1
|
Wang ZA, Markert J, Whedon SD, Abeywardana MY, Sheng X, Nam E, Lee K, Chen M, Waterbury A, Zhao Y, Farnung L, Cole PA. Structural and enzymatic plasticity of SIRT6 deacylase activity. J Biol Chem 2025; 301:108446. [PMID: 40147774 PMCID: PMC12051053 DOI: 10.1016/j.jbc.2025.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Sirtuin 6 (SIRT6) is an NAD-dependent protein deacylase that targets lysine residues in histones in the cell nucleus, where it helps maintain genome stability and links metabolism to epigenetic control. Dysregulation of SIRT6 is believed to be associated with aging and cancer, making it of pharmacological interest. In this study, we use cryo-EM and enzymology to explore SIRT6 preference and adaptability toward different nucleosomal substrates. We have visualized a trapped complex of SIRT6 in the process of deacylating H3K27, demonstrating how SIRT6 undergoes conformational changes to remove differently positioned histone marks. Additional biochemical studies further reveal the plasticity of SIRT6, which accommodates various metabolism-linked modifications, such as lysine lactylation and β-hydroxybutyrylation. To further understand the basis for substrate selectivity of SIRT6, we explore the effects of an established G60A enzyme mutation, proximal H3 modifications, and small-molecule modulators. These findings highlight the versatility of SIRT6 and provide key mechanistic insights into its molecular recognition.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States; Desai Sethi Urology Institute & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jonathan Markert
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
| | - Maheeshi Yapa Abeywardana
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
| | - Xinlei Sheng
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
| | - Maggie Chen
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
| | - Amanda Waterbury
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
2
|
Chouhan S, Muhammad N, Usmani D, Khan TH, Kumar A. Molecular Sentinels: Unveiling the Role of Sirtuins in Prostate Cancer Progression. Int J Mol Sci 2024; 26:183. [PMID: 39796040 PMCID: PMC11720558 DOI: 10.3390/ijms26010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context. It reveals their multifaceted impact on hallmark cancer processes, including sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, resisting cell death, inducing angiogenesis, and enabling replicative immortality. SIRT1, for example, fosters chemoresistance and castration-resistant prostate cancer through metabolic reprogramming, immune modulation, androgen receptor signaling, and enhanced DNA repair. SIRT3 and SIRT4 suppress oncogenic pathways by regulating cancer metabolism, while SIRT2 and SIRT6 influence tumor aggressiveness and androgen receptor sensitivity, with SIRT6 promoting metastatic potential. Notably, SIRT5 oscillates between oncogenic and tumor-suppressive roles by regulating key metabolic enzymes; whereas, SIRT7 drives PCa proliferation and metabolic stress adaptation through its chromatin and nucleolar regulatory functions. Furthermore, we provide a comprehensive summary of the roles of individual sirtuins, highlighting their potential as biomarkers in PCa and exploring their therapeutic implications. By examining each of these specific mechanisms through which sirtuins impact PCa, this review underscores the potential of sirtuin modulation to address gaps in managing advanced PCa. Understanding sirtuins' regulatory effects could redefine therapeutic approaches, promoting precision strategies that enhance treatment efficacy and improve outcomes for patients with aggressive disease.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H. Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
3
|
Shen Z, Lin Q, Yang XY, Fosuah E, Fu TM. Assembly-mediated activation of the SIR2-HerA supramolecular complex for anti-phage defense. Mol Cell 2023; 83:4586-4599.e5. [PMID: 38096827 PMCID: PMC11418745 DOI: 10.1016/j.molcel.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
SIR2-HerA, a bacterial two-protein anti-phage defense system, induces bacterial death by depleting NAD+ upon phage infection. Biochemical reconstitution of SIR2, HerA, and the SIR2-HerA complex reveals a dynamic assembly process. Unlike other ATPases, HerA can form various oligomers, ranging from dimers to nonamers. When assembled with SIR2, HerA forms a hexamer and converts SIR2 from a nuclease to an NAD+ hydrolase, representing an unexpected regulatory mechanism mediated by protein assembly. Furthermore, high concentrations of ATP can inhibit NAD+ hydrolysis by the SIR2-HerA complex. Cryo-EM structures of the SIR2-HerA complex reveal a giant supramolecular assembly up to 1 MDa, with SIR2 as a dodecamer and HerA as a hexamer, crucial for anti-phage defense. Unexpectedly, the HerA hexamer resembles a spiral staircase and exhibits helicase activities toward dual-forked DNA. Together, we reveal the supramolecular assembly of SIR2-HerA as a unique mechanism for switching enzymatic activities and bolstering anti-phage defense strategies.
