1
|
Munyaneza JP, Kim M, Cho E, Jang A, Choo HJ, Lee JH. Genome-wide association studies of the fatty acid composition of Korean native chicken breast meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:314-324. [PMID: 40264524 PMCID: PMC12010230 DOI: 10.5187/jast.2024.e24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 04/24/2025]
Abstract
The fatty acid composition of meat, which affects both its quality and the consumer's health, is a complex trait influenced by genetic and environmental factors. Identification of the genes influencing the fatty acid composition of meat is very important for the selection and breeding of chickens with desirable and healthier fatty acid profiles. The objective of this study was to identify functional candidate genes for fatty acid profiles of the breast meat of the Korean native chicken-red-brown line (KNC-R) through genome-wide association studies. We genotyped 382 KNC-R chickens (190 males, 192 females) using the Illumina chicken 60K single nucleotide polymorphism (SNP) chip (Illumina, San Diego, CA, USA), and association tests were performed by mixed linear model in the Genome-wide Complex Trait Analysis (GCTA) software, based on mixed linear model analysis-leave-one-chromosome-out (MLMA-LOCO). We detected one SNP each on chromosomes 2 (rs13667281), 10 (rs14011157), and 22 (rs10731996) that were significantly (p < 0.05) associated with nervonic (C24:1), linoleic (C18:2), and eicosadienoic (C20:2) acids, respectively. We found 13 protein-coding genes related to lipid metabolism, including IGF2BP3, GPNMB, NPY, OSBPL3, IL6, NR2F2, GPAT4, NKX6-3, ANK1, SFRP1, ERLIN2, STAR, and PPP1R3E. Interestingly, two candidate genes (GPNMB and SFRP1) were reported to regulate the expression of genes known to be involved in fatty acid synthesis, such as the FASN, ACACA, ACLY, ELOVL, and SCD genes. Identification of functional candidate genes for fatty acid profiles might facilitate the selection and breeding of chickens with desirable and healthier fatty acids.
Collapse
Affiliation(s)
| | - Minjun Kim
- Department of Animal Science, Chungnam
National University, Daejeon 34134, Korea
| | - Eunjin Cho
- Department of Bio-AI Convergence, Chungnam
National University, Daejeon 34134, Korea
| | - Aera Jang
- Department of Applied Animal Science,
College of Animal Life Science, Kangwon National University,
Chuncheon 24341, Korea
| | - Hyo Jun Choo
- Poultry Research Institute, National
Institute of Animal Science, Pyeongchang 25342, Korea
| | - Jun Heon Lee
- Department of Animal Science, Chungnam
National University, Daejeon 34134, Korea
- Department of Bio-AI Convergence, Chungnam
National University, Daejeon 34134, Korea
| |
Collapse
|
2
|
Sun Y, Yuan X, Hu Z, Li Y. Harnessing nuclear receptors to modulate hepatic stellate cell activation for liver fibrosis resolution. Biochem Pharmacol 2025; 232:116730. [PMID: 39710274 DOI: 10.1016/j.bcp.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
With the recent approval of Resmetirom as the first drug targeting nuclear receptors for metabolic dysfunction-associated steatohepatitis (MASH), there is promising way to treat MASH-associated liver fibrosis. However, liver fibrosis can arise from various pathogenic factors, and effective treatments for fibrosis due to other causes remain elusive. The activation of hepatic stellate cells (HSCs) represents a central link in the pathogenesis of hepatic fibrosis. Therefore, harnessing nuclear receptors to modulate HSC activation may be an effective approach to resolving the complex liver fibrosis caused by various factors. In this comprehensive review, we systematically explore the structure and physiological functions of nuclear receptors, shedding light on their multifaceted roles in HSC activation. Recent advancements in drug development targeting nuclear receptors are discussed, providing insights into their potential as rational and effective therapeutic targets for modulating HSC activation in the context of liver fibrosis. By elucidating the intricate interplay between nuclear receptors and HSC activation, this review contributes to the discovery of new nuclear receptor targets in HSCs for resolving hepatic fibrosis.
