1
|
Feng F, Sun C, Wang X, Zhang H, Cheng P. Polyphyllin I induces apoptosis and autophagy in temozolomide-resistant glioma via modulation of NRF2 and MAPK-signaling activation. Biotechnol Genet Eng Rev 2024; 40:2409-2428. [PMID: 37018450 DOI: 10.1080/02648725.2023.2199553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Glioma is the most prevailing main malignant neoplasm of the central nervous system with a miserable prognosis. Temozolomide is the first-line chemotherapy drug for glioma, but its drug resistance reduces temozolomide's clinical efficacy and becomes the principal cause of the failure of glioma chemotherapy. Polyphyllin I (PPI), an active component in Rhizoma Paridis, demonstrates favorable therapeutic actions in diverse malignant neoplasms. Its effect on temozolomide-resistant glioma, however, has not yet been characterized. Here, we demonstrated that polyphyllin I inhibited the proliferation of temozolomide-resistant glioma cell in a concentration-dependent manner. Further, we found that polyphyllin I had a direct effect on temozolomide-resistant glioma tumor cells and promote reactive oxygen species (ROS)-dependent apoptosis and autophagy via mitogen-activated protein kinase (MAPK)-signaling (p38-JNK) pathway. Mechanistically, we showed that polyphyllin I downregulate the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway, indicating that polyphyllin I may be an expected therapeutic strategy for patients with temozolomide-resistant gliomas.
Collapse
Affiliation(s)
- Feifei Feng
- Department of Respiratory Medicine, the Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Chao Sun
- Institute of Basic Medicine, the Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Xiao Wang
- Department of Respiratory Medicine, the Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Huanan Zhang
- Department of Neural Medicine, the Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Peng Cheng
- Department of Neural Medicine, the Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
2
|
An R, Zhang Z, Zhang D, Li Y, Lin Y, Sun H, Xu F, Li M, Liu Z. A novel EZH1/2 dual inhibitor inhibits GCB DLBCL through cell cycle regulation and M2 tumor-associated macrophage polarization. J Biol Chem 2024; 300:107788. [PMID: 39303914 PMCID: PMC11538787 DOI: 10.1016/j.jbc.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
The incidence of germinal center B-cell-like type diffuse large B-cell lymphoma (GCB DLBCL) is steadily increasing, with a known hereditary component. Although some molecular mechanisms in GCB DLBCL have been elucidated, understanding remains incomplete, limiting the effectiveness of targeted therapies. In GCB DLBCL patients, abnormally high expression of zeste homologs 2 (EZH2) is noted, and the compensatory effect of EZH1 following EZH2 inhibition contributes to poor prognosis. This highlights the potential of dual targeting of EZH1/2 as a promising strategy. In this study, we developed a novel inhibitor, EZH-1-P2, targeting EZH1/2 and evaluated its antitumor effects on DLBCL cells. Mechanistically, inhibition of EZH1/2 affects the epigenetic regulation of gene expression related to p53, impacting cell cycle progression and GCB DLBCL cell growth. Additionally, while EZH1/2 inhibition impacts NOTCH signaling, the precise mechanism by which it affects M2-type tumor-associated macrophage polarization and germinal center expansion requires further investigation. Our research introduces EZH-1-P2 as a novel inhibitor with potential as a candidate for GCB DLBCL therapy, although further studies are needed to fully elucidate its mechanisms.
Collapse
Affiliation(s)
- Ran An
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhimeng Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dongli Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuqing Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yueling Lin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hongtao Sun
- Guangdong Second Provincial General Hospital, Department of Orthopedics, Guangzhou, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| | - Manmei Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou, China.