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Qingpeng Lin
- Department of Biological Chemistry and Pharmacology, The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiao-Yuan Yang
- Department of Biological Chemistry and Pharmacology, The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Program of OSBP, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth Fosuah
- Department of Biological Chemistry and Pharmacology, The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Program of OSBP, The Ohio State University, Columbus, OH 43210, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Program of OSBP, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Global profiling of regulatory elements in the histone benzoylation pathway. Nat Commun 2022; 13:1369. [PMID: 35296687 PMCID: PMC8927147 DOI: 10.1038/s41467-022-29057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Lysine benzoylation (Kbz) is a recently discovered post-translational modification associated with active transcription. However, the proteins for maintaining and interpreting Kbz and the physiological roles of Kbz remain elusive. Here, we systematically characterize writer, eraser, and reader proteins of histone Kbz in S. cerevisiae using proteomic, biochemical, and structural approaches. Our study identifies 27 Kbz sites on yeast histones that can be regulated by cellular metabolic states. The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex and NAD+-dependent histone deacetylase Hst2 could function as the writer and eraser of histone Kbz, respectively. Crystal structures of Hst2 complexes reveal the molecular basis for Kbz recognition and catalysis by Hst2. In addition, we demonstrate that a subset of YEATS domains and bromodomains serve as Kbz readers, and structural analyses reveal how YEATS and bromodomains recognize Kbz marks. Moreover, the proteome-wide screening of Kbz-modified proteins identifies 207 Kbz sites on 149 non-histone proteins enriched in ribosome biogenesis, glycolysis/gluconeogenesis, and rRNA processing pathways. Our studies identify regulatory elements for the Kbz pathway and provide a framework for dissecting the biological functions of lysine benzoylation. Lysine benzoylation (Kbz) is a recently discovered histone modification. Here, the authors characterize writers, erasers and readers of histone Kbz in S. cerevisiae and identify non-histone proteins bearing Kbz, laying foundations to dissect the roles of Kbz in diverse cellular processes.
Collapse
|
5
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Wang SH, Lee SP, Tung SY, Tsai SP, Tsai HC, Shen HH, Hong JY, Su KC, Chen FJ, Liu BH, Wu YY, Hsiao SP, Tsai MS, Liou GG. Stabilization of Sir3 interactions by an epigenetic metabolic small molecule, O-acetyl-ADP-ribose, on yeast SIR-nucleosome silent heterochromatin. Arch Biochem Biophys 2019; 671:167-174. [PMID: 31295433 DOI: 10.1016/j.abb.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
Abstract
In Saccharomyces cerevisiae, Sir proteins mediate heterochromatin epigenetic gene silencing. The assembly of silent heterochromatin requires histone deacetylation by Sir2, conformational change of SIR complexes, and followed by spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin domains. Sir2 couples histone deacetylation and NAD hydrolysis to generate an epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). Here, we demonstrate that AAR physically associates with Sir3 and that polySir3-AAR formation has a specific and essential role in the assembly of silent SIR-nucleosome pre-heterochromatin filaments. Furthermore, we show that AAR is capable of stabilizing binding of the Sir3 BAH domain to the Sir3 carboxyl-terminal region. Our data suggests that for the assembly of SIR-nucleosome pre-heterochromatin filament, the structural rearrangement of SIR-nucleosome is important and result in creating more stable interactions of Sir3, such as the inter-molecule Sir3-Sir3 interaction, and the Sir3-nucleosome interaction within the filaments. In conclusion, our results reveal the importance of AAR, indicating that it not only affects the conformational rearrangement of SIR complexes but also might function as a critical fine-tuning modulatory component of yeast silent SIR-nucleosome pre-heterochromatin by stabilizing the intermolecular interaction between Sir3 N- and C-terminal regions.