Collapse
Affiliation(s)
- Yaxin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China.
| | - Yuanyuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Das S, Varshney R, Farriester JW, Kyere-Davies G, Martinez AE, Hill K, Kinter M, Mullen GP, Nagareddy PR, Rudolph MC. NR2F2 Reactivation in Early-life Adipocyte Stem-like Cells Rescues Adipocyte Mitochondrial Oxidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611047. [PMID: 39314382 PMCID: PMC11419096 DOI: 10.1101/2024.09.09.611047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In humans, perinatal exposure to an elevated omega-6 (n6) relative to omega-3 (n3) Fatty Acid (FA) ratio is associated with the likelihood of childhood obesity. In mice, we show perinatal exposure to excessive n6-FA programs neonatal Adipocyte Stem-like cells (ASCs) to differentiate into adipocytes with lower mitochondrial nutrient oxidation and a propensity for nutrient storage. Omega-6 FA exposure reduced fatty acid oxidation (FAO) capacity, coinciding with impaired induction of beige adipocyte regulatory factors PPARγ, PGC1α, PRDM16, and UCP1. ASCs from n6-FA exposed pups formed adipocytes with increased lipogenic genes in vitro, consistent with an in vivo accelerated adipocyte hypertrophy, greater triacylglyceride accumulation, and increased % body fat. Conversely, n6-FA exposed pups had impaired whole animal 13C-palmitate oxidation. The metabolic nuclear receptor, NR2F2, was suppressed in ASCs by excess n6-FA intake preceding adipogenesis. ASC deletion of NR2F2, prior to adipogenesis, mimicked the reduced FAO capacity observed in ASCs from n6-FA exposed pups, suggesting that NR2F2 is required in ASCs for robust beige regulator expression and downstream nutrient oxidation in adipocytes. Transiently re-activating NR2F2 with ligand prior to differentiation in ASCs from n6-FA exposed pups, restored their FAO capacity as adipocytes by increasing the PPARγ-PGC1α axis, mitochondrial FA transporter CPT1A, ATP5 family synthases, and NDUF family Complex I proteins. Our findings suggest that excessive n6-FA exposure early in life dampens an NR2F2-mediated induction of beige adipocyte regulators, resulting in metabolic programming that is shifted towards nutrient storage.
Collapse
Affiliation(s)
- Snehasis Das
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Jacob W. Farriester
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Gertrude Kyere-Davies
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Alexandrea E. Martinez
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kaitlyn Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Gregory P. Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Prabhakara R. Nagareddy
- Deptartment of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Mao Z, Zhao J, Cui F, Li Z, Cao J, Zhou J, Hou M, Qian Z. STUB1 increases adiponectin expression by inducing ubiquitination and degradation of NR2F2, thereby reducing hepatic stellate cell activation and alleviating non-alcoholic fatty liver disease. Tissue Cell 2024; 88:102345. [PMID: 38471267 DOI: 10.1016/j.tice.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Adiponectin (APN) has exhibited ameliorating effects on non-alcoholic fatty liver disease (NAFLD). This study investigates the roles of APN and its regulatory molecules in hepatic stellate cell (HSC) activation and the progression of NAFLD. METHODS Mice were subjected to a high-fat diet (HFD) to establish NAFLD models. Liver tissue was examined for lipid metabolism, fibrosis, and inflammation. Mouse 3T3-L1 adipocytes were exposed to palmitic acid (PA) to mimic a high-fat environment. The conditioned medium (CM) from adipocytes was collected for the culture of isolated mouse HSCs. Gain- or loss-of-function studies of APN, nuclear receptor subfamily 2 group F member 2 (NR2F2), and STIP1 homology and U-box containing protein 1 (STUB1) were performed to analyze their roles in NAFLD and HSC activation in vivo and in vitro. RESULTS APN expression was poorly expressed in HFD-fed mice and PA-treated 3T3-L1 adipocytes, which was attributed to the transcription inhibition mediated by NR2F2. Silencing of NR2F2 restored the APN expression, ameliorating liver steatosis, fibrosis, and inflammatory cytokine infiltration in mouse livers and reducing HSC activation. Similarly, the NR2F2 silencing condition reduced HSC activation in vitro. However, these effects were counteracted by artificial APN silencing. STUB1 facilitated the ubiquitination and protein degradation of NR2F2, and its upregulation mitigated NAFLD-like symptoms in mice and HSC activation, effects reversed by the NR2F2 overexpression. CONCLUSION This study highlights the role of STUB1 in reducing HSC activation and alleviating NAFLD by attenuating NR2F2-mediated transcriptional repression of APN.
