1
|
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int J Mol Sci 2025; 26:671. [PMID: 39859383 PMCID: PMC11766050 DOI: 10.3390/ijms26020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011-1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
2
|
Xinyi Y, Vladimirovich RI, Beeraka NM, Satyavathi A, Kamble D, Nikolenko VN, Lakshmi AN, Basappa B, Reddy Y P, Fan R, Liu J. Emerging insights into epigenetics and hematopoietic stem cell trafficking in age-related hematological malignancies. Stem Cell Res Ther 2024; 15:401. [PMID: 39506818 PMCID: PMC11539620 DOI: 10.1186/s13287-024-04008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hematopoiesis within the bone marrow (BM) is a complex and tightly regulated process predominantly influenced by immune factors. Aging, diabetes, and obesity are significant contributors to BM niche damage, which can alter hematopoiesis and lead to the development of clonal hematopoiesis of intermediate potential (CHIP). Genetic/epigenetic alterations during aging could influence BM niche reorganization for hematopoiesis or clonal hematopoiesis. CHIP is driven by mutations in genes such as Tet2, Dnmt3a, Asxl1, and Jak2, which are associated with age-related hematological malignancies. OBJECTIVE This literature review aims to provide an updated exploration of the functional aspects of BM niche cells within the hematopoietic microenvironment in the context of age-related hematological malignancies. The review specifically focuses on how immunological stressors modulate different signaling pathways that impact hematopoiesis. METHODS An extensive review of recent studies was conducted, examining the roles of various BM niche cells in hematopoietic stem cell (HSC) trafficking and the development of age-related hematological malignancies. Emphasis was placed on understanding the influence of immunological stressors on these processes. RESULTS Recent findings reveal a significant microheterogeneity and temporal stochasticity of niche cells across the BM during hematopoiesis. These studies demonstrate that niche cells, including mesenchymal stem cells, osteoblasts, and endothelial cells, exhibit dynamic interactions with HSCs, significantly influenced by the BM microenvironment as the age increases. Immunosurveillance plays a crucial role in maintaining hematopoietic homeostasis, with alterations in immune signaling pathways contributing to the onset of hematological malignancies. Novel insights into the interaction between niche cells and HSCs under stress/aging conditions highlight the importance of niche plasticity and adaptability. CONCLUSION The involvement of age-induced genetic/epigenetic alterations in BM niche cells and immunological stressors in hematopoiesis is crucial for understanding the development of age-related hematological malignancies. This comprehensive review provides new insights into the complex interplay between niche cells and HSCs, emphasizing the potential for novel therapeutic approaches that target niche cell functionality and resilience to improve hematopoietic outcomes in the context of aging and metabolic disorders. NOVELTY STATEMENT This review introduces novel concepts regarding the plasticity and adaptability of BM niche cells in response to immunological stressors and epigenetics. It proposes that targeted therapeutic strategies aimed at enhancing niche cell resilience could mitigate the adverse effects of aging, diabetes, and obesity on hematopoiesis and clonal hematopoiesis. Additionally, the review suggests that understanding the precise temporal and spatial dynamics of niche-HSC interactions and epigenetics influence may lead to innovative treatments for age-related hematological malignancies.
Collapse
Affiliation(s)
- Yang Xinyi
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Reshetov Igor Vladimirovich
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Allaka Satyavathi
- Department of Chemistry, Faculty of science, Dr B R Ambedkar Open University, Wanaparthy, Telangana, 509103, India
| | - Dinisha Kamble
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Allaka Naga Lakshmi
- Department of Computer Science, St Philomena's College (Autonomous), Bangalore - Mysore Rd, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Padmanabha Reddy Y
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Skinder N, Pitsillidou C, Roberto A, de Haan G. Polychromatic Flow Cytometry to Identify Rare Aged Hematopoietic Stem Cell Subpopulations. Methods Mol Biol 2024. [PMID: 39316335 DOI: 10.1007/7651_2024_570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Flow cytometry enables the identification and characterization of markers present on the cell membrane as well as those that manifest intracellularly. With the increasing number of available reagents for targeting the markers of interest and evolving technology, it has become possible to detect an increasing number of markers expressed by single cells during one single analysis. This provides the possibility of investigating cell-to-cell patterns, variations, and correlations. Here, we describe a method to identify rare subpopulations of aged murine hematopoietic stem cell through polychromatic flow cytometry.
Collapse
Affiliation(s)
- Natalia Skinder
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Gerald de Haan
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands.
- Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, Location University of Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Su TY, Hauenstein J, Somuncular E, Dumral Ö, Leonard E, Gustafsson C, Tzortzis E, Forlani A, Johansson AS, Qian H, Månsson R, Luc S. Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets. Nat Commun 2024; 15:7966. [PMID: 39261515 PMCID: PMC11391069 DOI: 10.1038/s41467-024-52318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Age is a risk factor for hematologic malignancies. Attributes of the aging hematopoietic system include increased myelopoiesis, impaired adaptive immunity, and a functional decline of the hematopoietic stem cells (HSCs) that maintain hematopoiesis. Changes in the composition of diverse HSC subsets have been suggested to be responsible for age-related alterations, however, the underlying regulatory mechanisms are incompletely understood in the context of HSC heterogeneity. In this study, we investigated how distinct HSC subsets, separated by CD49b, functionally and molecularly change their behavior with age. We demonstrate that the lineage differentiation of both lymphoid-biased and myeloid-biased HSC subsets progressively shifts to a higher myeloid cellular output during aging. In parallel, we show that HSCs selectively undergo age-dependent gene expression and gene regulatory changes in a progressive manner, which is initiated already in the juvenile stage. Overall, our studies suggest that aging intrinsically alters both cellular and molecular properties of HSCs.
Collapse
Affiliation(s)
- Tsu-Yi Su
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ece Somuncular
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Özge Dumral
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elory Leonard
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Efthymios Tzortzis
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aurora Forlani
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden.
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Dijkhuis L, Johns A, Ragusa D, van den Brink SC, Pina C. Haematopoietic development and HSC formation in vitro: promise and limitations of gastruloid models. Emerg Top Life Sci 2023; 7:439-454. [PMID: 38095554 PMCID: PMC10754337 DOI: 10.1042/etls20230091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Haematopoietic stem cells (HSCs) are the most extensively studied adult stem cells. Yet, six decades after their first description, reproducible and translatable generation of HSC in vitro remains an unmet challenge. HSC production in vitro is confounded by the multi-stage nature of blood production during development. Specification of HSC is a late event in embryonic blood production and depends on physical and chemical cues which remain incompletely characterised. The precise molecular composition of the HSC themselves is incompletely understood, limiting approaches to track their origin in situ in the appropriate cellular, chemical and mechanical context. Embryonic material at the point of HSC emergence is limiting, highlighting the need for an in vitro model of embryonic haematopoietic development in which current knowledge gaps can be addressed and exploited to enable HSC production. Gastruloids are pluripotent stem cell-derived 3-dimensional (3D) cellular aggregates which recapitulate developmental events in gastrulation and early organogenesis with spatial and temporal precision. Gastruloids self-organise multi-tissue structures upon minimal and controlled external cues, and are amenable to live imaging, screening, scaling and physicochemical manipulation to understand and translate tissue formation. In this review, we consider the haematopoietic potential of gastruloids and review early strategies to enhance blood progenitor and HSC production. We highlight possible strategies to achieve HSC production from gastruloids, and discuss the potential of gastruloid systems in illuminating current knowledge gaps in HSC specification.
Collapse
Affiliation(s)
- Liza Dijkhuis
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Ayona Johns
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | - Denise Ragusa
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | | | - Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| |
Collapse
|
6
|
Gustafsson C, Hauenstein J, Frengen N, Krstic A, Luc S, Månsson R. T-RHEX-RNAseq - a tagmentation-based, rRNA blocked, random hexamer primed RNAseq method for generating stranded RNAseq libraries directly from very low numbers of lysed cells. BMC Genomics 2023; 24:205. [PMID: 37069502 PMCID: PMC10111750 DOI: 10.1186/s12864-023-09279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND RNA sequencing has become the mainstay for studies of gene expression. Still, analysis of rare cells with random hexamer priming - to allow analysis of a broader range of transcripts - remains challenging. RESULTS We here describe a tagmentation-based, rRNA blocked, random hexamer primed RNAseq approach (T-RHEX-RNAseq) for generating stranded RNAseq libraries from very low numbers of FACS sorted cells without RNA purification steps. CONCLUSION T-RHEX-RNAseq provides an easy-to-use, time efficient and automation compatible method for generating stranded RNAseq libraries from rare cells.
Collapse
Affiliation(s)
- Charlotte Gustafsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 floor 7, Huddinge, SE-141 52, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 floor 7, Huddinge, SE-141 52, Sweden
| | - Nicolai Frengen
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 floor 7, Huddinge, SE-141 52, Sweden
| | - Aleksandra Krstic
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 floor 7, Huddinge, SE-141 52, Sweden.
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|