Collapse
Affiliation(s)
- Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University & Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan, ROC
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Shu-Ping Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Hsieh-Chin Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Jia-Yang Hong
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Kuan-Chung Su
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Bang-Hung Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Yu-Yi Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Sheng-Pin Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Ming-Shiun Tsai
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, 515, Taiwan, ROC
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC; Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC; Department of Food Science and Biotechnology, Da-Yeh University, Changhua, 515, Taiwan, ROC; Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC; Guang EM Laboratory, New Taipei, 242, Taiwan, ROC.
| |
Collapse
|
7
|
Hałasa M, Bartuzi D, Cieślak D, Kaczor AA, Miziak P, Stepulak A, Matosiuk D. Role of N-terminus in function and dynamics of sirtuin 7: an in silico study. J Biomol Struct Dyn 2019; 38:1283-1291. [PMID: 31025603 DOI: 10.1080/07391102.2019.1600585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sirtuin family comprises seven NAD+-dependent histone deacetylases named SIRT1 to SIRT7. The least investigated SIRT7 is currently considered as a promising therapeutic target for cardiovascular diseases, diabetes and different types of cancer. So far, its structure was not experimentally resolved, except of a fragment of its N-terminus. The aim of this study was to create in silico model of SIRT7 containing its core together with N-terminus, which is known to affect the enzyme's catalytic activity and to find pockets that could be targeted by structure-based virtual screening. Homology model of SIRT7 was prepared using X-ray structures of other sirtuins and a resolved fragment of the N-terminus of SIRT7 as templates. All atom-unbiased molecular dynamics simulations were performed. It was found that N-terminus of SIRT7 remains in spatial proximity of the catalytic core for considerable fraction of time, and therefore, it may affect its catalytic activity by helping the enzyme to hold the substrate peptide. It may also participate in holding and release of the cofactor. Preferred orientations of NAD+ and acetyl-lysine inside SIRT7 were found, with all components forming a stable complex. Molecular dynamics provided an ensemble of conformations that will be targeted with virtual screening. Reliable in silico structure of SIRT7 will be a useful tool in searching for its inhibitors, which can be potential drugs in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marta Hałasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| | - Dominika Cieślak
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y. Centromeres License the Mitotic Condensation of Yeast Chromosome Arms. Cell 2018; 175:780-795.e15. [PMID: 30318142 PMCID: PMC6197839 DOI: 10.1016/j.cell.2018.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.
Collapse
Affiliation(s)
- Tom Kruitwagen
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Pierre Chymkowitch
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | | | - Jorrit Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Faculty of Medicine, Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Faculty of Mathematics and Natural Sciences, Department of Biosciences, University of Oslo, Norway
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
9
|
Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. PLoS One 2018; 13:e0193602. [PMID: 29543820 PMCID: PMC5854310 DOI: 10.1371/journal.pone.0193602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.
Collapse
Affiliation(s)
- Céline Ronin
- NovAliX - Bioparc, Bd Sébastien Brant, Illkirch, France
| | - David Mendes Costa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | - Joana Faria
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | | | | | - Terry K. Smith
- BSRC, School of Biology, University of St Andrews, St Andrews, Scotland
| | | | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
10
|
Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD + -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev 2017; 38:147-200. [PMID: 28094444 DOI: 10.1002/med.21436] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Tung SY, Wang SH, Lee SP, Tsai SP, Shen HH, Chen FJ, Wu YY, Hsiao SP, Liou GG. Modulations of SIR-nucleosome interactions of reconstructed yeast silent pre-heterochromatin by O-acetyl-ADP-ribose and magnesium. Mol Biol Cell 2016; 28:381-386. [PMID: 27932495 PMCID: PMC5341722 DOI: 10.1091/mbc.e16-06-0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022] Open
Abstract
In vitro–assembled filaments are confirmed as SIR-nucleosome pre-heterochromatin, and AAR acts as a modulator for their formation. Not only is magnesium present in the environmental buffer, but it also is chelated by the SIR-nucleosome pre-heterochromatin to promote its condensation. Yeast silent heterochromatin provides an excellent model with which to study epigenetic inheritance. Previously we developed an in vitro assembly system to demonstrate the formation of filament structures with requirements that mirror yeast epigenetic gene silencing in vivo. However, the properties of these filaments were not investigated in detail. Here we show that the assembly system requires Sir2, Sir3, Sir4, nucleosomes, and O-acetyl-ADP-ribose. We also demonstrate that all Sir proteins and nucleosomes are components of these filaments to prove that they are SIR-nucleosome filaments. Furthermore, we show that the individual localization patterns of Sir proteins on the SIR-nucleosome filament reflect those patterns on telomeres in vivo. In addition, we reveal that magnesium exists in the SIR-nucleosome filament, with a role similar to that for chromatin condensation. These results suggest that a small number of proteins and molecules are sufficient to mediate the formation of a minimal yeast silent pre-heterochromatin in vitro.