Collapse
Affiliation(s)
- Zheng Mao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, PR China
| | - Fan Cui
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Zhen Li
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jinjin Cao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jingjing Zhou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Mingliang Hou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Zengkun Qian
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China.
| |
Collapse
|
5
|
Banerjee A, Singla DK. MSC exosomes attenuate sterile inflammation and necroptosis associated with TAK1-pJNK-NFKB mediated cardiomyopathy in diabetic ApoE KO mice. Front Immunol 2024; 15:1348043. [PMID: 38390337 PMCID: PMC10881775 DOI: 10.3389/fimmu.2024.1348043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Diabetes is a debilitating disease that leads to complications like cardiac dysfunction and heart failure. In this study, we investigated the pathophysiology of diabetes-induced cardiac dysfunction in mice with dyslipidemia. We hypothesize diabetes in ApoE knockout (ApoE-/-) mice induces cardiac dysfunction by increasing inflammation and necroptosis. Methods ApoE-/- mice were divided into experimental groups: Control, Streptozotocin (STZ), STZ + MSC-Exo (mesenchymal stem cell-derived exosomes), and STZ+MEF-Exo (Mouse embryonic fibroblast derived exosomes). At Day 42, we assessed cardiac function, collected blood and heart tissues. Heart tissue samples were analyzed for inflammation, necroptosis, signaling mechanism, hypertrophy and adverse structural remodeling using histology, immunohistochemistry, western blotting, RT-PCR, cytokine array and TF array. Results and Discussion STZ treated ApoE-/- mice developed diabetes, with significantly (p<0.05) increased blood glucose and body weight loss. These mice developed cardiac dysfunction with significantly (p<0.05) increased left ventricular internal diameter end diastole and end systole, and decreased ejection fraction, and fractional shortening. We found significant (p<0.05) increased expression of inflammatory cytokines TNF- a, IL-6, IL-1a, IL-33 and decreased IL-10 expression. Diabetic mice also exhibited significantly (p<0.05) increased necroptosis marker expression and infiltration of inflammatory monocytes and macrophages. MSC-Exos treated mice showed recovery of diabetes associated pathologies with significantly reduced blood glucose, recovered body weight, increased IL-10 secretion and M2 polarized macrophages in the heart. These mice showed reduced TAK1-pJNK-NFKB inflammation associated expression and improved cardiac function with significantly reduced cardiac hypertrophy and fibrosis compared to diabetic mice. Treatment with MEF-Exos did not play a significant role in attenuating diabetes-induced cardiomyopathy as these treatment mice presented with cardiac dysfunction and underlying pathologies observed in STZ mice. Conclusion Thus, we conclude that cardiac dysfunction develops in diabetic ApoE-/- mice, arising from inflammation, necroptosis, and adverse tissue remodeling, which is ameliorated by MSC-Exos, a potential therapeutic for diabetes-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
6
|
Tenney AP, Di Gioia SA, Webb BD, Chan WM, de Boer E, Garnai SJ, Barry BJ, Ray T, Kosicki M, Robson CD, Zhang Z, Collins TE, Gelber A, Pratt BM, Fujiwara Y, Varshney A, Lek M, Warburton PE, Van Ryzin C, Lehky TJ, Zalewski C, King KA, Brewer CC, Thurm A, Snow J, Facio FM, Narisu N, Bonnycastle LL, Swift A, Chines PS, Bell JL, Mohan S, Whitman MC, Staffieri SE, Elder JE, Demer JL, Torres A, Rachid E, Al-Haddad C, Boustany RM, Mackey DA, Brady AF, Fenollar-Cortés M, Fradin M, Kleefstra T, Padberg GW, Raskin S, Sato MT, Orkin SH, Parker SCJ, Hadlock TA, Vissers LELM, van Bokhoven H, Jabs EW, Collins FS, Pennacchio LA, Manoli I, Engle EC. Noncoding variants alter GATA2 expression in rhombomere 4 motor neurons and cause dominant hereditary congenital facial paresis. Nat Genet 2023; 55:1149-1163. [PMID: 37386251 PMCID: PMC10335940 DOI: 10.1038/s41588-023-01424-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/10/2023] [Indexed: 07/01/2023]
Abstract
Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.