| |
Collapse
|
3
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
4
|
Zhou Q, Xu L. The regulation of BAI1 in astrocytes through the STAT3/EZH2 axis relieves neuronal apoptosis in rats with Alzheimer's disease. Brain Res 2024; 1839:149007. [PMID: 38763505 DOI: 10.1016/j.brainres.2024.149007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Previous studies have identified the critical role of astrocytes in the progression of AD. The focus of this study revolves around clarifying the regulatory mechanism of the STAT3/EZH2/BAI1 axis in astrocytes in AD. We successfully developed a rat model of AD, and measured the learning and cognitive ability of the rats by Morris water maze experiment. HE and Nissl's staining were used for histomorphological identification of the rat hippocampus. Meanwhile, immunofluorescence and immunohistochemistry were used to detect astrocyte activation and brain-specific angiogenesis inhibitor-1 (BAI1) expression in rat hippocampal tissue, respectively. The role of STAT3/EZH2/BAI1 regulating axis in astrocyte activation and neuronal cell apoptosis was verified by establishing the co-culture system of astrocytes and neuronal cells in vitro. Western Blot (WB) was used to detect the expression of associated proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect astrocyte neurotrophic factor secretion. Hochest/PI staining and flow cytometry were used to observe neuronal apoptosis. Compared with the sham group, AD rats showed significantly decreased cognitive and learning abilities, noticeable hippocampal tissue damage, and significantly low levels of BAI1 expression. In in vitro models, BAI1 was found to inhibit astrocyte activation and enhance the secretion of neurotrophins, resulting in decrease of neurone apoptosis. The regulation of BAI1 by the STAT3/EZH2 axis was shown to affect astrocyte activation and neuronal cell apoptosis. In conclusion, this study represents the pioneering discovery that regulated by the STAT3/EZH2 axis, BAI1 suppresses astrocyte activation, thus reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Neurology, The First Affiliated Hospital of Ningbo University, LiuTing Road, Ningbo, Zhejiang 315020, China
| | - Linsheng Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang 310005, China.
| |
Collapse
|
5
|
Wei L, Mei D, Hu S, Du S. Dual-target EZH2 inhibitor: latest advances in medicinal chemistry. Future Med Chem 2024; 16:1561-1582. [PMID: 39082677 PMCID: PMC11370917 DOI: 10.1080/17568919.2024.2380243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 09/03/2024] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in tumor progression by regulating gene expression. EZH2 inhibitors have emerged as promising anti-tumor agents due to their potential in cancer treatment strategies. However, single-target inhibitors often face limitations such as drug resistance and side effects. Dual-target inhibitors, exemplified by EZH1/2 inhibitor HH-2853(28), offer enhanced efficacy and reduced adverse effects. This review highlights recent advancements in dual inhibitors targeting EZH2 and other proteins like BRD4, PARP1, and EHMT2, emphasizing rational design, structure-activity relationships, and safety profiles, suggesting their potential in clinical applications.
Collapse
Affiliation(s)
- Lai Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Sijia Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
6
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
8
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
9
|
Entezari M, Taheriazam A, Paskeh MDA, Sabouni E, Zandieh MA, Aboutalebi M, Kakavand A, Rezaei S, Hejazi ES, Saebfar H, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. The pharmacological and biological importance of EZH2 signaling in lung cancer. Biomed Pharmacother 2023; 160:114313. [PMID: 36738498 DOI: 10.1016/j.biopha.2023.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, university of milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Raju GSR, Pavitra E, Bandaru SS, Varaprasad GL, Nagaraju GP, Malla RR, Huh YS, Han YK. HOTAIR: a potential metastatic, drug-resistant and prognostic regulator of breast cancer. Mol Cancer 2023; 22:65. [PMID: 36997931 PMCID: PMC10061914 DOI: 10.1186/s12943-023-01765-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is an oncogenic non-coding RNA whose expression is strongly correlated with the tumor grade and prognosis of a variety of carcinomas including breast cancer (BC). HOTAIR regulates various target genes via sponging and epigenetic mechanisms and controls various oncogenic cellular and signaling mechanisms including metastasis and drug resistance. In BC cells, HOTAIR expression is regulated by a variety of transcriptional and epigenetic mechanisms. In this review, we describe the regulatory mechanisms that govern HOTAIR expression during cancer development and explore how HOTAIR drives BC development, metastasis, and drug resistance. In the final section of this review, we focus on the role of HOTAIR in BC management, therapeutic treatment, and prognosis, highlighting its potential therapeutic applications.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Ganji Lakshmi Varaprasad
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
11
|
Abstract
The enhancer of zeste homolog 2 (EZH2) and its highly related homolog EZH1 are considered to be epigenetic silencing factors, and they play key roles in the growth and differentiation of cells as the core components of polycomb repressive complex 2 (PRC2). EZH1 and EZH2 are known to have a role in human malignancies, and alterations in these two genes have been implicated in transformation of human malignancies. Inhibition of EZH1/2 has been shown to result in tumor regression in humans and has been studied and evaluated in the preclinical setting and in multiple clinical trials at various levels. Our work thus contributes to the understanding of the relationship between regulatory molecules associated with EZH1/2 proteins and tumor progression, and may provide new insights for mechanism-based EZH1/2-targeted therapy in tumors.