Collapse
Affiliation(s)
- Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Ping Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Yu-Yi Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Sheng-Pin Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan .,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan.,Guang EM Laboratory, New Taipei 242, Taiwan
| |
Collapse
|
12
|
Gertz M, Steegborn C. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cell Mol Life Sci 2016; 73:2871-96. [PMID: 27007507 PMCID: PMC11108305 DOI: 10.1007/s00018-016-2180-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/15/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
Sirtuins are an evolutionary conserved family of NAD(+)-dependent protein lysine deacylases. Mammals have seven Sirtuin isoforms, Sirt1-7. They contribute to regulation of metabolism, stress responses, and aging processes, and are considered therapeutic targets for metabolic and aging-related diseases. While initial studies were focused on Sirt1 and 2, recent progress on the mitochondrial Sirtuins Sirt3, 4, and 5 has stimulated research and drug development for these isoforms. Here we review the roles of Sirtuins in regulating mitochondrial functions, with a focus on the mitochondrially located isoforms, and on their contributions to disease pathologies. We further summarize the compounds available for modulating the activity of these Sirtuins, again with a focus on mitochondrial isoforms, and we describe recent results important for the further improvement of compounds. This overview illustrates the potential of mitochondrial Sirtuins as drug targets and summarizes the status, progress, and challenges in developing small molecule compounds modulating their activity.
Collapse
Affiliation(s)
- Melanie Gertz
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
- Bayer Pharma AG, Apratherweg 18a, 42096, Wuppertal, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.
| |
Collapse
|
13
|
Knyphausen P, de Boor S, Kuhlmann N, Scislowski L, Extra A, Baldus L, Schacherl M, Baumann U, Neundorf I, Lammers M. Insights into Lysine Deacetylation of Natively Folded Substrate Proteins by Sirtuins. J Biol Chem 2016; 291:14677-94. [PMID: 27226597 DOI: 10.1074/jbc.m116.726307] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Sirtuins are NAD(+)-dependent lysine deacylases, regulating a variety of cellular processes. The nuclear Sirt1, the cytosolic Sirt2, and the mitochondrial Sirt3 are robust deacetylases, whereas the other sirtuins have preferences for longer acyl chains. Most previous studies investigated sirtuin-catalyzed deacylation on peptide substrates only. We used the genetic code expansion concept to produce natively folded, site-specific, and lysine-acetylated Sirt1-3 substrate proteins, namely Ras-related nuclear, p53, PEPCK1, superoxide dismutase, cyclophilin D, and Hsp10, and analyzed the deacetylation reaction. Some acetylated proteins such as Ras-related nuclear, p53, and Hsp10 were robustly deacetylated by Sirt1-3. However, other reported sirtuin substrate proteins such as cyclophilin D, superoxide dismutase, and PEPCK1 were not deacetylated. Using a structural and functional approach, we describe the ability of Sirt1-3 to deacetylate two adjacent acetylated lysine residues. The dynamics of this process have implications for the lifetime of acetyl modifications on di-lysine acetylation sites and thus constitute a new mechanism for the regulation of proteins by acetylation. Our studies support that, besides the primary sequence context, the protein structure is a major determinant of sirtuin substrate specificity.
Collapse
Affiliation(s)
- Philipp Knyphausen
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne and
| | - Susanne de Boor
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne and
| | - Nora Kuhlmann
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne and
| | - Lukas Scislowski
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne and
| | - Antje Extra
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne and
| | - Linda Baldus
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne and
| | - Magdalena Schacherl
- the Institute for Biochemistry, Zülpicher Strasse 47b, University of Cologne, 50674 Cologne, Germany
| | - Ulrich Baumann
- the Institute for Biochemistry, Zülpicher Strasse 47b, University of Cologne, 50674 Cologne, Germany
| | - Ines Neundorf
- the Institute for Biochemistry, Zülpicher Strasse 47b, University of Cologne, 50674 Cologne, Germany
| | - Michael Lammers
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne and
| |
Collapse
|
14
|
Abstract
Sirtuins are NAD(+)-dependent enzymes universally present in all organisms, where they play central roles in regulating numerous biological processes. Although early studies showed that sirtuins deacetylated lysines in a reaction that consumes NAD(+), more recent studies have revealed that these enzymes can remove a variety of acyl-lysine modifications. The specificities for varied acyl modifications may thus underlie the distinct roles of the different sirtuins within a given organism. This review summarizes the structure, chemistry, and substrate specificity of sirtuins with a focus on how different sirtuins recognize distinct substrates and thus carry out specific functions.