Collapse
Affiliation(s)
- Alan P Tenney
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Silvio Alessandro Di Gioia
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Bryn D Webb
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sarah J Garnai
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tammy Ray
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alon Gelber
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuko Fujiwara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter E Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol Van Ryzin
- Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Tanya J Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Christopher Zalewski
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Kelly A King
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Carmen C Brewer
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Flavia M Facio
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Lori L Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Amy Swift
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Peter S Chines
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suresh Mohan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mary C Whitman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, and University of Melbourne, Melbourne, Victoria, Australia
- Department of Ophthalmology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - James E Elder
- Department of Ophthalmology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Joseph L Demer
- Stein Eye Institute and Departments of Ophthalmology, Neurology, and Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcy Torres
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Boston Medical Center, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Elza Rachid
- Department of Ophthalmology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christiane Al-Haddad
- Department of Ophthalmology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rose-Mary Boustany
- Pediatrics & Adolescent Medicine/Biochemistry & Molecular Genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - David A Mackey
- Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Angela F Brady
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - María Fenollar-Cortés
- Unidad de Genética Clínica, Instituto de Medicina del Laboratorio. IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Melanie Fradin
- Service de Génétique Clinique, CHU Rennes, Centre Labellisé Anomalies du Développement, Rennes, France
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - George W Padberg
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Salmo Raskin
- Centro de Aconselhamento e Laboratório Genetika, Curitiba, Paraná, Brazil
| | - Mario Teruo Sato
- Department of Ophthalmology & Otorhinolaryngology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tessa A Hadlock
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Dougherty EJ, Chen LY, Awad KS, Ferreyra GA, Demirkale CY, Keshavarz A, Gairhe S, Johnston KA, Hicks ME, Sandler AB, Curran CS, Krack JM, Ding Y, Suffredini AF, Solomon MA, Elinoff JM, Danner RL. Inflammation and DKK1-induced AKT activation contribute to endothelial dysfunction following NR2F2 loss. Am J Physiol Lung Cell Mol Physiol 2023; 324:L783-L798. [PMID: 37039367 PMCID: PMC10202490 DOI: 10.1152/ajplung.00171.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Edward J Dougherty
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Li-Yuan Chen
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Keytam S Awad
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Gabriela A Ferreyra
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Cumhur Y Demirkale
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Ali Keshavarz
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Salina Gairhe
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Kathryn A Johnston
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Madelyn E Hicks
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Alexis B Sandler
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Colleen S Curran
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Janell M Krack
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Yi Ding
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Anthony F Suffredini
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Michael A Solomon
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Jason M Elinoff
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert L Danner
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
8
|
Sun X, Wang Y, Wang C, Wang Y, Ren Z, Yang X, Yang X, Liu Y. Genome analysis reveals hepatic transcriptional reprogramming changes mediated by enhancers during chick embryonic development. Poult Sci 2023; 102:102516. [PMID: 36764138 PMCID: PMC9929590 DOI: 10.1016/j.psj.2023.102516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The liver undergoes a slow process for lipid deposition during chick embryonic period. However, the underlying physiological and molecular mechanisms are still unclear. Therefore, the aim of the current study was to reveal the epigenetic mechanism of hepatic transcriptional reprogramming changes based on the integration analysis of RNA-seq and H3K27ac labeled CUT&Tag. Results showed that lipid contents increased gradually with the embryonic age (E) 11, E15, and E19 based on morphological analysis of Hematoxylin-eosin and Oil Red O staining as well as total triglyceride and cholesterol detection. The hepatic protein level of SREBP-1c was higher in E19 when compared with that in E11 and E15, while H3K27ac and H3K4me2 levels declined from E11 to E19. Differential expression genes (DEGs) among these 3 embryonic ages were determined by transcriptome analysis. A total of 107 and 46 genes were gradually upregulated and downregulated respectively with the embryonic age. Meanwhile, differential H3K27ac occupancy in chromatin was investigated. But the integration analysis of RNA-seq and CUT&Tag data showed that the overlap genes were less between DEGs and target genes of differential peaks in the promoter regions. Further, some KEGG pathways enriched from target genes of typical enhancer were overlapped with those from DEGs in transcriptome analysis such as insulin, FoxO, MAPK signaling pathways which were related to lipid metabolism. DNA motif analysis identify 8 and 10 transcription factors (TFs) based on up and down differential peaks individually among E11, E15, and E19 stages where 7 TFs were overlapped including COUP-TFII, FOXM1, FOXA1, HNF4A, RXR, ERRA, FOXA2. These results indicated that H3K27ac histone modification is involved in the transcriptional reprogramming regulation during embryonic development, which could recruit TFs binding to mediate differential enhancer activation. Differential activated enhancer impels dynamic transcriptional reprogramming towards lipid metabolism to promote the occurrence of special phenotype of hepatic lipid deposition.