Collapse
|
12
|
Development, characterisation, and in vitro anti-tumor effect of self-microemulsifying drug delivery system containing polyphyllin I. Drug Deliv Transl Res 2023; 13:356-370. [PMID: 35877046 DOI: 10.1007/s13346-022-01212-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2022] [Indexed: 01/01/2023]
Abstract
Polyphyllin I (PPI), an effective active ingredient in Paris polyphylla, has a diverse set of pharmacological properties. However, due to its poor solubility and oral absorption, its application and development are limited. In the study, we were committed to improving the solubility of PPI by developing a self-microemulsifying drug delivery system of PPI (PPI-SMEDDS), screening the best preparation process, and evaluating the quality and the in vivo pharmacokinetics of PPI, and PPI-SMEDDS following oral administration to rats were also studied. In addition, the pharmacological activities against human lung adenocarcinoma cell A549 in vitro were assessed. The best formulation had 15.89% ethyl oleate, 47.38% Cremophor RH40, and 36.73% 1,2 propylene glycol. The produced PPI-SMEDDS was clear and transparent, with an average particle size of 24.51 nm and a zeta potential of -17.54 ± 0.51 mV. In vitro, the cumulative release rate of PPI-SMEDDS was nearly 80% within 2 h. PPI-SMEDDS had a substantially greater area under the curve than PPI following oral treatment in rats, and the relative bioavailability of PPI in rats was 278.99%. More importantly, the anti-tumor effect of PPI-SMEDDS in vitro was significantly greater than that of PPI. These findings suggested that PPI-SMEDDS has the potential to improve the solubility, oral bioavailability of PPI, and anti-tumor effect, laying the groundwork for future research on the new PPI dosage form.
Collapse
|
13
|
Hong J, Lee JH, Zhang Z, Wu Y, Yang M, Liao Y, de la Rosa R, Scheirer J, Pechacek D, Zhang N, Xu Z, Curiel T, Tan X, Huang THM, Xu K. PRC2-Mediated Epigenetic Suppression of Type I IFN-STAT2 Signaling Impairs Antitumor Immunity in Luminal Breast Cancer. Cancer Res 2022; 82:4624-4640. [PMID: 36222718 PMCID: PMC9772098 DOI: 10.1158/0008-5472.can-22-0736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
The immunosuppressive tumor microenvironment in some cancer types, such as luminal breast cancer, supports tumor growth and limits therapeutic efficacy. Identifying approaches to induce an immunostimulatory environment could help improve cancer treatment. Here, we demonstrate that inhibition of cancer-intrinsic EZH2 promotes antitumor immunity in estrogen receptor α-positive (ERα+) breast cancer. EZH2 is a component of the polycomb-repressive complex 2 (PRC2) complex, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3). A 53-gene PRC2 activity signature was closely associated with the immune responses of ERα+ breast cancer cells. The stimulatory effects of EZH2 inhibition on immune surveillance required specific activation of type I IFN signaling. Integrative analysis of PRC2-repressed genes and genome-wide H3K27me3 landscape revealed that type I IFN ligands are epigenetically silenced by H3K27me3. Notably, the transcription factor STAT2, but not STAT1, mediated the immunostimulatory functions of type I IFN signaling. Following EZH2 inhibition, STAT2 was recruited to the promoters of IFN-stimulated genes even in the absence of the cytokines, suggesting the formation of an autocrine IFN-STAT2 axis. In patients with luminal breast cancer, high levels of EZH2 and low levels of STAT2 were associated with the worst antitumor immune responses. Collectively, this work paves the way for the development of an effective therapeutic strategy that may reverse immunosuppression in cancer. SIGNIFICANCE Inhibition of EZH2 activates a type I IFN-STAT2 signaling axis and provides a therapeutic strategy to stimulate antitumor immunity and therapy responsiveness in immunologically cold luminal breast cancer.