Collapse
Affiliation(s)
- Poonam Bheda
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France.,Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14850;
| |
Collapse
|
15
|
Bedalov A, Chowdhury S, Simon JA. Biology, Chemistry, and Pharmacology of Sirtuins. Methods Enzymol 2016; 574:183-211. [PMID: 27423863 DOI: 10.1016/bs.mie.2016.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sirtuins are a family of protein deacylases related by amino acid sequence and cellular function to the yeast Saccharomyces cerevisiae protein Sir2 (Silent Information Regulator-2), the first of this class of enzymes to be identified and studied in detail. Based on its initially discovered activity, Sir2 was classified as a histone deacetylase that removes acetyl groups from histones H3 and H4. The acetylation/deacetylation of these particular substrates leads to changes in transcriptional silencing at specific loci in the yeast genome, hence its name. Sirtuins, however, have been shown to regulate a wide variety of cellular processes beyond transcriptional repression in varied subcellular compartments and in different cell types. Mechanistically distinct from Zn(2+)-dependent deacylases, sirtuins use nicotinamide adenine dinucleotide as a cofactor in the removal of acetyl and other acyl groups linking metabolic status and posttranslational modification. Sirtuins' unique position has made them attractive targets for small-molecule drug development. In this chapter, we describe the biological roles, therapeutic areas in which sirtuins may play a role and development of small-molecule inhibitors of sirtuins employing phenotypic screening technologies ranging from assays in yeast, as well as biochemical screens to yield lead drug development candidates targeting a broad spectrum of human diseases.
Collapse
Affiliation(s)
- A Bedalov
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - S Chowdhury
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - J A Simon
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| |
Collapse
|
16
|
Suenkel B, Steegborn C. Recombinant Preparation, Biochemical Analysis, and Structure Determination of Sirtuin Family Histone/Protein Deacylases. Methods Enzymol 2016; 573:183-208. [DOI: 10.1016/bs.mie.2015.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Li J, Flick F, Verheugd P, Carloni P, Lüscher B, Rossetti G. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2). PLoS One 2015; 10:e0139095. [PMID: 26407304 PMCID: PMC4583397 DOI: 10.1371/journal.pone.0139095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.
Collapse
Affiliation(s)
- Jinyu Li
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Franziska Flick
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
18
|
Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, Xu RM. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev 2015; 29:1316-25. [PMID: 26109052 PMCID: PMC4495401 DOI: 10.1101/gad.265462.115] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cao et al. solved the structure of SIRT1 in complex with resveratrol and an AMC-containing peptide. The structural information provides valuable insights into regulation of SIRT1 activity and should benefit the development of authentic SIRT1 activators. Sirtuins with an extended N-terminal domain (NTD), represented by yeast Sir2 and human SIRT1, harbor intrinsic mechanisms for regulation of their NAD-dependent deacetylase activities. Elucidation of the regulatory mechanisms is crucial for understanding the biological functions of sirtuins and development of potential therapeutics. In particular, SIRT1 has emerged as an attractive therapeutic target, and the search for SIRT1-activating compounds (STACs) has been actively pursued. However, the effectiveness of a class of reported STACs (represented by resveratrol) as direct SIRT1 activators is under debate due to the complication involving the use of fluorogenic substrates in in vitro assays. Future efforts of SIRT1-based therapeutics necessitate the dissection of the molecular mechanism of SIRT1 stimulation. We solved the structure of SIRT1 in complex with resveratrol and a 7-amino-4-methylcoumarin (AMC)-containing peptide. The structure reveals the presence of three resveratrol molecules, two of which mediate the interaction between the AMC peptide and the NTD of SIRT1. The two NTD-bound resveratrol molecules are principally responsible for promoting tighter binding between SIRT1 and the peptide and the stimulation of SIRT1 activity. The structural information provides valuable insights into regulation of SIRT1 activity and should benefit the development of authentic SIRT1 activators.
