1
|
Parrotta EI, Lucchino V, Zannino C, Valente D, Scalise S, Bressan D, Benedetto GL, Iazzetta MR, Talarico M, Gagliardi M, Conforti F, Di Agostino S, Fiorenzano A, Quattrone A, Cuda G, Quattrone A. Modeling Sporadic Progressive Supranuclear Palsy in 3D Midbrain Organoids: Recapitulating Disease Features for In Vitro Diagnosis and Drug Discovery. Ann Neurol 2025; 97:845-859. [PMID: 39876539 PMCID: PMC12010066 DOI: 10.1002/ana.27172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025]
Abstract
OBJECTIVE Progressive Supranuclear Palsy (PSP) is a severe neurodegenerative disease characterized by tangles of hyperphosphorylated tau protein and tufted astrocytes. Developing treatments for PSP is challenging due to the lack of disease models reproducing its key pathological features. This study aimed to model sporadic PSP-Richardson's syndrome (PSP-RS) using multi-donor midbrain organoids (MOs). METHODS The MOs were generated by pooling induced pluripotent stem cells (iPSCs) from 4 patients with sporadic probable PSP-RS and compared them with MOs from 3 healthy control (HC) subjects. We performed comprehensive analyses of MOs over 120 days to assess neuronal death, reactive gliosis, and the accumulation of 4R-tau and hyperphosphorylated tau forms (pThr231, pSer396, pThr181, and pSer202/pThr205 [AT8]) using immunofluorescence microscopy and Western blot. On day 90, immunohistochemical analysis using pSer396 and AT8 antibodies was conducted to assess disease pathology. RESULTS PSP-derived MOs showed progressive size reduction compared with HC-derived MOs, linked to upregulated apoptosis-related mRNA markers. Dopaminergic neuron degeneration was marked by decreased tyrosine hydroxylase (TH) and increased neurofilament light chain (NfL). Immunofluorescence and Western blot revealed accumulation of all investigated tau forms with a peak at 90 days, along with a significant rise in GFAP-positive cells in PSP-derived MOs. Immunochemistry confirmed typical PSP histological alterations, such as neurofibrillary tangles and tufted-shaped astrocytes, absent in HC-derived organoids. INTERPRETATION We developed a robust in vitro PSP model reproducing the key molecular and histologic features of the disease. This result holds promise for advancing basic and clinical research in PSP, paving the way for in vitro molecular diagnosis and identification of novel therapeutic targets. ANN NEUROL 2025;97:845-859.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Laboratory of Stem Cells, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Valeria Lucchino
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Clara Zannino
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Desirèe Valente
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Stefania Scalise
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Davide Bressan
- Laboratory of Stem Cells and Cancer Genomics Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Giorgia Lucia Benedetto
- Laboratory of Stem Cells, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Maria Roberta Iazzetta
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso,” IGB‐CNRNaplesItaly
- Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Mariagrazia Talarico
- Laboratory of Stem Cells, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Monica Gagliardi
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | | | | | - Alessandro Fiorenzano
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso,” IGB‐CNRNaplesItaly
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund, Stem Cell CenterLund UniversityLundSweden
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Giovanni Cuda
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| |
Collapse
|
2
|
Acosta Ingram D, Turkes E, Kim TY, Vo S, Sweeney N, Bonte MA, Rutherford R, Julian DL, Pan M, Marsh J, Argouarch AR, Wu M, Scharre DW, Bell EH, Honig LS, Vonsattel JP, Serrano GE, Beach TG, Karch CM, Kao AW, Hester ME, Han X, Fu H. GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau. Nat Commun 2025; 16:3312. [PMID: 40204713 PMCID: PMC11982250 DOI: 10.1038/s41467-025-58585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Lipid dyshomeostasis and tau pathology are present in frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). However, the relationship between lipid dyshomeostasis and tau pathology remains unclear. We report that GRAM Domain Containing 1B (GRAMD1B), a nonvesicular cholesterol transporter, is increased in excitatory neurons of human neural organoids (HNOs) with the MAPT R406W mutation. Human FTLD, AD cases, and PS19 tau mice also have increased GRAMD1B expression. We show that overexpression of GRAMD1B increases levels of free cholesterol, lipid droplets, and impairs autophagy flux. Modulating GRAMD1B in iPSC-derived neurons also alters key autophagy-related components such as PI3K, phospho-AKT, and p62, as well as phosphorylated tau, and CDK5R1. Blocking GRAMD1B function decreases free cholesterol and lipid droplets. Knocking down GRAMD1B additionally reduces phosphorylated tau, and CDK5R1 expression. Our findings elucidate the role of GRAMD1B in the nervous system and highlight its relevance to FTLD and AD.