Collapse
Affiliation(s)
- Juyeong Hong
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ji Hoon Lee
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanming Wu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mei Yang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yiji Liao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Richard de la Rosa
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jessica Scheirer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Douglas Pechacek
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tyler Curiel
- Department of Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Eisa NH, Said E, Khodir AE, Sabry D, Ebrahim HA, Elsherbini DMA, Altemani R, Alnasser DM, Elsherbiny NM, El-Sherbiny M. Effect of Diacerein on HOTAIR/IL-6/STAT3, Wnt/β-Catenin and TLR-4/NF-κB/TNF-α axes in colon carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103943. [PMID: 35934220 DOI: 10.1016/j.etap.2022.103943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality and poor prognosis. Diacerein (DIA) is an anti-inflammatory used for treatment of osteoarthritis. We delineated some underlying molecular mechanisms of DIA's anti-carcinogenic effect in CRC using in vivo and in vitro models. Human Caco-2 cells were treated with DIA followed by MTT and Annexin V assays and CRC was experimentally induced using 1,2-dimethylhydrazine. DIA (50 mg/kg/day, orally) was administrated for 8 weeks. The MTT assay confirmed cytotoxic effect of DIA in vitro and Annexin V confirmed its apoptotic effect. DIA resulted in regression of tumour lesions with reduced colonic TLR4, NF-κB and TNF-α protein levels and down-regulated VEGF expression, confirming anti-angiogenic impact. DIA triggered caspase-3 expression and regulated Wnt/β-Catenin pathway, by apparently interrupting the IL-6/STAT3/ lncRNA HOTAIR axis. In conclusion, DIA disrupted IL-6/STAT3/ lncRNA HOTAIR axis which could offer an effective therapeutic strategy for the management of CRC.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reem Altemani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nehal M Elsherbiny
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
15
|
Yao X, Wang T, Sun MY, Yuming Y, Guixin D, Liu J. Diagnostic value of lncRNA HOTAIR as a biomarker for detecting and staging of non-small cell lung cancer. Biomarkers 2022; 27:526-533. [PMID: 35959801 DOI: 10.1080/1354750x.2022.2085799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Since the role of long non-coding RNA (lncRNA) HOTAIR is yet to be established in non-small cell lung cancer (NSCLC), we tried to explore the expression of lncRNA HOTAIR in NSCLC and evaluate the correlation between the combined detection of lncRNA HOTAIR and routine tumour markers and the pathological staging of lung cancer. METHODS This study prospectively included 148 patients with NSCLC selected from our hospital from January 2017 to September 2020 as the lung cancer group, and 148 healthy volunteers who referred for physical examination were selected as the control group. Fluorescence in situ hybridisation was used to detect the expression of lncRNA HOTAIR in the cancerous tissues and adjacent tissues of lung cancer patients; the immunofluorescence method was used to detect the serum NSE, CEA and CYFRA21-1 levels of the two groups of testers. Correlation analysis was used to evaluate any relation between cancer staging and markers. In addition, ROC curve analysis was used to estimate sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS The expression of lncRNA HOTAIR in lung cancer tissues was higher than control or surrounding tissue (p < 0.05). Also, high levels of NSE, CEA and CYFRA21-1 were observed in lung cancer group (p < 0.05). In both N and T stage, the expression of lncRNA HOTAIR combined with NSE, CEA and CYFRA21-1 levels increased with the increase in the number of stages (p < 0.05). The results of single factor analysis showed that NSE, CEA, CYFRA21-1 and lncRNA HOTAIR all have appropriate diagnostic value for detecting lung cancer (specificity of 92.6, 91.5, 90.6, 86.9%, respectively and the sensitivity of 61.3, 62.9, 55.4, 52.3%, respectively). CONCLUSION LncRNA HOTAIR is a novel diagnostic test with high diagnostic value for detecting of pathological staging of NSCLC; however, the diagnostic accuracy of lncRNA HOTAIR is not higher than other tumour biomarkers.
