalufka FL, Aceves M, Adler AF, Maren S, Blackmon H, McCreedy DA, Abraira V, Dulin JN. Functional synaptic connectivity of engrafted spinal cord neurons with locomotor circuitry in the injured spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.644402. [PMID: 40236108 PMCID: PMC11996546 DOI: 10.1101/2025.04.05.644402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Spinal cord injury (SCI) results in significant neurological deficits, with no currently available curative therapies. Neural progenitor cell (NPC) transplantation has emerged as a promising approach for neural repair, as graft-derived neurons (GDNs) can integrate into the host spinal cord and support axon regeneration. However, the mechanisms underlying functional recovery remain poorly understood. In this study, we investigate the synaptic integration of NPC-derived neurons into locomotor circuits, the projection patterns of distinct neuronal subtypes, and their potential to modulate motor circuit activity. Using transsynaptic tracing in a mouse thoracic contusion SCI model, we found that NPC-derived neurons form synaptic connections with host locomotor circuits, albeit at low frequencies. Furthermore, we mapped the axon projections of V0C and V2a interneurons, revealing distinct termination patterns within host spinal cord laminae. To assess functional integration, we employed chemogenetic activation of GDNs, which induced muscle activity in a subset of transplanted animals. However, NPC transplantation alone did not significantly improve locomotor recovery, highlighting a key challenge in the field. Our findings suggest that while GDNs can integrate into host circuits and modulate motor activity, synaptic connectivity remains a limiting factor in functional recovery. Future studies should focus on enhancing graft-host connectivity and optimizing transplantation strategies to maximize therapeutic benefits for SCI.
Collapse
|
3
|
Nagoshi N, Hashimoto S, Okano H, Nakamura M. Regenerative medicine for spinal cord injury using induced pluripotent stem cells: from animals to humans. Pain 2024; 165:S76-S81. [PMID: 39560418 DOI: 10.1097/j.pain.0000000000003306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/05/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Spinal cord injury (SCI) results in permanent neurological dysfunction and neuropathic pain. To address this pathology, we recently conducted a clinical study in which we transplanted neural precursor cells (NPCs) derived from human induced pluripotent stem cells into patients during the subacute phase of SCI. One of the therapeutic mechanisms of cell transplantation is the formation of synaptic connections with the host's neural tissues, which we demonstrated using a chemogenetic tool. In addition, we have developed innovative strategies to enhance the effectiveness of cell transplantation through gene therapy. Moreover, our current study is focused on developing cell therapy for chronic SCI, a more challenging pathology characterized by the formation of cavities and scar tissue. In such situations, transplanting NPCs with neurogenic properties could effectively penetrate scar tissue and form functional synapses with the host neurons. To improve the outcomes of cell transplantation alone, we have found that incorporating rehabilitation is beneficial. In animal models of SCI, we have established an effective rehabilitative training program in which NPCs were transplanted during the chronic phase. Robotic rehabilitation has demonstrated improvements in gait ability and trunk function in clinical situations. Therefore, regenerative medicine shows promise for chronic SCI, particularly when rehabilitation strategies are incorporated.
Collapse
Affiliation(s)
| | | | - Hideyuki Okano
- Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio University Regenerative Medicine Center, Kawasaki, Japan
| | | |
Collapse
|
4
|
Wang X, Han D, Zheng T, Ma J, Chen Z. Modulation of human induced neural stem cell-derived dopaminergic neurons by DREADD reveals therapeutic effects on a mouse model of Parkinson's disease. Stem Cell Res Ther 2024; 15:297. [PMID: 39256801 PMCID: PMC11389507 DOI: 10.1186/s13287-024-03921-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Stem cell-based therapy is a promising strategy for treating Parkinson's disease (PD) characterized by the loss of dopaminergic neurons. Recently, induced neural stem cell-derived dopaminergic precursor cells (iNSC-DAPs) have been emerged as a promising candidate for PD cell therapy because of a lower tumor-formation ability. Designer receptors exclusively activated by designer drugs (DREADDs) are useful tools for examining functional synaptic connections with host neurons. METHODS DREADD knock-in human iNSCs to express excitatory hM3Dq and inhibitory hM4Di receptors were engineered by CRISPR. The knock-in iNSCs were differentiated into midbrain dopaminergic precursor cells (DAPs) and transplanted into PD mice. The various behavior test such as the Apomorphine-induced rotation test, Cylinder test, Rotarod test, and Open field test were assessed at 4, 8, or 12 weeks post-transplantation with or without the administration of CNO. Electrophysiology were performed to assess the integrated condition and modulatory function to host neurons. RESULTS DREADD expressing iNSCs were constructed with normal neural stem cells characteristics, proliferation ability, and differentiation potential into dopaminergic neuorns. DAPs derived from DREADD expressing iNSC showed matched function upon administration of clozapine N-oxide (CNO) in vitro. The results of electrophysiology and behavioral tests of transplanted PD mouse models revealed that the grafts established synaptic connections with downstream host neurons and exhibited excitatory or inhibitory modulation in response to CNO in vivo. CONCLUSION iNSC-DAPs are a promising candidate for cell replacement therapy for Parkinson's disease. Remote DREADD-dependent activation of iNSC-DAP neurons significantly enhanced the beneficial effects on transplanted mice with Parkinson's disease.