Collapse
Affiliation(s)
- Diana Acosta Ingram
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Emir Turkes
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheeny Vo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicholas Sweeney
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Marie-Amandine Bonte
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea R Argouarch
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Erica H Bell
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jean Paul Vonsattel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Aimee W Kao
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Ehrenberg AJ, Sant C, Pereira FL, Li SH, Buxton J, Langlois S, Trinidad M, Oh I, Leite REP, Rodriguez RD, Paes VR, Pasqualucci CA, Seeley WW, Spina S, Suemoto CK, Temple S, Kaufer D, Grinberg LT. Pathways underlying selective neuronal vulnerability in Alzheimer's disease: Contrasting the vulnerable locus coeruleus to the resilient substantia nigra. Alzheimers Dement 2025; 21:e70087. [PMID: 40135662 PMCID: PMC11938114 DOI: 10.1002/alz.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) selectively affects certain brain regions, yet the mechanisms of selective vulnerability remain poorly understood. The neuromodulatory subcortical system, which includes nuclei exhibiting a range of vulnerability and resilience to AD-type degeneration, presents a framework for uncovering these mechanisms. METHODS We leveraged transcriptomics and immunohistochemistry in paired samples from human post mortem tissue representing a vulnerable and resilient region-the locus coeruleus (LC) and substantia nigra (SN). These regions have comparable anatomical features but distinct vulnerability to AD. RESULTS We identified significant differences in cholesterol homeostasis, antioxidant pathways, KRAS signaling, and estrogen signaling at a bulk transcriptomic level. Notably, evidence of sigma-2 receptor upregulation was detected in the LC. DISCUSSION Our findings highlight pathways differentiating the LC and SN, potentially explaining the LC's selective vulnerability in AD. Such pathways offer potential targets of disease-modifying therapies for AD. HIGHLIGHTS Intraindividual comparative RNAseq was used to study selective vulnerability. Metallothionein genes are significantly enriched in the substantia nigra. Cholesterol homeostatic genes are significantly enriched in the locus coeruleus. The locus coeruleus is likely more susceptible to toxic amyloid beta oligomers.
Collapse
Affiliation(s)
- Alexander J. Ehrenberg
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Cathrine Sant
- Gladstone Institute for Neurological DiseasesGladstone InstitutesSan FranciscoCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Felipe L. Pereira
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Song Hua Li
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Jessica Buxton
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sonali Langlois
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Marena Trinidad
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Ian Oh
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | | | | | | | | | - William W. Seeley
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Claudia K. Suemoto
- Division of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| | | | - Daniela Kaufer
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Lea T. Grinberg
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
- Dept. of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
4
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Huang C, Wei Z, Zheng N, Yan J, Zhang J, Ye X, Zhao W. The interaction between dysfunction of vasculature and tauopathy in Alzheimer's disease and related dementias. Alzheimers Dement 2025; 21:e14618. [PMID: 39998958 PMCID: PMC11854360 DOI: 10.1002/alz.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/27/2025]
Abstract
Tauopathy is one of the pathological features of Alzheimer's disease and related dementias (ADRD). At present, there have been many studies on the formation, deposition, and intercellular transmission of tau in neurons and immune cells. The vasculature is an important component of the central nervous system. This review discusses the interaction between vasculature and tau in detail from three aspects. (1) The vascular risk factors (VRFs) discussed in this review include diabetes mellitus (DM), abnormal blood pressure (BP), and hypercholesterolemia. (2) In ADRD pathology, the hyperphosphorylation and deposition of tau interact with disrupted vasculature, such as different cells (endothelial cells, smooth muscular cells, and pericytes), the blood-brain barrier (BBB), and the cerebral lymphatic system. (3) The functions of vasculature are regulated by various signaling transductions. Endothelial nitric oxide synthase/nitric oxide, calcium signaling, Rho/Rho-associated coiled-coil containing Kinase, and receptors for advanced glycation end products are discussed in this review. Our findings indicate that the prevention and treatment of vascular health may be a potential target for ADRD combination therapy. HIGHLIGHTS: Persistent VRFs increase early disruption of vascular mechanisms and are strongly associated with tau pathology in ADRD. Cell dysfunction in the vasculature causes BBB leakage and drainage incapacity of the cerebral lymphatic system, which interacts with tau pathology. Signaling molecules in the vasculature regulate vasodilation and contraction, angiogenesis, and CBF. Abnormal signaling transduction is related to tau hyperphosphorylation and deposition.