Collapse
Affiliation(s)
- Xin Yao
- Medical College of Nantong University, Nantong, China
| | - Teng Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Meng Yang Sun
- Medical College of Nantong University, Nantong, China
| | - Yang Yuming
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Duan Guixin
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Jing Liu
- Nantong First People's Hospital, Nantong, China
| |
Collapse
|
16
|
Huang M, Ding J, Wu X, Peng X, Wu G, Peng C, Zhang H, Mao C, Huang B. EZH2 affects malignant progression and DNA damage repair of lung adenocarcinoma cells by regulating RAI2 expression. Mutat Res 2022; 825:111792. [PMID: 35939884 DOI: 10.1016/j.mrfmmm.2022.111792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is featured in high morbidity and mortality. Aberrant activation of the histone methyltransferase EZH2 has close association with cancer progression. This research aimed to deeply dive into the role and possible molecular mechanisms of EZH2 and its downstream genes in malignant progression and DNA damage repair of LUAD cells. METHODS Expression of EZH2 in LUAD cells was analyzed by qRT-PCR, and the effects of EZH2 on proliferation, and apoptosis of LUAD cells were examined by CCK-8, colony formation and flow cytometry assays. The downstream targets of EZH2 were predicted by bioinformatics analysis. Then, the targeting relationship between EZH2 and RAI2 was examined by CHIP and luciferase reporter assays. Rescue assay were used to further validate the effect of EZH2/RAI2 on the malignant progression of LUAD cells. The expression levels of EZH2, RAI2 and p53 were examined by Western blot. RESULTS Upregulation of EZH2 was identified in LUAD tissues and cells. RAI2 was a downstream target gene of EZH2, and the two were negatively correlated. Silencing EZH2 suppressed proliferation of LUAD cells, promoted expression of p53, cell cycle arrest and apoptosis. While silencing RAI2 could reverse the above-mentioned effects caused by EZH2 silencing. CONCLUSION These results demonstrated that EZH2 promoted malignant progression and DNA damage repair of LUAD cells by targeting and negatively regulating RAI2.
Collapse
Affiliation(s)
- Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| |
Collapse
|
17
|
Luo Y, Li J, Yu P, Sun J, Hu Y, Meng X, Xiang L. Targeting lncRNAs in programmed cell death as a therapeutic strategy for non-small cell lung cancer. Cell Death Dis 2022; 8:159. [PMID: 35379783 PMCID: PMC8980082 DOI: 10.1038/s41420-022-00982-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022]
Abstract
Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the most common histological type. Owing to the limited therapeutic efficacy and side effects of currently available therapies for NSCLC, it is necessary to identify novel therapeutic targets for NSCLC. Long non-coding RNAs (lncRNAs) are non-protein-coding RNAs with a transcript length of more than 200 nucleotides, which play a vital role in the tumorigenesis and progression of multiple cancers, including NSCLC. Induction of programmed cell death (PCD) is the main mechanism leading to tumour cell death in most cancer treatments. Recent studies have demonstrated that lncRNAs are closely correlated with PCD including apoptosis, pyroptosis, autophagy and ferroptosis, which can regulate PCD and relevant death pathways to affect NSCLC progression and the efficacy of clinical therapy. Therefore, in this review, we focused on the function of lncRNAs in PCD of NSCLC and summarized the therapeutic role of targeting lncRNAs in PCD for NSCLC treatment, aiming to provide new sights into the underlying pathogenic mechanisms and propose a potential new strategy for NSCLC therapy so as to improve therapeutic outcomes with the ultimate goal to benefit the patients.