Collapse
Affiliation(s)
- Xueyao Wang
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Deqiang Han
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
5
|
McInvale JJ, Canoll P, Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer's disease and frontotemporal dementia. Brain Pathol 2024; 34:e13231. [PMID: 38246596 PMCID: PMC11189780 DOI: 10.1111/bpa.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative diseases are increasing in prevalence and comprise a large socioeconomic burden on patients and their caretakers. The need for effective therapies and avenues for disease prevention and monitoring is of paramount importance. Fluid biomarkers for neurodegenerative diseases have gained a variety of uses, including informing participant selection for clinical trials, lending confidence to clinical diagnosis and disease staging, determining prognosis, and monitoring therapeutic response. Their role is expected to grow as disease-modifying therapies start to be available to a broader range of patients and as prevention strategies become established. Many of the underlying molecular mechanisms of currently used biomarkers are incompletely understood. Animal models and in vitro systems using cell lines have been extensively employed but face important translatability limitations. Induced pluripotent stem cell (iPSC) technology, where a theoretically unlimited range of cell types can be reprogrammed from peripheral cells sampled from patients or healthy individuals, has gained prominence over the last decade. It is a promising avenue to study physiological and pathological biomarker function and response to experimental therapeutics. Such systems are amenable to high-throughput drug screening or multiomics readouts such as transcriptomics, lipidomics, and proteomics for biomarker discovery, investigation, and validation. The present review describes the current state of biomarkers in the clinical context of neurodegenerative diseases, with a focus on Alzheimer's disease and frontotemporal dementia. We include a discussion of how iPSC models have been used to investigate and test biomarkers such as amyloid-β, phosphorylated tau, neurofilament light chain or complement proteins, and even nominate novel biomarkers. We discuss the limitations of current iPSC methods, mentioning alternatives such as coculture systems and three-dimensional organoids which address some of these concerns. Finally, we propose exciting prospects for stem cell transplantation paradigms using animal models as a preclinical tool to study biomarkers in the in vivo context.
Collapse
Affiliation(s)
- Julie J. McInvale
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
- Medical Scientist Training Program, Columbia UniversityNew YorkNew YorkUSA
| | - Peter Canoll
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Gunnar Hargus
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
6
|
Pazzin DB, Previato TTR, Budelon Gonçalves JI, Zanirati G, Xavier FAC, da Costa JC, Marinowic DR. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024; 13:745. [PMID: 38727281 PMCID: PMC11083827 DOI: 10.3390/cells13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.
Collapse
Affiliation(s)
- Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Fernando Antonio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| |
Collapse
|
7
|
Hashimoto S, Nagoshi N, Nakamura M, Okano H. Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regen Res 2024; 19:818-824. [PMID: 37843217 PMCID: PMC10664101 DOI: 10.4103/1673-5374.382230] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 10/17/2023] Open
Abstract
Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases. While rapid progress has been made in regenerative medicine for spinal cord injury that was previously untreatable, most research in this field has focused on the early phase of incomplete injury. However, the majority of patients have chronic severe injuries; therefore, treatments for these situations are of fundamental importance. The reason why the treatment of complete spinal cord injury has not been studied is that, unlike in the early stage of incomplete spinal cord injury, there are various inhibitors of neural regeneration. Thus, we assumed that it is difficult to address all conditions with a single treatment in chronic complete spinal cord injury and that a combination of several treatments is essential to target severe pathologies. First, we established a combination therapy of cell transplantation and drug-releasing scaffolds, which contributes to functional recovery after chronic complete transection spinal cord injury, but we found that functional recovery was limited and still needs further investigation. Here, for the further development of the treatment of chronic complete spinal cord injury, we review the necessary approaches to the different pathologies based on our findings and the many studies that have been accumulated to date and discuss, with reference to the literature, which combination of treatments is most effective in achieving functional recovery.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Saijo Y, Nagoshi N, Kawai M, Kitagawa T, Suematsu Y, Ozaki M, Shinozaki M, Kohyama J, Shibata S, Takeuchi K, Nakamura M, Yuzaki M, Okano H. Human-induced pluripotent stem cell-derived neural stem/progenitor cell ex vivo gene therapy with synaptic organizer CPTX for spinal cord injury. Stem Cell Reports 2024; 19:383-398. [PMID: 38366597 PMCID: PMC10937157 DOI: 10.1016/j.stemcr.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/18/2024] Open
Abstract
The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.
Collapse
Affiliation(s)
- Yusuke Saijo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yu Suematsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Kosei Takeuchi
- Department of Medical Cell Biology, Aichi Medical University School of Medicine, 1-1 Yazago-Karimata, Nagakute, Aichi 430-1195, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
9
|
Jagrit V, Koffler J, Dulin JN. Combinatorial strategies for cell transplantation in traumatic spinal cord injury. Front Neurosci 2024; 18:1349446. [PMID: 38510468 PMCID: PMC10951004 DOI: 10.3389/fnins.2024.1349446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Spinal cord injury (SCI) substantially reduces the quality of life of affected individuals. Recovery of function is therefore a primary concern of the patient population and a primary goal for therapeutic interventions. Currently, even with growing numbers of clinical trials, there are still no effective treatments that can improve neurological outcomes after SCI. A large body of work has demonstrated that transplantation of neural stem/progenitor cells (NSPCs) can promote regeneration of the injured spinal cord by providing new neurons that can integrate into injured host neural circuitry. Despite these promising findings, the degree of functional recovery observed after NSPC transplantation remains modest. It is evident that treatment of such a complex injury cannot be addressed with a single therapeutic approach. In this mini-review, we discuss combinatorial strategies that can be used along with NSPC transplantation to promote spinal cord regeneration. We begin by introducing bioengineering and neuromodulatory approaches, and highlight promising work using these strategies in integration with NSPCs transplantation. The future of NSPC transplantation will likely include a multi-factorial approach, combining stem cells with biomaterials and/or neuromodulation as a promising treatment for SCI.