Collapse
Affiliation(s)
- Duanfang Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhu Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiayang Qiu
- Department of Structural Biology and Biophysics, Pfizer Groton Research Laboratories, Groton, Connecticut 06340, USA
| | - Dongxiang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Singh R, Singh S, Pandey PN. In-silico analysis of Sirt2 from Schistosoma mansoni: structures, conformations, and interactions with inhibitors. J Biomol Struct Dyn 2015; 34:1042-51. [PMID: 26108803 DOI: 10.1080/07391102.2015.1065205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sirtuins are NAD+-dependent lysine deacetylases member of the class III HDAC family. These are demonstrated to be therapeutic targets in parasitic diseases like schistosomiasis. Observations suggested that sirtuin enzyme is necessary for the functionality of fe/male reproductive system, due to which SmSirt2 is treated as a potential therapeutic target. There are no structural and molecular features of SmSirt2 have been reported yet. In this study, homology modeling has been used to determine the three-dimensional features of the SmSITRT2. Further, structure validation has been performed by energy minimization and Ramachandran plot. Validated structures are further subjected to molecular docking and virtual screening to find the best lead molecules for downstream analysis. Ten lead molecules were selected while comparing virtual screening of hSirt2 and SmSirt2 both. These leads are further compared with AKG2 which is known inhibitor of hSirt2 (-8.8 kcal/mol). Out of selected 10 leads, four of them (ZINC23995485 (-9.5 kcal/mol), ZINC53298162 (-9.4 kcal/mol), ZINC70927268 (-10.0 kcal/mol), ZINC89878705 (-11.2 kcal/mol)) have shown better interaction with SmSirt2, in which ZINC89878705 (-11.2 kcal/mol) shows a more compact packing as compared to AKG2 and rest of ligands. These molecules could be further subject to in vitro study and model of SmSirt2 has been proposed for further structure-based drug design projects concerning sirtuins from Schistosoma mansoni.
Collapse
Affiliation(s)
- Raghvendra Singh
- a Center of Bioinformatic, IIDS, Nehru Science Center , University of Allahabad , Allahabad 211002 , India
| | - Swadha Singh
- a Center of Bioinformatic, IIDS, Nehru Science Center , University of Allahabad , Allahabad 211002 , India
| | - Paras Nath Pandey
- b Department of Mathematics , University of Allahabad , Allahabad 211002 , India
| |
Collapse
|
20
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
21
|
Di Fruscia P, Zacharioudakis E, Liu C, Moniot S, Laohasinnarong S, Khongkow M, Harrison IF, Koltsida K, Reynolds CR, Schmidtkunz K, Jung M, Chapman KL, Steegborn C, Dexter DT, Sternberg MJE, Lam EWF, Fuchter MJ. The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model. ChemMedChem 2014; 10:69-82. [PMID: 25395356 DOI: 10.1002/cmdc.201402431] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 02/03/2023]
Abstract
Sirtuins, NAD(+) -dependent histone deacetylases (HDACs), have recently emerged as potential therapeutic targets for the treatment of a variety of diseases. The discovery of potent and isoform-selective inhibitors of this enzyme family should provide chemical tools to help determine the roles of these targets and validate their therapeutic value. Herein, we report the discovery of a novel class of highly selective SIRT2 inhibitors, identified by pharmacophore screening. We report the identification and validation of 3-((2-methoxynaphthalen-1-yl)methyl)-7-((pyridin-3-ylmethyl)amino)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (ICL-SIRT078), a substrate-competitive SIRT2 inhibitor with a Ki value of 0.62 ± 0.15 μM and more than 50-fold selectivity against SIRT1, 3 and 5. Treatment of MCF-7 breast cancer cells with ICL-SIRT078 results in hyperacetylation of α-tubulin, an established SIRT2 biomarker, at doses comparable with the biochemical IC50 data, while suppressing MCF-7 proliferation at higher concentrations. In concordance with the recent reports that suggest SIRT2 inhibition is a potential strategy for the treatment of Parkinson's disease, we find that compound ICL-SIRT078 has a significant neuroprotective effect in a lactacystin-induced model of Parkinsonian neuronal cell death in the N27 cell line. These results encourage further investigation into the effects of ICL-SIRT078, or an optimised derivative thereof, as a candidate neuroprotective agent in in vivo models of Parkinson's disease.