Collapse
Affiliation(s)
- Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yumeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
9
|
Varshney R, Das S, Trahan GD, Farriester JW, Mullen GP, Kyere-Davies G, Presby DM, Houck JA, Webb PG, Dzieciatkowska M, Jones KL, Rodeheffer MS, Friedman JE, MacLean PS, Rudolph MC. Neonatal intake of Omega-3 fatty acids enhances lipid oxidation in adipocyte precursors. iScience 2023; 26:105750. [PMID: 36590177 PMCID: PMC9800552 DOI: 10.1016/j.isci.2022.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. In vivo, APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein. In vitro, APC treatment with NR2F2 ligand-induced beige adipocyte mRNAs and increased mitochondrial potential but not mass. Single-cell RNA-sequencing analysis revealed low n6/n3 FA ratio yielded more mitochondrial-high APCs and linked APC NR2F2 levels with beige adipocyte signatures and FA oxidation. Establishing beige adipogenesis is of clinical relevance, because fat depots with energetically active, smaller, and more numerous adipocytes improve metabolism and delay metabolic dysfunction.
Collapse
Affiliation(s)
- Rohan Varshney
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G. Devon Trahan
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob W. Farriester
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gertrude Kyere-Davies
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David M. Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Julie A. Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Patricia G. Webb
- Department of Reproductive Science, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Kenneth L. Jones
- Department of Cell Biology and Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew S. Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Department of Comparative Medicine, Yale University, New Haven, CT, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Protective effects of monoammonium glycyrrhizinate on fatty deposit degeneration induced in primary calf hepatocytes by sodium oleate administration in vitro. Res Vet Sci 2022; 150:213-223. [DOI: 10.1016/j.rvsc.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022]
|
11
|
Zhang C, Meng S, Li C, Yang Z, Wang G, Wang X, Ma Y. Primary Broiler Hepatocytes for Establishment of a Steatosis Model. Vet Sci 2022; 9:vetsci9070316. [PMID: 35878333 PMCID: PMC9319065 DOI: 10.3390/vetsci9070316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fatty liver hemorrhage syndrome (FLHS) in chickens is characterized by steatosis and bleeding in the liver, which has caused huge losses to the poultry industry. This study aimed to use primary cultured broiler hepatocytes to establish a steatosis model to explore the optimal conditions for inducing steatosis by incubating the cells with a fat emulsion. Primary hepatocytes were isolated from an AA broiler by a modified two-step in situ perfusion method. Hepatocytes were divided into an untreated control group and a fat emulsion group that was incubated with 2.5, 5, 10, or 20% fat emulsion for different times to determine the optimal conditions for inducing steatosis of primary hepatocytes. Incubation of the cells with 10% fat emulsion resulted in cell viability at 48 h of 67%, which was higher than the control group and met the requirements of the model. In the second experiment, steatosis was induced by incubating hepatocytes with 10% fat emulsion for 48 h. In consequence, the apoptosis rate decreased (p > 0.05) and the concentration of ALT (p < 0.001), AST (p < 0.01), and TG (p < 0.05) increased significantly; the expression level of SREBP-1c (p < 0.05) increased, and the expression levels of PPARα (p < 0.001), CPT1 (p < 0.001), and CPT2 (p < 0.05) were lower in the fat emulsion group than in the control group. In conclusion, the induction condition was selected as 10% fat emulsion incubation for 48 h, and we successfully established a fatty liver degeneration model for broilers.
Collapse
|
12
|
Cholico GN, Nault R, Zacharewski TR. Genome-Wide ChIPseq Analysis of AhR, COUP-TF, and HNF4 Enrichment in TCDD-Treated Mouse Liver. Int J Mol Sci 2022; 23:1558. [PMID: 35163483 PMCID: PMC8836158 DOI: 10.3390/ijms23031558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known for mediating the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although the canonical mechanism of AhR activation involves heterodimerization with the aryl hydrocarbon receptor nuclear translocator, other transcriptional regulators that interact with AhR have been identified. Enrichment analysis of motifs in AhR-bound genomic regions implicated co-operation with COUP transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF4). The present study investigated AhR, HNF4α and COUP-TFII genomic binding and effects on gene expression associated with liver-specific function and cell differentiation in response to TCDD. Hepatic ChIPseq data from male C57BL/6 mice at 2 h after oral gavage with 30 µg/kg TCDD were integrated with bulk RNA-sequencing (RNAseq) time-course (2-72 h) and dose-response (0.01-30 µg/kg) datasets to assess putative AhR, HNF4α and COUP-TFII interactions associated with differential gene expression. Functional enrichment analysis of differentially expressed genes (DEGs) identified differential binding enrichment for AhR, COUP-TFII, and HNF4α to regions within liver-specific genes, suggesting intersections associated with the loss of liver-specific functions and hepatocyte differentiation. Analysis found that the repression of liver-specific, HNF4α target and hepatocyte differentiation genes, involved increased AhR and HNF4α binding with decreased COUP-TFII binding. Collectively, these results suggested TCDD-elicited loss of liver-specific functions and markers of hepatocyte differentiation involved interactions between AhR, COUP-TFII and HNF4α.
