1
|
Ortiz A, Ayhan F, Khandelwal N, Outland E, Jankovic M, Harper M, Konopka G. Cell type-specific roles of FOXP1 in the excitatory neuronal lineage during early neocortical murine development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.08.598089. [PMID: 38895440 PMCID: PMC11185780 DOI: 10.1101/2024.06.08.598089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
FOXP1, a transcription factor enriched in the neocortex, is associated with autism spectrum disorders (ASD) and FOXP1 syndrome. Emx1 Cre/+ ;Foxp1 fl/fl conditional deletion (Foxp1 cKO) in the mouse cortex leads to overall reduced cortex thickness, alterations in cortical lamination, and changes in the relative thickness of cortical layers. However, the developmental and cell type-specific mechanisms underlying these changes remained unclear. We find that Foxp1 deletion results in accelerated pseudo-age during early neurogenesis, increased cell cycle exit during late neurogenesis, altered gene expression and chromatin accessibility, and selective migration deficits in a subset of upper-layer neurons. These data explain the postnatal differences observed in cortical layers and relative cortical thickness. We also highlight genes regulated by FOXP1 and their enrichment with high-confidence ASD or synaptic genes. Together, these results underscore a network of neurodevelopmental disorder-related genes that may serve as potential modulatory targets for postnatal modification relevant to ASD and FOXP1 syndrome.
Collapse
Affiliation(s)
- Ana Ortiz
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fatma Ayhan
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nitin Khandelwal
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Elliot Outland
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miranda Jankovic
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Harper
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Yun Q, Ma SF, Zhang WN, Gu M, Wang J. FoxG1 as a Potential Therapeutic Target for Alzheimer's Disease: Modulating NLRP3 Inflammasome via AMPK/mTOR Autophagy Pathway. Cell Mol Neurobiol 2024; 44:35. [PMID: 38630150 PMCID: PMC11023968 DOI: 10.1007/s10571-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
An increasing body of research suggests that promoting microglial autophagy hinders the neuroinflammation initiated though the NLRP3 inflammasome activation in Alzheimer's disease (AD). The function of FoxG1, a crucial transcription factor involved in cell survival by regulating mitochondrial function, remains unknown during the AD process and neuroinflammation occurs. In the present study, we firstly found that Aβ peptides induced AD-like neuroinflammation upregulation and downregulated the level of autophagy. Following low-dose Aβ25-35 stimulation, FoxG1 expression and autophagy exhibited a gradual increase. Nevertheless, with high-concentration Aβ25-35 treatment, progressive decrease in FoxG1 expression and autophagy levels as the concentration of Aβ25-35 escalated. In addition, FoxG1 has a positive effect on cell viability and autophagy in the nervous system. In parallel with the Aβ25-35 stimulation, we employed siRNA to decrease the expression of FoxG1 in N2A cells. A substantial reduction in autophagy level (Beclin1, LC3II, SQSTM1/P62) and a notable growth in inflammatory response (NLRP3, TNF-α, and IL-6) were observed. In addition, we found FoxG1 overexpression owned the effect on the activation of AMPK/mTOR autophagy pathway and siRNA-FoxG1 successfully abolished this effect. Lastly, FoxG1 suppressed the NLRP3 inflammasome and enhanced the cognitive function in AD-like mouse model induced by Aβ25-35. Confirmed by cellular and animal experiments, FoxG1 suppressed NLRP3-mediated neuroinflammation, which was strongly linked to autophagy regulated by AMPK/mTOR. Taken together, FoxG1 may be a critical node in the pathologic progression of AD and has the potential to serve as therapeutic target.
Collapse
Affiliation(s)
- Qi Yun
- Changzhou Children's Hospital Affiliated to Nantong University, 958 Zhongwu Avenue, Changzhou, 213000, Jiangsu Province, China
| | - Si-Fei Ma
- Changzhou Blood Center, 118 Canal Road, Changzhou, 213000, Jiangsu Province, China
| | - Wei-Ning Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 213000, Jiangsu Province, China
| | - Meng Gu
- Changzhou Children's Hospital Affiliated to Nantong University, 958 Zhongwu Avenue, Changzhou, 213000, Jiangsu Province, China.
| | - Jia Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 213000, Jiangsu Province, China.