Collapse
Affiliation(s)
- Vipin Jagrit
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jacob Koffler
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Veterans Affairs Medical Center, San Diego, CA, United States
| | - Jennifer N. Dulin
- Department of Biology, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain 2024; 147:766-793. [PMID: 37975820 DOI: 10.1093/brain/awad392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ben Borys
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
11
|
Yang Y, Ma B, Chen J, Liu D, Ma J, Li B, Hao J, Zhou X. Epigenetic regulation and factors that influence the effect of iPSCs-derived neural stem/progenitor cells (NS/PCs) in the treatment of spinal cord injury. Clin Epigenetics 2024; 16:30. [PMID: 38383473 PMCID: PMC10880347 DOI: 10.1186/s13148-024-01639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that causes neurological impairment and disability. Neural stem/progenitor cells (NS/PCs) derived from induced pluripotent stem cells (iPSCs) represent a promising cell therapy strategy for spinal cord regeneration and repair. However, iPSC-derived NS/PCs face many challenges and issues in SCI therapy; one of the most significant challenges is epigenetic regulation and that factors that influence this mechanism. Epigenetics refers to the regulation of gene expression and function by DNA methylation, histone modification, and chromatin structure without changing the DNA sequence. Previous research has shown that epigenetics plays a crucial role in the generation, differentiation, and transplantation of iPSCs, and can influence the quality, safety, and outcome of transplanted cells. In this study, we review the effects of epigenetic regulation and various influencing factors on the role of iPSC-derived NS/PCs in SCI therapy at multiple levels, including epigenetic reprogramming, regulation, and the adaptation of iPSCs during generation, differentiation, and transplantation, as well as the impact of other therapeutic tools (e.g., drugs, electrical stimulation, and scaffolds) on the epigenetic status of transplanted cells. We summarize our main findings and insights in this field and identify future challenges and directions that need to be addressed and explored.
Collapse
Affiliation(s)
- Yubiao Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
12
|
Deng Q, Ma L, Yang Y, Chen T, Zhan L, He Q, Jiang Y, Ma L. Effect of Electroacupuncture Stimulation on Proliferation and Differentiation of Endogenous Neural Stem Cells in Rats with Spinal Cord Injury. Mol Neurobiol 2024; 61:635-645. [PMID: 37650966 DOI: 10.1007/s12035-023-03577-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
The aim of this work was to investigate the effects of electroacupuncture (EA) stimulation on the proliferation and differentiation of endogenous neural stem cells (NSCs) in rats with spinal cord injury (SCI). One hundred rats were included and randomly divided into the sham-operation (SO) group, model (MO) group, EA group, and preacupuncture stimulation (PAS) group, with 25 rats in each group. All the rats in the SO group had their spinal cord of thoracic segment T10 exposed but without SCI. In the remaining three groups, the modified Allen's weight dropping method was adopted to make SCI models. Those in the SO group and the MO group did not receive any treatment. Those in the EA group were treated with EA after the modelling was completed, which stopped when the samples were collected at each time point. The spinal cord tissue of rats was subjected to immunohistochemical staining and real-time quantitative polymerase chain reaction (PCR) to detect the expressions of neurofilament nestin and glial fibrillary acidic protein (GFAP). The Basso-Beattie-Bresnahan (BBB) score of the MO group was much lower than that of the SO group on the 3rd, 7th, and 14th days after surgery (P < 0.05). The BBB scores of the EA group and PAS group were notably higher than that of the MO group (P < 0.05). The number of nestin-, GFAP-, and MAP-2-positive cells was significantly increased in rat tissues after spinal cord injury. On the 3rd, 7th, and 14th days postoperatively, the numbers of nestin-positive cells in the EA and PAS groups were considerably higher than those in the MO group (P < 0.01). However, the numbers of GFAP-positive cells in the EA and PAS groups were considerably decreased compared with those in the MO group (P < 0.01). The positive rate of MAP-2 in the model group was significantly increased compared to that in the sham-operation group (P < 0.001). The positive rates of MAP-2 in the EA group and PAS group were significantly higher than those in the MO group (P < 0.01). After spinal cord injury, EA could activate the proliferation of endogenous NSCs and promote their differentiation into neuronal cells. Consequently, injuries were repaired, and functions were rehabilitated.
Collapse
Affiliation(s)
- Qilong Deng
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China.
- Taizhou Enze Medical Center (Group), Luqiao Hospital, Taizhou, 318050, Zhejiang, China.