Collapse
Affiliation(s)
| | | | - Tim R. Zacharewski
- Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; (G.N.C.); (R.N.)
| |
Collapse
|
13
|
de Mattos K, Viger RS, Tremblay JJ. Transcription Factors in the Regulation of Leydig Cell Gene Expression and Function. Front Endocrinol (Lausanne) 2022; 13:881309. [PMID: 35464056 PMCID: PMC9022205 DOI: 10.3389/fendo.2022.881309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Cell differentiation and acquisition of specialized functions are inherent steps in events that lead to normal tissue development and function. These processes require accurate temporal, tissue, and cell-specific activation or repression of gene transcription. This is achieved by complex interactions between transcription factors that form a unique combinatorial code in each specialized cell type and in response to different physiological signals. Transcription factors typically act by binding to short, nucleotide-specific DNA sequences located in the promoter region of target genes. In males, Leydig cells play a crucial role in sex differentiation, health, and reproductive function from embryonic life to adulthood. To better understand the molecular mechanisms regulating Leydig cell differentiation and function, several transcription factors important to Leydig cells have been identified, including some previously unknown to this specialized cell type. This mini review summarizes the current knowledge on transcription factors in fetal and adult Leydig cells, describing their roles and mechanisms of action.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
| | - Robert S. Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- *Correspondence: Jacques J. Tremblay,
| |
Collapse
|
14
|
Zhu F, Yin ZT, Wang Z, Smith J, Zhang F, Martin F, Ogeh D, Hincke M, Lin FB, Burt DW, Zhou ZK, Hou SS, Zhao QS, Li XQ, Ding SR, Li GS, Yang FX, Hao JP, Zhang Z, Lu LZ, Yang N, Hou ZC. Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication. Nat Commun 2021; 12:5932. [PMID: 34635656 PMCID: PMC8505442 DOI: 10.1038/s41467-021-26272-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/21/2021] [Indexed: 01/23/2023] Open
Abstract
Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zheng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Fang-Bing Lin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zheng-Kui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Shui-Sheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Si-Ran Ding
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Guan-Sheng Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fang-Xi Yang
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Jing-Pin Hao
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
15
|
Liu W, Zhou Y, Duan W, Song J, Wei S, Xia S, Wang Y, Du X, Li E, Ren C, Wang W, Zhan Q, Wang Q. Glutathione peroxidase 4-dependent glutathione high-consumption drives acquired platinum chemoresistance in lung cancer-derived brain metastasis. Clin Transl Med 2021; 11:e517. [PMID: 34586745 PMCID: PMC8473645 DOI: 10.1002/ctm2.517] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Platinum-based chemotherapy is effective in inducing shrinkage of primary lung cancer lesions; however, it shows finite therapeutic efficacy in patients suffering from brain metastasis (BM). The intrinsic changes of BM cells, which contribute to the poor results remain unknown. METHODS Platinum drug-sensitivity was assessed by utilizing a preclinical BM model of PC9 lung adenocarcinoma cells in vitro and in vivo. High consumption of glutathione (GSH) and two associated upregulated proteins (GPX4 and GSTM1) in BM were identified by integrated metabolomics and proteomics in cell lines and verified by clinical serum sample. Gain-of-function and rescue experiments were implemented to reveal the impact and mechanism of GPX4 and GSTM1 on the chemosensitivity in BM. The interaction between GPX4 and GSTM1 was examined by immunoblotting and immunoprecipitation. The mechanism of upregulation of GPX4 was further uncovered by luciferase reporter assay, immunoprecipitation, and electrophoretic mobility shift assay. RESULTS The derivative brain metastatic subpopulations (PC9-BrMs) of parental cells PC9 developed obvious resistance to platinum. Radically altered profiles of BM metabolism and protein expression compared with primary lung cancer cells were described and GPX4 and GSTM1 were identified as being responsible for the high consumption of GSH, leading to decreased chemosensitivity by negatively regulating ferroptosis. Besides, GSTM1 was found regulated by GPX4, which was transcriptionally activated by the Wnt/NR2F2 signaling axis in BM. CONCLUSIONS Collectively, our findings demonstrated that Wnt/NR2F2/GPX4 promoted acquired chemoresistance by suppressing ferroptosis with high consumption of GSH. GPX4 inhibitor was found to augment the anticancer effect of platinum drugs in lung cancer BM, providing novel strategies for lung cancer patients with BM.