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
4
|
Hettige NC, Fleming P, Semenak A, Zhang X, Peng H, Hagel MD, Théroux JF, Zhang Y, Ni A, Jefri M, Antonyan L, Alsuwaidi S, Schuppert A, Stumpf PS, Ernst C. FOXG1 targets BMP repressors and cell cycle inhibitors in human neural progenitor cells. Hum Mol Genet 2023; 32:2511-2522. [PMID: 37216650 PMCID: PMC10360395 DOI: 10.1093/hmg/ddad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
FOXG1 is a critical transcription factor in human brain where loss-of-function mutations cause a severe neurodevelopmental disorder, while increased FOXG1 expression is frequently observed in glioblastoma. FOXG1 is an inhibitor of cell patterning and an activator of cell proliferation in chordate model organisms but different mechanisms have been proposed as to how this occurs. To identify genomic targets of FOXG1 in human neural progenitor cells (NPCs), we engineered a cleavable reporter construct in endogenous FOXG1 and performed chromatin immunoprecipitation (ChIP) sequencing. We also performed deep RNA sequencing of NPCs from two females with loss-of-function mutations in FOXG1 and their healthy biological mothers. Integrative analyses of RNA and ChIP sequencing data showed that cell cycle regulation and Bone Morphogenic Protein (BMP) repression gene ontology categories were over-represented as FOXG1 targets. Using engineered brain cell lines, we show that FOXG1 specifically activates SMAD7 and represses CDKN1B. Activation of SMAD7 which inhibits BMP signaling may be one way that FOXG1 patterns the forebrain, while repression of cell cycle regulators such as CDKN1B may be one way that FOXG1 expands the NPC pool to ensure proper brain size. Our data reveal novel mechanisms on how FOXG1 may control forebrain patterning and cell proliferation in human brain development.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Peter Fleming
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Amelia Semenak
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Marc-Daniel Hagel
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | | | - Ying Zhang
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lilit Antonyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Shaima Alsuwaidi
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
5
|
Davis O. Abnormal Chromatin Folding in the Molecular Pathogenesis of Epilepsy and Autism Spectrum Disorder: a Meta-synthesis with Systematic Searching. Mol Neurobiol 2023; 60:768-779. [PMID: 36367658 PMCID: PMC9849311 DOI: 10.1007/s12035-022-03106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
How DNA is folded and packaged in nucleosomes is an essential regulator of gene expression. Abnormal patterns of chromatin folding are implicated in a wide range of diseases and disorders, including epilepsy and autism spectrum disorder (ASD). These disorders are thought to have a shared pathogenesis involving an imbalance in the number of excitatory-inhibitory neurons formed during neurodevelopment; however, the underlying pathological mechanism behind this imbalance is poorly understood. Studies are increasingly implicating abnormal chromatin folding in neural stem cells as one of the candidate pathological mechanisms, but no review has yet attempted to summarise the knowledge in this field. This meta-synthesis is a systematic search of all the articles on epilepsy, ASD, and chromatin folding. Its two main objectives were to determine to what extent abnormal chromatin folding is implicated in the pathogenesis of epilepsy and ASD, and secondly how abnormal chromatin folding leads to pathological disease processes. This search produced 22 relevant articles, which together strongly implicate abnormal chromatin folding in the pathogenesis of epilepsy and ASD. A range of mutations and chromosomal structural abnormalities lead to this effect, including single nucleotide polymorphisms, copy number variants, translocations and mutations in chromatin modifying. However, knowledge is much more limited into how abnormal chromatin organisation subsequently causes pathological disease processes, not yet showing, for example, whether it leads to abnormal excitation-inhibitory neuron imbalance in human brain organoids.
Collapse
Affiliation(s)
- Oliver Davis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| |
Collapse
|