| | - Lili Ma
- Department of Hepatology and Infectious Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yu Yang
- Department of Orthopedic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Ting Chen
- Department of Dermatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Luding Zhan
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Qiaoqiao He
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yingying Jiang
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Lizhong Ma
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| |
Collapse
|
13
|
Stewart AN, Gensel JC, Jones L, Fouad K. Challenges in Translating Regenerative Therapies for Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2023; 29:23-43. [PMID: 38174141 PMCID: PMC10759906 DOI: 10.46292/sci23-00044s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Regenerating the injured spinal cord is a substantial challenge with many obstacles that need to be overcome to achieve robust functional benefits. This abundance of hurdles can partly explain the limited success when applying regenerative intervention treatments in animal models and/or people. In this article, we elaborate on a few of these obstacles, starting with the applicability of animal models and how they compare to the clinical setting. We then discuss the requirement for combinatorial interventions and the associated problems in experimental design, including the addition of rehabilitative training. The article expands on differences in lesion sizes and locations between humans and common animal models, and how this difference can determine the success or failure of an intervention. An additional and frequently overlooked problem in the translation of interventions that applies beyond the field of neuroregeneration is the reporting bias and the lack of transparency in reporting findings. New data mandates are tackling this problem and will eventually result in a more balanced view of the field. Finally, we will discuss strategies to negotiate the challenging course of successful translation to facilitate successful translation of regeneration promoting interventions.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Linda Jones
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Karim Fouad
- Department of Physical Therapy, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Matsubayashi K, Shinozaki M, Hata J, Komaki Y, Nagoshi N, Tsuji O, Fujiyoshi K, Nakamura M, Okano H. A shift of brain network hub after spinal cord injury. Front Mol Neurosci 2023; 16:1245902. [PMID: 37915973 PMCID: PMC10616864 DOI: 10.3389/fnmol.2023.1245902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background Spinal cord injury (SCI) causes severe sequelae and significant social loss, depending on the extent of the damage. Most previous studies have focused on the pathology of the spinal cord to develop treatments for SCI. However, it is now known that the brain, which is not directly damaged, also undergoes morphological changes after spinal cord injury, which could affect natural recovery and treatment. In recent years, magnetic resonance imaging (MRI) has been developed to analyze functional changes in the brain. Resting-state functional MRI (rsfMRI), which captures brain activity at rest, can calculate functional connections between brain areas and identify central hubs by network analysis. Purpose We aim to investigate functional connectivity in the brain using rsfMRI after SCI and to determine how brain-network main hubs change over time. Methods We evaluated rsfMRI in 10 mice of the contusional SCI model and calculated connectivity using graph theory. We evaluated "centrality," a representative parameter of network analysis. The subtype of centrality was degree centrality, which indicates the hub function of a single area. The five times of rsfMRI were performed in each individual mouse: before injury and at 1, 3, 7, and 14 weeks post-injury. Results Before the injury, the degree centralities of the primary and secondary motor cortex were high, suggesting that these motor cortices served as main hubs for motor function. After SCI, the hub function of the motor cortices decreased by 14 weeks. In contrast, hub function in the external capsule and the putamen comparatively increased with time after injury, suggesting that the extrapyramidal/subcortical system, which runs the ventral side of the spinal cord and remains after injury in this model, becomes dominant. Conclusion We demonstrated the shift of the brain network hub after SCI. The results of this study provide basic information for understanding brain network changes after SCI and would be useful for treatment selection and evaluation of its efficacy in SCI patients.
Collapse
Affiliation(s)
- Kohei Matsubayashi
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Munehisa Shinozaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuji Komaki
- Live Animal Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopaedic Surgery, Murayama Medical Center (NHO), Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
15
|
Suematsu Y, Nagoshi N, Shinozaki M, Kase Y, Saijo Y, Hashimoto S, Shibata T, Kajikawa K, Kamata Y, Ozaki M, Yasutake K, Shindo T, Shibata S, Matsumoto M, Nakamura M, Okano H. Hepatocyte growth factor pretreatment boosts functional recovery after spinal cord injury through human iPSC-derived neural stem/progenitor cell transplantation. Inflamm Regen 2023; 43:50. [PMID: 37845736 PMCID: PMC10577910 DOI: 10.1186/s41232-023-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC)-based cell transplantation has emerged as a groundbreaking method for replacing damaged neural cells and stimulating functional recovery, but its efficacy is strongly influenced by the state of the injured spinal microenvironment. This study evaluates the impact of a dual therapeutic intervention utilizing hepatocyte growth factor (HGF) and hiPSC-NS/PC transplantation on motor function restoration following spinal cord injury (SCI). METHODS Severe contusive SCI was induced in immunocompromised rats, followed by continuous administration of recombinant human HGF protein into the subarachnoid space immediately after SCI for two weeks. Acute-phase histological and RNA sequencing analyses were conducted. Nine days after the injury, hiPSC-NS/PCs were transplanted into the lesion epicenter of the injured spinal cord, and the functional and histological outcomes were determined. RESULTS The acute-phase HGF-treated group exhibited vascularization, diverse anti-inflammatory effects, and activation of endogenous neural stem cells after SCI, which collectively contributed to tissue preservation. Following cell transplantation into a favorable environment, the transplanted NS/PCs survived well, facilitating remyelination and neuronal regeneration in host tissues. These comprehensive effects led to substantial enhancements in motor function in the dual-therapy group compared to the single-treatment groups. CONCLUSIONS We demonstrate that the combined therapeutic approach of HGF preconditioning and hiPSC-NS/PC transplantation enhances locomotor functional recovery post-SCI, highlighting a highly promising therapeutic strategy for acute to subacute SCI.