Collapse
Affiliation(s)
- Paolo Di Fruscia
- Department of Chemistry, Imperial College London, St. Kensington Campus, London SW7 2AZ, (UK)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pulla VK, Alvala M, Sriram DS, Viswanadha S, Sriram D, Yogeeswari P. Structure-based drug design of small molecule SIRT1 modulators to treat cancer and metabolic disorders. J Mol Graph Model 2014; 52:46-56. [DOI: 10.1016/j.jmgm.2014.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/05/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
|
23
|
Hoffmann G, Breitenbücher F, Schuler M, Ehrenhofer-Murray AE. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem 2013; 289:5208-16. [PMID: 24379401 DOI: 10.1074/jbc.m113.487736] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sirtuin 2 (SIRT2) is an NAD(+)-dependent protein deacetylase whose targets include histone H4 lysine 16, p53, and α-tubulin. Because deacetylation of p53 regulates its effect on apoptosis, pharmacological inhibition of SIRT2-dependent p53 deacetylation is of great therapeutic interest for the treatment of cancer. Here, we have identified two structurally related compounds, AEM1 and AEM2, which are selective inhibitors of SIRT2 (IC50 values of 18.5 and 3.8 μM, respectively), but show only weak effects on other sirtuins such as SIRT1, SIRT3, and yeast Sir2. Interestingly, both compounds sensitized non-small cell lung cancer cell lines toward the induction of apoptosis by the DNA-damaging agent etoposide. Importantly, this sensitization was dependent on the presence of functional p53, thus establishing a link between SIRT2 inhibition by these compounds and p53 activation. Further, treatment with AEM1 and AEM2 led to elevated levels of p53 acetylation and to increased expression of CDKN1A, which encodes the cell cycle regulator p21(WAF1), as well as the pro-apoptotic genes PUMA and NOXA, three transcriptional targets of p53. Altogether, our data suggest that inhibition of SIRT2 by these compounds causes increased activation of p53 by decreasing SIRT2-dependent p53 deacetylation. These compounds thus provide a good opportunity for lead optimization and drug development to target p53-proficient cancers.
Collapse
Affiliation(s)
- Gesine Hoffmann
- From the Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, 45117 Essen, Germany
| | | | | | | |
Collapse
|
24
|
Davenport AM, Huber FM, Hoelz A. Structural and functional analysis of human SIRT1. J Mol Biol 2013; 426:526-41. [PMID: 24120939 DOI: 10.1016/j.jmb.2013.10.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 01/09/2023]
Abstract
SIRT1 is a NAD(+)-dependent deacetylase that plays important roles in many cellular processes. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an open apo form and a closed conformation in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a β hairpin structure that complements the β sheet of the NAD(+)-binding domain, covering an essentially invariant hydrophobic surface. The apo form adopts a distinct open conformation, in which the smaller subdomain of SIRT1 undergoes a rotation with respect to the larger NAD(+)-binding subdomain. A biochemical analysis identifies key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain.
Collapse
Affiliation(s)
- Andrew M Davenport
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
25
|
Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci U S A 2013; 110:E2772-81. [PMID: 23840057 DOI: 10.1073/pnas.1303628110] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sirtuins are protein deacetylases regulating metabolism and stress responses. The seven human Sirtuins (Sirt1-7) are attractive drug targets, but Sirtuin inhibition mechanisms are mostly unidentified. We report the molecular mechanism of Sirtuin inhibition by 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (Ex-527). Inhibitor binding to potently inhibited Sirt1 and Thermotoga maritima Sir2 and to moderately inhibited Sirt3 requires NAD(+), alone or together with acetylpeptide. Crystal structures of several Sirtuin inhibitor complexes show that Ex-527 occupies the nicotinamide site and a neighboring pocket and contacts the ribose of NAD(+) or of the coproduct 2'-O-acetyl-ADP ribose. Complex structures with native alkylimidate and thio-analog support its catalytic relevance and show, together with biochemical assays, that only the coproduct complex is relevant for inhibition by Ex-527, which stabilizes the closed enzyme conformation preventing product release. Ex-527 inhibition thus exploits Sirtuin catalysis, and kinetic isoform differences explain its selectivity. Our results provide insights in Sirtuin catalysis and inhibition with important implications for drug development.