Collapse
Affiliation(s)
- Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital, Dalian Medical University, Dalian, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Jing Song
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Song Wei
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yingyan Wang
- Laboratory Center for Diagnostics, Dalian Medical University, Dalian, China
| | - Xiaohui Du
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital, Dalian Medical University, Dalian, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Caixia Ren
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qi Wang
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, China
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital, Dalian Medical University, Dalian, China
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Li L, Galichon P, Xiao X, Figueroa-Ramirez AC, Tamayo D, Lee JJK, Kalocsay M, Gonzalez-Sanchez D, Chancay MS, McCracken KW, Lee NN, Ichimura T, Mori Y, Valerius MT, Wilflingseder J, Lemos DR, Edelman ER, Bonventre JV. Orphan nuclear receptor COUP-TFII enhances myofibroblast glycolysis leading to kidney fibrosis. EMBO Rep 2021; 22:e51169. [PMID: 34031962 DOI: 10.15252/embr.202051169] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies demonstrate that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP-TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP-TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP-TFII in mice resulted in attenuation of injury-induced kidney fibrosis. A non-biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP-TFII overexpressing fibroblasts. Overexpression of COUP-TFII in fibroblasts also induced production of alpha-smooth muscle actin (αSMA) and collagen 1. Knockout of COUP-TFII decreased glycolysis and collagen 1 levels in fibroblasts. Chip-qPCR revealed the binding of COUP-TFII on the promoter of PGC1α. Overexpression of COUP-TFII reduced the cellular level of PGC1α. Targeting COUP-TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.
Collapse
Affiliation(s)
- Li Li
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pierre Galichon
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaoyan Xiao
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Diana Tamayo
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jake J-K Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Maria S Chancay
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kyle W McCracken
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nathan N Lee
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Takaharu Ichimura
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yutaro Mori
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - M Todd Valerius
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Dario R Lemos
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elazer R Edelman
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
17
|
Panagopoulos I, Gorunova L, Lobmaier I, Andersen K, Lund-Iversen M, Micci F, Heim S. Fusion of the COL4A5 Gene With NR2F2-AS1 in a Hemangioma Carrying a t(X;15)(q22;q26) Chromosomal Translocation. Cancer Genomics Proteomics 2021; 17:383-390. [PMID: 32576583 DOI: 10.21873/cgp.20197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Hemangiomas are benign neoplastic proliferations of blood vessels. Cytogenetic information on hemangiomas is limited to four tumors with abnormal karyotypes. We report here a solitary chromosomal translocation and its molecular consequence in a hemangioma. MATERIALS AND METHODS A cavernous hemangioma was extirpated from the foot of a 62 years old man and genetically studied with cytogenetic and molecular genetic methodologies. RESULTS G-Banding analysis of short-term cultured tumor cells yielded the karyotype 46,Y,t(X;15)(q22;q26)[4]/46,XY[12]. RNA sequencing detected fusion of the collagen type IV alpha 5 chain gene (COL4A5 on Xq22.3) with intronic sequences of nuclear receptor subfamily 2 group F member 2 antisense RNA 1 (NR2F2-AS1 on 15q26.2) resulting in a putative COL4A5 truncated protein. The fusion was verified by RT-PCR together with Sanger sequencing and FISH analyses. CONCLUSION The involvement of COL4A5 indicates that some hemangiomas have pathogenetic similarities with other benign tumors such as leiomyomas and subungual exostosis.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Erdős E, Bálint BL. COUP-TFII is a modulator of cell-type-specific genetic programs based on genomic localization maps. J Biotechnol 2019; 301:11-17. [DOI: 10.1016/j.jbiotec.2019.05.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
|