Collapse
Affiliation(s)
- Yu Suematsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutukake-Cho, Toyoake-Shi, Aichi, 470-1192, Japan
| | - Yusuke Saijo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keita Kajikawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kaori Yasutake
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, Niigata, 951-8510, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
16
|
Murayama MA. The past and present of therapeutic strategy for Alzheimer's diseases: potential for stem cell therapy. Exp Anim 2023; 72:285-293. [PMID: 36878603 PMCID: PMC10435354 DOI: 10.1538/expanim.22-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by cognitive dysfunction and neuropsychiatric symptoms, is the most prevalent form of dementia among the elderly. Amyloid aggregation, tau hyperphosphorylation, and neural cell loss are the main pathological features. Various hypotheses have been proposed to explain the development of AD. Some therapeutic agents have shown clinical benefits in patients with AD; however, many of these agents have failed. The degree of neural cell loss is associated with the severity of AD. Adult neurogenesis, which governs cognitive and emotional behaviors, occurs in the hippocampus, and some research groups have reported that neural cell transplantation into the hippocampus improves cognitive dysfunction in AD model mice. Based on these clinical findings, stem cell therapy for patients with AD has recently attracted attention. This review provides past and present therapeutic strategies for the management and treatment of AD.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
17
|
Lear BP, Moore DL. Moving CNS axon growth and regeneration research into human model systems. Front Neurosci 2023; 17:1198041. [PMID: 37425013 PMCID: PMC10324669 DOI: 10.3389/fnins.2023.1198041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Axon regeneration is limited in the adult mammalian central nervous system (CNS) due to both intrinsic and extrinsic factors. Rodent studies have shown that developmental age can drive differences in intrinsic axon growth ability, such that embryonic rodent CNS neurons extend long axons while postnatal and adult CNS neurons do not. In recent decades, scientists have identified several intrinsic developmental regulators in rodents that modulate growth. However, whether this developmentally programmed decline in CNS axon growth is conserved in humans is not yet known. Until recently, there have been limited human neuronal model systems, and even fewer age-specific human models. Human in vitro models range from pluripotent stem cell-derived neurons to directly reprogrammed (transdifferentiated) neurons derived from human somatic cells. In this review, we discuss the advantages and disadvantages of each system, and how studying axon growth in human neurons can provide species-specific knowledge in the field of CNS axon regeneration with the goal of bridging basic science studies to clinical trials. Additionally, with the increased availability and quality of 'omics datasets of human cortical tissue across development and lifespan, scientists can mine these datasets for developmentally regulated pathways and genes. As there has been little research performed in human neurons to study modulators of axon growth, here we provide a summary of approaches to begin to shift the field of CNS axon growth and regeneration into human model systems to uncover novel drivers of axon growth.
Collapse
Affiliation(s)
| | - Darcie L. Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Kaito T. Introduction to the NASSJ special issue on advances in regenerative therapy for spinal diseases. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 14:100215. [PMID: 37152408 PMCID: PMC10154952 DOI: 10.1016/j.xnsj.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
|
19
|
Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN. Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 2023; 6:544. [PMID: 37208439 PMCID: PMC10199026 DOI: 10.1038/s42003-023-04893-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for replacing lost neurons following spinal cord injury (SCI). However, how graft cellular composition influences regeneration and synaptogenesis of host axon populations, or recovery of motor and sensory functions after SCI, is poorly understood. We transplanted developmentally-restricted spinal cord NPCs, isolated from E11.5-E13.5 mouse embryos, into sites of adult mouse SCI and analyzed graft axon outgrowth, cellular composition, host axon regeneration, and behavior. Earlier-stage grafts exhibited greater axon outgrowth, enrichment for ventral spinal cord interneurons and Group-Z spinal interneurons, and enhanced host 5-HT+ axon regeneration. Later-stage grafts were enriched for late-born dorsal horn interneuronal subtypes and Group-N spinal interneurons, supported more extensive host CGRP+ axon ingrowth, and exacerbated thermal hypersensitivity. Locomotor function was not affected by any type of NPC graft. These findings showcase the role of spinal cord graft cellular composition in determining anatomical and functional outcomes following SCI.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Katie Vo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joshua Moses
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Hannah Thomas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Diego Miranda
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew Chang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Aleena Lukose
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Julius Jang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Sneha Nadella
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Tucker Gillespie
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Trevino
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna L Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Dylan A McCreedy
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
20
|
Hashimoto S, Nagoshi N, Shinozaki M, Nakanishi K, Suematsu Y, Shibata T, Kawai M, Kitagawa T, Ago K, Kamata Y, Yasutake K, Koya I, Ando Y, Minoda A, Shindo T, Shibata S, Matsumoto M, Nakamura M, Okano H. Microenvironmental modulation in tandem with human stem cell transplantation enhances functional recovery after chronic complete spinal cord injury. Biomaterials 2023; 295:122002. [PMID: 36736008 DOI: 10.1016/j.biomaterials.2023.122002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
While rapid advancements in regenerative medicine strategies for spinal cord injury (SCI) have been made, most research in this field has focused on the early stages of incomplete injury. However, the majority of patients experience chronic severe injury; therefore, treatments for these situations are fundamentally important. Here, we hypothesized that environmental modulation via a clinically relevant hepatocyte growth factor (HGF)-releasing scaffold and human iPS cell-derived neural stem/progenitor cells (hNS/PCs) transplantation contributes to functional recovery after chronic complete transection SCI. Effective release of HGF from a collagen scaffold induced progressive axonal elongation and increased grafted cell viability by activating microglia/macrophages and meningeal cells, inhibiting inflammation, reducing scar formation, and enhancing vascularization. Furthermore, hNS/PCs transplantation enhanced endogenous neuronal regrowth, the extension of graft axons, and the formation of circuits around the lesion and lumbar enlargement between host and graft neurons, resulting in the restoration of locomotor and urinary function. This study presents an effective therapeutic strategy for severe chronic SCI and provides evidence for the feasibility of regenerative medicine strategies using clinically relevant materials.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Katsuyuki Nakanishi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yu Suematsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ago
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kaori Yasutake
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ikuko Koya
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yoshinari Ando
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Aki Minoda
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
21
|
Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023; 12:cells12060853. [PMID: 36980193 PMCID: PMC10046908 DOI: 10.3390/cells12060853] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.