Collapse
Affiliation(s)
- Chuyao Huang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhenwen Wei
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Ningxiang Zheng
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jingsi Yan
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jiayu Zhang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xinyi Ye
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Wei Zhao
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
6
|
Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: a manual to survive. Front Cell Neurosci 2024; 18:1419526. [PMID: 39049825 PMCID: PMC11267621 DOI: 10.3389/fncel.2024.1419526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In 2013, M. Lancaster described the first protocol to obtain human brain organoids. These organoids, usually generated from human-induced pluripotent stem cells, can mimic the three-dimensional structure of the human brain. While they recapitulate the salient developmental stages of the human brain, their use to investigate the onset and mechanisms of neurodegenerative diseases still faces crucial limitations. In this review, we aim to highlight these limitations, which hinder brain organoids from becoming reliable models to study neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Specifically, we will describe structural and biological impediments, including the lack of an aging footprint, angiogenesis, myelination, and the inclusion of functional and immunocompetent microglia—all important factors in the onset of neurodegeneration in AD, PD, and ALS. Additionally, we will discuss technical limitations for monitoring the microanatomy and electrophysiology of these organoids. In parallel, we will propose solutions to overcome the current limitations, thereby making human brain organoids a more reliable tool to model neurodegeneration.
Collapse
Affiliation(s)
- Nerea Urrestizala-Arenaza
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
| | - Sonia Cerchio
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
- Fundación Biofisica Bizkaia, Leioa, Spain
| | - Chiara Magliaro
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Piergiorge RM, Vasconcelos ATRD, Santos-Rebouças CB. Understanding the (epi)genetic dysregulation in Parkinson's disease through an integrative brain competitive endogenous RNA network. Mech Ageing Dev 2024; 219:111942. [PMID: 38762037 DOI: 10.1016/j.mad.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Zimmer TS, Orr AL, Orr AG. Astrocytes in selective vulnerability to neurodegenerative disease. Trends Neurosci 2024; 47:289-302. [PMID: 38521710 PMCID: PMC11006581 DOI: 10.1016/j.tins.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Selective vulnerability of specific brain regions and cell populations is a hallmark of neurodegenerative disorders. Mechanisms of selective vulnerability involve neuronal heterogeneity, functional specializations, and differential sensitivities to stressors and pathogenic factors. In this review we discuss the growing body of literature suggesting that, like neurons, astrocytes are heterogeneous and specialized, respond to and integrate diverse inputs, and induce selective effects on brain function. In disease, astrocytes undergo specific, context-dependent changes that promote different pathogenic trajectories and functional outcomes. We propose that astrocytes contribute to selective vulnerability through maladaptive transitions to context-divergent phenotypes that impair specific brain regions and functions. Further studies on the multifaceted roles of astrocytes in disease may provide new therapeutic approaches to enhance resilience against neurodegenerative disorders.
Collapse
Affiliation(s)
- Till S Zimmer
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Adam L Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Bombieri C, Corsi A, Trabetti E, Ruggiero A, Marchetto G, Vattemi G, Valenti MT, Zipeto D, Romanelli MG. Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids. Int J Mol Sci 2024; 25:1014. [PMID: 38256087 PMCID: PMC10815694 DOI: 10.3390/ijms25021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| |
Collapse
|
10
|
Gil-Jaramillo N, Aristizábal-Pachón AF, Luque Aleman MA, González Gómez V, Escobar Hurtado HD, Girón Pinto LC, Jaime Camacho JS, Rojas-Cruz AF, González-Giraldo Y, Pinzón A, González J. Competing endogenous RNAs in human astrocytes: crosstalk and interacting networks in response to lipotoxicity. Front Neurosci 2023; 17:1195840. [PMID: 38027526 PMCID: PMC10679742 DOI: 10.3389/fnins.2023.1195840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by a progressive deterioration of neuronal function, leading to motor and cognitive damage in patients. Astrocytes are essential for maintaining brain homeostasis, and their functional impairment is increasingly recognized as central to the etiology of various NDs. Such impairment can be induced by toxic insults with palmitic acid (PA), a common fatty acid, that disrupts autophagy, increases reactive oxygen species, and triggers inflammation. Although the effects of PA on astrocytes have been addressed, most aspects of the dynamics of this fatty acid remain unknown. Additionally, there is still no model that satisfactorily explains how astroglia goes from being neuroprotective to neurotoxic. Current incomplete knowledge needs to be improved by the growing field of non-coding RNAs (ncRNAs), which