Collapse
Affiliation(s)
- Yanqin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, P. R. China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
18
|
Zou Y. Naturally occurring steroidal saponins as potential anticancer agents: Current developments and mechanisms of action. Curr Top Med Chem 2022; 22:1442-1456. [PMID: 35352659 DOI: 10.2174/1568026622666220330011047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Cancer is claimed as a prevalent cause of mortality throughout the world. Conventional chemotherapy plays a pivotal role in the treatment of cancers, but the multidrug resistance has already become one of the major impediments for efficacious cancer therapy, creating a great demand for the development of novel anticancer drugs. Steroidal saponins, abundantly found in nature, possess extensive structural variability, and some naturally occurring steroidal saponins exhibited profound anticancer properties through a variety of pathways. Hence, naturally occurring steroidal saponins are powerful lead compounds/candidates in the development of novel therapeutic agents. This review article described the recent progress in naturally occurring steroidal saponins as potential anticancer agents, and the mechanisms of action were also discussed, covering articles published between 2017 and 2021.
Collapse
Affiliation(s)
- Yulin Zou
- The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, 443002, Hubei, China
| |
Collapse
|
19
|
Paskeh MDA, Mehrabi A, Gholami MH, Zabolian A, Ranjbar E, Saleki H, Ranjbar A, Hashemi M, Ertas YN, Hushmandi K, Mirzaei S, Ashrafizadeh M, Zarrabi A, Samarghandian S. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2022; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefeh Mehrabi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Ehsan Ranjbar
- Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
20
|
Wu J, Tang X, Shi Y, Ma C, Zhang H, Zhang J, Lu Y, Wei J, Li L, Han L. Crosstalk of LncRNA HOTAIR and SP1-mediated repression of PDK1 contributes to β-Elemene-inhibited proliferation of hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114456. [PMID: 34333105 DOI: 10.1016/j.jep.2021.114456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is a liver malignancy which lacks effective treatment and has a poor prognosis. β-Elemene refers to a natural Curcuma wenyujin-derived single molecular entity, which exhibits various biological activities, and is especially well-known for it's antitumor properties. AIM OF THE RESEARCH LncRNA HOTAIR, SP1, and PDK1 have displayed oncogenic roles in many tumors, participating in the initiation and progression of cancers by mediating multiple signaling pathways. However, there are only a few reports about their roles and mutual relationship in the growth of HCC cells. Therefore, this study aimed to investigate the expression of LncRNA HOTAIR, SP1, and PDK1 and their interaction with β-Elemene in HCC cells. MATERIALS AND METHODS MTT, a Colony formation assay, and flow cytometry were employed to evaluate the growth of HCC and LO2 cells under β-Elemene. LncRNA HOTAIR, SP1 and PDK1 plasmids were transfected into HCC cells by a transient transfection assay, and the expression and interaction of LncRNA HOTAIR, SP1 and PDK1 were assessed via qRT-PCR and western blotting. RESULTS β-Elemene suppressed HCC cell growth through the downregulation of LncRNA HOTAIR, SP1 and PDK1. The results demonstrated a reciprocal interaction among LncRNA HOTAIR, SP1 and PDK1. Exogenous overexpression LncRNA HOTAIR or SP1 eliminated the suppressive effects of β-Elemene on them, and both of which regulated PDK1 expression in HCC cells. Additionally, exogenously overexpressed SP1 or LncRNA HOTAIR prevented β-Elemene inhibition of the protein-level expression of PDK1, whereas overexpressing PDK1 had no effect on SP1, though it still weakened the inhibition of cell growth and LncRNA HOTAIR expression by β-Elemene. CONCLUSION β-Elemene suppresses HCC cell proliferation via through the regulation of LncRNA HOTAIR, SP1, PDK1 and their interaction.
Collapse
Affiliation(s)
- JingJing Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.
| | - XiaoJuan Tang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - ChangJu Ma
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Hongyu Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Junhong Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Yue Lu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Jianan Wei
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Li Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Ling Han
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, Guangdong, China; State key laboratory of Dampness Syndrome of Chinese Medicine, The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
21
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|