Collapse
|
22
|
Shibata T, Tashiro S, Shibata S, Shinozaki M, Shindo T, Hashimoto S, Kawai M, Kitagawa T, Ago K, Matsumoto M, Nakamura M, Okano H, Nagoshi N. Rehabilitative Training Enhances Therapeutic Effect of Human-iPSC-Derived Neural Stem/Progenitor Cells Transplantation in Chronic Spinal Cord Injury. Stem Cells Transl Med 2023; 12:83-96. [PMID: 36647673 PMCID: PMC9985116 DOI: 10.1093/stcltm/szac089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Cell transplantation therapy using human-induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) is a new therapeutic strategy for spinal cord injury (SCI). Preclinical studies have demonstrated the efficacy of hiPSC-NS/PCs transplantation in the subacute phase of SCI. However, locomotor recovery secondary to hiPSC-NS/PCs transplantation is limited in the chronic phase, suggesting that additional treatment, including rehabilitative training, is required to ensure recovery. The therapeutic potential of hiPSC-NS/PCs that qualify for clinical application is yet to be fully delineated. Therefore, in this study, we investigated the therapeutic effect of the combined therapy of clinical-grade hiPSC-NS/PCs transplantation and rehabilitative training that could produce synergistic effects in a rodent model of chronic SCI. Our findings indicated that rehabilitative training promoted the survival rate and neuronal differentiation of transplanted hiPSC-NS/PCs. The combination therapy was able to enhance the expressions of the BDNF and NT-3 proteins in the spinal cord tissue. Moreover, rehabilitation promoted neuronal activity and increased 5-HT-positive fibers at the lumbar enlargement. Consequently, the combination therapy significantly improved motor functions. The findings of this study suggest that the combined therapy of hiPSC-NS/PCs transplantation and rehabilitative training has the potential to promote functional recovery even when initiated during chronic SCI.
Collapse
Affiliation(s)
- Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Syoichi Tashiro
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.,Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Ago
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
23
|
Kawai M, Nagoshi N, Okano H, Nakamura M. A review of regenerative therapy for spinal cord injury using human iPS cells. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 13:100184. [PMID: 36479183 PMCID: PMC9720571 DOI: 10.1016/j.xnsj.2022.100184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Spinal cord injury (SCI) has been considered to cause sudden, irreversible loss of function in patients. However, developments in stem cell biology and regenerative medicine are changing this conventional notion. Here we reviewed the overview of regenerative medicine of SCI. As a consequence of the establishment of human induced pluripotent stem cells (hiPSCs), hiPSC-based therapies for SCI, such as neural stem/progenitor cell (NS/PC) transplantation, have emerged as promising therapeutic modalities. Using several animal models, hiPSC-NS/PC transplantation into subacute injured spinal cords has been repeatedly demonstrated to improve locomotor function. Some biological mechanisms underlying this improvement have been proposed. In particular, combined with advanced neuroscience techniques such as designer receptors exclusively activated by designer drugs (DREADDs), neuronal relay theory, in which the transplanted cell-derived neurons reconstruct disrupted neuronal circuits, was proven to be involved histologically, pharmaceutically, electrophysiologically, and via in vivo bioimaging. Based on these findings, hiPSC-NS/PC transplantation for subacute SCI was moved ahead to a clinical study on human patients. At the same time, the search for effective treatments for chronic SCI is proceeding gradually, combining hiPSC-NS/PC transplantation with other treatment modalities such as rehabilitation, pharmaceutical interventions, or optimal scaffolds. In addition to NS/PCs, oligodendrocyte precursor cells (OPCs) are also a promising cell source for transplantation, as demyelinated axons affected by SCI can be repaired by OPCs. Therapies with OPCs derived from hiPSCs are still in preclinical studies but have shown favorable outcomes in animal models. In the future, several therapeutic options may be available according to the pathological conditions and the time period of SCI. Moreover, the application of regenerative therapy for the spinal cord could be broadened to degenerative disorders, such as spinal canal stenosis. Summary sentence: A historical review of human induced pluripotent stem cell (hiPSC) based cell transplantation therapy for spinal cord injury (SCI), in particular about footsteps of hiPSC-derived neural stem/progenitor cell transplantation, recent clinical study, and its future perspective.