is proven to be related to NDs, where the complexity of the interactions among these molecules and how they control other RNA expressions need to be addressed. In the present study, we present an extensive competing endogenous RNA (ceRNA) network using transcriptomic data from normal human astrocyte (NHA) cells exposed to PA lipotoxic conditions and experimentally validated data on ncRNA interaction. The obtained network contains 7 lncRNA transcripts, 38 miRNAs, and 239 mRNAs that showed enrichment in ND-related processes, such as fatty acid metabolism and biosynthesis, FoxO and TGF-β signaling pathways, prion diseases, apoptosis, and immune-related pathways. In addition, the transcriptomic profile was used to propose 22 potential key controllers lncRNA/miRNA/mRNA axes in ND mechanisms. The relevance of five of these axes was corroborated by the miRNA expression data obtained in other studies. MEG3 (ENST00000398461)/hsa-let-7d-5p/ATF6B axis showed importance in Parkinson's and late Alzheimer's diseases, while AC092687.3/hsa-let-7e-5p/[SREBF2, FNIP1, PMAIP1] and SDCBP2-AS1 (ENST00000446423)/hsa-miR-101-3p/MAPK6 axes are probably related to Alzheimer's disease development and pathology. The presented network and axes will help to understand the PA-induced mechanisms in astrocytes, leading to protection or injury in the CNS under lipotoxic conditions as part of the intricated cellular regulation influencing the pathology of different NDs. Furthermore, the five corroborated axes could be considered study targets for new pharmacologic treatments or as possible diagnostic molecules, contributing to improving the quality of life of millions worldwide.
Collapse
Affiliation(s)
- Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - María Alejandra Luque Aleman
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina González Gómez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Hans Deyvy Escobar Hurtado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Camila Girón Pinto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan Sebastian Jaime Camacho
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alexis Felipe Rojas-Cruz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
11
|
Min Y, Wang X, İş Ö, Patel TA, Gao J, Reddy JS, Quicksall ZS, Nguyen T, Lin S, Tutor-New FQ, Chalk JL, Mitchell AO, Crook JE, Nelson PT, Van Eldik LJ, Golde TE, Carrasquillo MM, Dickson DW, Zhang K, Allen M, Ertekin-Taner N. Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy. Nat Commun 2023; 14:6801. [PMID: 37919278 PMCID: PMC10622416 DOI: 10.1038/s41467-023-42626-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by cell-type-specific tau lesions in neurons and glia. Prior work uncovered transcriptome changes in human PSP brains, although their cell-specificity is unknown. Further, systematic data integration and experimental validation platforms to prioritize brain transcriptional perturbations as therapeutic targets in PSP are currently lacking. In this study, we combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from PSP and control brains with transcriptome data from a mouse tauopathy and experimental validations in Drosophila tau models for systematic discovery of high-confidence expression changes in PSP with therapeutic potential. We discover, replicate, and annotate thousands of differentially expressed genes in PSP, many of which reside in glia-enriched co-expression modules and cells. We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP with striking cross-species validations. We share our findings and data via our interactive application tool PSP RNAseq Atlas ( https://rtools.mayo.edu/PSP_RNAseq_Atlas/ ). Our findings reveal robust glial transcriptome changes in PSP, provide a cross-species systems biology approach, and a tool for therapeutic target discoveries in PSP with potential application in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuhao Min
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Tulsi A Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joseph S Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Zachary S Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shu Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jessica L Chalk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Julia E Crook
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | | | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
12
|
Bhagat R, Minaya MA, Renganathan A, Mehra M, Marsh J, Martinez R, Eteleeb AM, Nana AL, Spina S, Seeley WW, Grinberg LT, Karch CM. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. Mol Psychiatry 2023; 28:4889-4901. [PMID: 37730840 PMCID: PMC10914599 DOI: 10.1038/s41380-023-02237-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10 + 16, or p.R406W mutation and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer's disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels in immortalized cells and in MAPT mutant neurons, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Miguel A Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Muneshwar Mehra
- Department of Neuroscience, Washington University in St Louis, St Louis, MO, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Abdallah M Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Alissa L Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo, São Paulo, Brazil
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA.