Collapse
Affiliation(s)
- Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
24
|
Variation of DNA methylation on the IRX1/2 genes is responsible for the neural differentiation propensity in human induced pluripotent stem cells. Regen Ther 2022; 21:620-630. [PMID: 36514370 PMCID: PMC9719094 DOI: 10.1016/j.reth.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Human induced pluripotent stem cells (hiPSCs) are useful tools for reproducing neural development in vitro. However, each hiPSC line has a different ability to differentiate into specific lineages, known as differentiation propensity, resulting in reduced reproducibility and increased time and funding requirements for research. To overcome this issue, we searched for predictive signatures of neural differentiation propensity of hiPSCs focusing on DNA methylation, which is the main modulator of cellular properties. Methods We obtained 32 hiPSC lines and their comprehensive DNA methylation data using the Infinium MethylationEPIC BeadChip. To assess the neural differentiation efficiency of these hiPSCs, we measured the percentage of neural stem cells on day 7 of induction. Using the DNA methylation data of undifferentiated hiPSCs and their measured differentiation efficiency into neural stem cells as the set of data, and HSIC Lasso, a machine learning-based nonlinear feature selection method, we attempted to identify neural differentiation-associated differentially methylated sites. Results Epigenome-wide unsupervised clustering cannot distinguish hiPSCs with varying differentiation efficiencies. In contrast, HSIC Lasso identified 62 CpG sites that could explain the neural differentiation efficiency of hiPSCs. Features selected by HSIC Lasso were particularly enriched within 3 Mbp of chromosome 5, harboring IRX1, IRX2, and C5orf38 genes. Within this region, DNA methylation rates were correlated with neural differentiation efficiency and were negatively correlated with gene expression of the IRX1/2 genes, particularly in female hiPSCs. In addition, forced expression of the IRX1/2 impaired the neural differentiation ability of hiPSCs in both sexes. Conclusion We for the first time showed that the DNA methylation state of the IRX1/2 genes of hiPSCs is a predictive biomarker of their potential for neural differentiation. The predictive markers for neural differentiation efficiency identified in this study may be useful for the selection of suitable undifferentiated hiPSCs prior to differentiation induction.
Collapse
|
25
|
Kitagawa T, Nagoshi N, Okano H, Nakamura M. A Narrative Review of Advances in Neural Precursor Cell Transplantation Therapies for Spinal Cord Injury. Neurospine 2022; 19:935-945. [PMID: 36597632 PMCID: PMC9816589 DOI: 10.14245/ns.2244628.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
A spinal cord injury (SCI) is a destructive event that causes a permanent deficit in neurological function because of poor regenerative potential. Transplantation therapies have attracted attention for restoration of the injured spinal cord, and transplantation of neural precursor cells (NPCs) has been studied worldwide. Several groups have demonstrated functional recovery via this therapeutic intervention due to the multiple beneficial effects of NPC transplantation, such as reconstruction of neuronal circuits, remyelination of axons, and neuroprotection by trophic factors. Our group developed a method to induce NPCs from human induced pluripotent stem cells (hiPSCs) and established a transplantation strategy for SCI. Functional improvement in SCI animals treated with hiPSC-NPCs was observed, and the safety of transplanting these cells was evaluated from multiple perspectives. With selection of a safe cell line and pretreatment of the cells to encourage maturation and differentiation, hiPSC-NPC transplantation therapy is now in the clinical phase of testing for subacute SCI. In addition, a research challenge will be to expand the efficacy of transplantation therapy for chronic SCI. More comprehensive strategies involving combination treatments are required to treat this problematic situation.
Collapse
Affiliation(s)
- Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan,Corresponding Author Narihito Nagoshi Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Hashimoto M, Takeichi K, Murata K, Kozakai A, Yagi A, Ishikawa K, Suzuki-Nakagawa C, Kasuya Y, Fukamizu A, Nakagawa T. Regulation of neural stem cell proliferation and survival by protein arginine methyltransferase 1. Front Neurosci 2022; 16:948517. [PMID: 36440275 PMCID: PMC9685794 DOI: 10.3389/fnins.2022.948517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 12/22/2024] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions, such as transcription, DNA damage response, and signal transduction. PRMT1 is highly expressed in neural stem cells (NSCs) and embryonic brains, suggesting that PRMT1 is essential for early brain development. Although our previous reports have shown that PRMT1 positively regulates oligodendrocyte development, it has not been studied whether PRMT1 regulates NSC proliferation and its survival during development. To examine the role of PRMT1 in NSC activity, we cultured NSCs prepared from embryonic mouse forebrains deficient in PRMT1 specific for NSCs and performed neurosphere assays. We found that the primary neurospheres of PRMT1-deficient NSCs were small and the number of spheres was decreased, compared to those of control NSCs. Primary neurospheres deficient in PRMT1 expressed an increased level of cleaved caspase-3, suggesting that PRMT1 deficiency-induced apoptosis. Furthermore, p53 protein was significantly accumulated in PRMT1-deficient NSCs. In parallel, p53-responsive pro-apoptotic genes including Pmaip1 and Perp were upregulated in PRMT1-deficient NSCs. p53-target p21 mRNA and its protein levels were shown to be upregulated in PRMT1-deficient NSCs. Moreover, the 5-bromo-2'-deoxyuridine (BrdU) incorporation assay showed that the loss of PRMT1 led to cell cycle defects in the embryonic NSCs. In contrast to the above in vitro observations, NSCs normally proliferated and survived in the fetal brains of NSC-specific PRMT1-deficient mice. We also found that Lama1, which encodes the laminin subunit α1, was significantly upregulated in the embryonic brains of PRMT1-deficient mice. These data implicate that extracellular factors provided by neighboring cells in the microenvironment gave a trophic support to NSCs in the PRMT1-deficient brain and recovered NSC activity to maintain brain homeostasis. Our study implies that PRMT1 plays a cell-autonomous role in the survival and proliferation of embryonic NSCs.
Collapse
Affiliation(s)
- Misuzu Hashimoto
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kaho Takeichi
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Aoi Kozakai
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Atsushi Yagi
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kohei Ishikawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Chiharu Suzuki-Nakagawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- World Premier International Research Center Initiative, International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Tsutomu Nakagawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
27
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Okano H. Transplantation of neural progenitor cells into the human CNS. Trends Mol Med 2022; 28:897-899. [PMID: 36182630 DOI: 10.1016/j.molmed.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 10/31/2022]
Abstract
The development of regenerative medicine for spinal cord injury (SCI) and intractable diseases of the nervous system using neural progenitor cells (NPCs) has shown great promise, and several clinical trials have begun. In addition, ex vivo gene therapy using genetically engineered NPCs was recently initiated in the clinical setting by Baloh et al., putatively showing enhanced therapeutic effects. Thus, the era of next-generation NPC transplantation therapy is beginning to dawn.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
29
|
Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 2022; 11:2765. [PMID: 36078173 PMCID: PMC9454923 DOI: 10.3390/cells11172765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Locomotor function after spinal cord injury (SCI) is critical for assessing recovery. Currently, available means to improve locomotor function include surgery, physical therapy rehabilitation and exoskeleton. Stem cell therapy with neural progenitor cells (NPCs) transplantation is a promising reparative strategy. Along this line, patient-specific induced pluripotent stem cells (iPSCs) are a remarkable autologous cell source, which offer many advantages including: great potential to generate isografts avoiding immunosuppression; the availability of a variety of somatic cells without ethical controversy related to embryo use; and vast differentiation. In this current work, to realize the therapeutic potential of iPSC-NPCs for the treatment of SCI, we transplanted purified iPSCs-derived NPCs into a cervical contusion SCI rat model. Our results showed that the iPSC-NPCs were able to survive and differentiate into both neurons and astrocytes and, importantly, improve forelimb locomotor function as assessed by the grooming task and horizontal ladder test. Purified iPSC-NPCs represent a promising cell type that could be further tested and developed into a clinically useful cell source for targeted cell therapy for cervical SCI patients.
Collapse
Affiliation(s)
- Yiyan Zheng
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chrystine M. Gallegos
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dong H. Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongxia Zhou
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Xugang Xia
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Ying Liu
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qilin Cao
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
30
|
Ago K, Nagoshi N, Imaizumi K, Kitagawa T, Kawai M, Kajikawa K, Shibata R, Kamata Y, Kojima K, Shinozaki M, Kondo T, Iwano S, Miyawaki A, Ohtsuka M, Bito H, Kobayashi K, Shibata S, Shindo T, Kohyama J, Matsumoto M, Nakamura M, Okano H. A non-invasive system to monitor in vivo neural graft activity after spinal cord injury. Commun Biol 2022; 5:803. [PMID: 35948599 PMCID: PMC9365819 DOI: 10.1038/s42003-022-03736-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Expectations for neural stem/progenitor cell (NS/PC) transplantation as a treatment for spinal cord injury (SCI) are increasing. However, whether and how grafted cells are incorporated into the host neural circuit and contribute to motor function recovery remain unknown. The aim of this project was to establish a novel non-invasive in vivo imaging system to visualize the activity of neural grafts by which we can simultaneously demonstrate the circuit-level integration between the graft and host and the contribution of graft neuronal activity to host behaviour. We introduced Akaluc, a newly engineered luciferase, under the control of enhanced synaptic activity-responsive element (E-SARE), a potent neuronal activity-dependent synthetic promoter, into NS/PCs and engrafted the cells into SCI model mice. Through the use of this system, we found that the activity of grafted cells was integrated with host behaviour and driven by host neural circuit inputs. This non-invasive system is expected to help elucidate the therapeutic mechanism of cell transplantation treatment for SCI. Visualisation of the activity of neural grafts using engineered luciferase provides insights into the integration between the graft and host.
Collapse
Affiliation(s)
- Kentaro Ago
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keita Kajikawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Reo Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kota Kojima
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takahiro Kondo
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Satoshi Iwano
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masanari Ohtsuka
- Laboratory for Molecular Analysis of Higher Brain Function, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.,Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
31
|
Lu T, Shinozaki M, Nagoshi N, Nakamura M, Okano H. 3D imaging of supraspinal inputs to the thoracic and lumbar spinal cord mapped by retrograde tracing and light-sheet microscopy. J Neurochem 2022; 162:352-370. [PMID: 35674500 DOI: 10.1111/jnc.15653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022]
Abstract
The supraspinal inputs play a major role in tuning the hindlimb locomotion function. While most research on spinal cord injury (SCI) with rodents is based on thoracic segments, the difference in connectivity of the supraspinal centers to the thoracic and lumbar cord is still unknown. Here, we combined retrograde tracing and 3D imaging to map the connectivity of supraspinal neurons projecting to thoracic (T9-vertebral) and lumbar (T13-vertebral) spinal levels in adult female mice. We dissected the difference in connections of corticospinal neurons (CSNs), rubrospinal neurons, and reticulospinal neurons projecting to thoracic and lumbar cords. The ratio of double-labeled neurons is higher in T13-vertebral projection CSNs and parvocellular part of the red nucleus (RPC) than in T9-vertebral projection. Using the Cre-DIO system, we precisely targeted CSNs projecting to T9-vertebral or T13-vertebral. We found that abundant axon branches communicated with the red nucleus and reticular formation and distributed from cervical gray matter to the lumbar cord. Their collateral branches showed a distinct innervation pattern in thoracic and lumbar gray matters and a similar distribution pattern in the cervical spinal cord. These results revealed the difference in connectivity between the thoracic and lumbar projection supraspinal centers and clarified the collateralization of thoracic/lumbar projection CSNs throughout the brain and spinal cord. This study highlights brain-spinal cord neural networks and the complexity of the axon terminals of spinal projection CSNs, which could contribute to the development of targeted therapeutic strategies connecting CST fibers and hindlimb function recovery.
Collapse
Affiliation(s)
- Tao Lu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|