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
13
|
Waheed Z, Choudhary J, Jatala FH, Fatimah, Noor A, Zerr I, Zafar S. The Role of Tau Proteoforms in Health and Disease. Mol Neurobiol 2023; 60:5155-5166. [PMID: 37266762 DOI: 10.1007/s12035-023-03387-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Tau is a microtubule-associated binding protein in the nervous system that is known for its role in stabilizing microtubules throughout the nerve cell. It accumulates as β-sheet-rich aggregates and neurofibrillary tangles, leading to an array of different pathologies. Six splice variants of this protein, generated from the microtubule-associated protein tau (MAPT) gene, are expressed in the brain. Amongst these variants, 0N3R, is prominent during fetal development, while the rest, 0N4R, 1N3R, 1N4R, 2N3R, and 2N4R, are expressed in postnatal stages. Tau isoforms play their role separately or in combination with others to contribute to one or multiple neurodegenerative disorders and clinical syndromes. For instance, in Alzheimer's disease and a subset of frontotemporal lobar degeneration (FTLD)-MAPT (i.e., R406W and V337M), both 3R and 4R isoforms are involved; therefore, they are called 3R/4R mix tauopathies. On the other hand, 4R isoforms are aggregated in progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and a majority of FTLD-MAPT and these diseases are called 4R tauopathies. Similarly, Pick's disease has an association with 3R tau isoforms and is thereby referred to as 3R tauopathy. Unlike 3R isoforms, the 4R variants have a faster rate of aggregation that accelerates the associated neurodegenerative mechanisms. Moreover, post-translational modifications of each isoform occur at a different rate and dictate their physiological and pathological attributes. The smallest tau isoform (0N3R) is highly phosphorylated in the fetal brain but does not lead to the generation of aggregates. On the other hand, proteoforms in the adult human brain undergo aggregation upon their phosphorylation and glycation. Expanding on this knowledge, this article aims to review the physiological and pathological roles of tau isoforms and their underlying mechanisms that result in neurological deficits. Physiological and pathological relevance of microtubule-associated protein tau (MAPT): Tau exists as six splice variants in the brain, each differing with respect to expression, post-translational modifications (PTMs), and aggregation kinetics. Physiologically, they are involved in the stabilization of microtubules that form the molecular highways for axonal transport. However, an imbalance in their expression and the associated PTMs leads to a disruption in their physiological function through the formation of neurofibrillary tangles that accumulate in various regions of the brain and contribute to several types of tauopathies.
Collapse
Affiliation(s)
- Zuha Waheed
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Jawaria Choudhary
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Faria Hasan Jatala
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Fatimah
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Aneeqa Noor
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan.
| | - Inga Zerr
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Saima Zafar
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
14
|
Cerneckis J, Bu G, Shi Y. Pushing the boundaries of brain organoids to study Alzheimer's disease. Trends Mol Med 2023; 29:659-672. [PMID: 37353408 PMCID: PMC10374393 DOI: 10.1016/j.molmed.2023.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Progression of Alzheimer's disease (AD) entails deterioration or aberrant function of multiple brain cell types, eventually leading to neurodegeneration and cognitive decline. Defining how complex cell-cell interactions become dysregulated in AD requires novel human cell-based in vitro platforms that could recapitulate the intricate cytoarchitecture and cell diversity of the human brain. Brain organoids (BOs) are 3D self-organizing tissues that partially resemble the human brain architecture and can recapitulate AD-relevant pathology. In this review, we highlight the versatile applications of different types of BOs to model AD pathogenesis, including amyloid-β and tau aggregation, neuroinflammation, myelin breakdown, vascular dysfunction, and other phenotypes, as well as to accelerate therapeutic development for AD.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
15
|
Bertucci T, Bowles KR, Lotz S, Qi L, Stevens K, Goderie SK, Borden S, Oja LM, Lane K, Lotz R, Lotz H, Chowdhury R, Joy S, Arduini BL, Butler DC, Miller M, Baron H, Sandhof CA, Silva MC, Haggarty SJ, Karch CM, Geschwind DH, Goate AM, Temple S. Improved Protocol for Reproducible Human Cortical Organoids Reveals Early Alterations in Metabolism with MAPT Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548571. [PMID: 37503195 PMCID: PMC10369860 DOI: 10.1101/2023.07.11.548571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cerebral cortical-enriched organoids derived from human pluripotent stem cells (hPSCs) are valuable models for studying neurodevelopment, disease mechanisms, and therapeutic development. However, recognized limitations include the high variability of organoids across hPSC donor lines and experimental replicates. We report a 96-slitwell method for efficient, scalable, reproducible cortical organoid production. When hPSCs were cultured with controlled-release FGF2 and an SB431542 concentration appropriate for their TGFBR1 / ALK5 expression level, organoid cortical patterning and reproducibility were significantly improved. Well-patterned organoids included 16 neuronal and glial subtypes by single cell RNA sequencing (scRNA-seq), frequent neural progenitor rosettes and robust BCL11B+ and TBR1+ deep layer cortical neurons at 2 months by immunohistochemistry. In contrast, poorly-patterned organoids contain mesendoderm-related cells, identifiable by negative QC markers including COL1A2 . Using this improved protocol, we demonstrate increased sensitivity to study the impact of different MAPT mutations from patients with frontotemporal dementia (FTD), revealing early changes in key metabolic pathways.
Collapse
|
16
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
17
|
Tcw J, Arranz AM. hiPSC-based models to decipher the contribution of human astrocytes to Alzheimer's disease and potential therapeutics. Mol Neurodegener 2023; 18:19. [PMID: 36966344 PMCID: PMC10039591 DOI: 10.1186/s13024-023-00612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023] Open
Affiliation(s)
- Julia Tcw
- Department of Pharmacology, Physiology & Biophysics, Boston University, Chobanian & Avedisian School of Medicine, Boston, USA.
- Graduate Program of Neuroscience, Boston University, Boston, USA.
- Graduate Program of Bioinformatics, Boston University, Boston, USA.
| | - Amaia M Arranz
- Achucarro Basque Center for Neuroscience, Bilbao, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
18
|
Bhagat R, Minaya MA, Renganathan A, Mehra M, Marsh J, Martinez R, Nana AL, Spina S, Seeley WW, Grinberg LT, Karch CM. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286548. [PMID: 36909621 PMCID: PMC10002771 DOI: 10.1101/2023.02.27.23286548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10+16, or p.R406W mutation, and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer’s disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.
Collapse
|
19
|
Batenburg KL, Sestito C, Cornelissen-Steijger P, van Weering JRT, Price LS, Heine VM, Scheper W. A 3D human co-culture to model neuron-astrocyte interactions in tauopathies. Biol Proced Online 2023; 25:4. [PMID: 36814189 PMCID: PMC9948470 DOI: 10.1186/s12575-023-00194-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Intraneuronal tau aggregation is the major pathological hallmark of neurodegenerative tauopathies. It is now generally acknowledged that tau aggregation also affects astrocytes in a cell non-autonomous manner. However, mechanisms involved are unclear, partly because of the lack of models that reflect the situation in the human tauopathy brain. To accurately model neuron-astrocyte interaction in tauopathies, there is a need for a model that contains both human neurons and human astrocytes, intraneuronal tau pathology and mimics the three-dimensional architecture of the brain. RESULTS Here we established a novel 100-200 µm thick 3D human neuron/astrocyte co-culture model of tau pathology, comprising homogenous populations of hiPSC-derived neurons and primary human astrocytes in microwell format. Using confocal, electron and live microscopy, we validate the procedures by showing that neurons in the 3D co-culture form pre- and postsynapses and display spontaneous calcium transients within 4 weeks. Astrocytes in the 3D co-culture display bipolar and stellate morphologies with extensive processes that ensheath neuronal somas, spatially align with axons and dendrites and can be found perisynaptically. The complex morphology of astrocytes and the interaction with neurons in the 3D co-culture mirrors that in the human brain, indicating the model's potential to study physiological and pathological neuron-astrocyte interaction in vitro. Finally, we successfully implemented a methodology to introduce seed-independent intraneuronal tau aggregation in the 3D co-culture, enabling study of neuron-astrocyte interaction in early tau pathogenesis. CONCLUSIONS Altogether, these data provide proof-of-concept for the utility of this rapid, miniaturized, and standardized 3D model for cell type-specific manipulations, such as the intraneuronal pathology that is associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Kevin L. Batenburg
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Claudia Sestito
- Crown Bioscience Netherlands B.V. (Formerly OcellO B.V.), Leiden, The Netherlands ,grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Paulien Cornelissen-Steijger
- grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jan R. T. van Weering
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Leo S. Price
- Crown Bioscience Netherlands B.V. (Formerly OcellO B.V.), Leiden, The Netherlands
| | - Vivi M. Heine
- grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. .,Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
21
|
Kogler S, Kømurcu KS, Olsen C, Shoji JY, Skottvoll FS, Krauss S, Wilson SR, Røberg-Larsen H. Organoids, organ-on-a-chip, separation science and mass spectrometry: An update. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
22
|
|