Collapse
|
26
|
Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J Struct Biol 2013; 182:136-43. [PMID: 23454361 DOI: 10.1016/j.jsb.2013.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 11/22/2022]
Abstract
Sirtuins are NAD(+)-dependent protein deacetylases that regulate metabolism and aging-related processes. Sirt2 is the only cytoplasmic isoform among the seven mamalian Sirtuins (Sirt1-7) and structural information concerning this isoform is limited. We crystallized Sirt2 in complex with a product analog, ADP-ribose, and solved this first crystal structure of a Sirt2 ligand complex at 2.3Å resolution. Additionally, we re-refined the structure of the Sirt2 apoform and analyzed the conformational changes associated with ligand binding to derive insights into the dynamics of the enzyme. Our analyses also provide information on Sirt2 peptide substrate binding and structural states of a Sirt2-specific protein region, and our insights and the novel Sirt2 crystal form provide helpful tools for the development of Sirt2 specific inhibitors.
Collapse
|
27
|
Hsu HC, Wang CL, Wang M, Yang N, Chen Z, Sternglanz R, Xu RM. Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding. Genes Dev 2013; 27:64-73. [PMID: 23307867 DOI: 10.1101/gad.208140.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The budding yeast Sir2 (silent information regulator 2) protein is the founding member of the sirtuin family of NAD-dependent histone/protein deacetylases. Its function in transcriptional silencing requires both the highly conserved catalytic domain and a poorly understood N-terminal regulatory domain (Sir2N). We determined the structure of Sir2 in complex with a fragment of Sir4, a component of the transcriptional silencing complex in Saccharomyces cerevisiae. The structure shows that Sir4 is anchored to Sir2N and contacts the interface between the Sir2N and the catalytic domains through a long loop. We discovered that the interaction between the Sir4 loop and the interdomain interface in Sir2 is critical for allosteric stimulation of the deacetylase activity of Sir2. These results bring to light the structure and function of the regulatory domain of Sir2, and the knowledge should be useful for understanding allosteric regulation of sirtuins in general.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Meledin R, Brik A, Aharoni A. Dissecting the roles of the N- and C-flanking residues of acetyllysine substrates for SIRT1 activity. Chembiochem 2013; 14:577-81. [PMID: 23426869 DOI: 10.1002/cbic.201200727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Indexed: 11/09/2022]
Abstract
SIRT1 specificity: The multispecific SIRT1 enzyme catalyzes the deacetylation of acetyllysine residues within protein targets. However, little is known regarding the molecular basis for SIRT1 substrate recognition. Kinetic analysis of SIRT1 with a panel of peptide substrates shows the high importance of the region N-flanking the target acetyllysine and its high conservation through evolution.
Collapse
Affiliation(s)
- Roman Meledin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | | |
Collapse
|
29
|
The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J Med Chem 2013; 56:963-9. [PMID: 23311358 DOI: 10.1021/jm301431y] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The sirtuin SIRT1 is a NAD(+)-dependent histone deacetylase, a Sir2 family member, and one of seven human sirtuins. Sirtuins are conserved from archaea to mammals and regulate transcription, genome stability, longevity, and metabolism. SIRT1 regulates transcription via deacetylation of transcription factors such as PPARγ, NFκB, and the tumor suppressor protein p53. EX527 (27) is a nanomolar SIRT1 inhibitor and a micromolar SIRT2 inhibitor. To elucidate the mechanism of SIRT inhibition by 27, we determined the 2.5 Å crystal structure of the SIRT1 catalytic domain (residues 241-516) bound to NAD(+) and the 27 analogue compound 35. 35 binds deep in the catalytic cleft, displacing the NAD(+) nicotinamide and forcing the cofactor into an extended conformation. The extended NAD(+) conformation sterically prevents substrate binding. The SIRT1/NAD(+)/35 crystal structure defines a novel mechanism of histone deacetylase inhibition and provides a basis for understanding, and rationally improving, inhibition of this therapeutically important target by drug-like molecules.
Collapse
|
30
|
Abstract
BACKGROUND Reverse docking approaches have been explored in previous studies on drug discovery to overcome some problems in traditional virtual screening. However, current reverse docking approaches are problematic in that the target spaces of those studies were rather small, and their applications were limited to identifying new drug targets. In this study, we expanded the scope of target space to a set of all protein structures currently available and developed several new applications of reverse docking method. RESULTS We generated 2D Matrix of docking scores among all the possible protein structures in yeast and human and 35 famous drugs. By clustering the docking profile data and then comparing them with fingerprint-based clustering of drugs, we first showed that our data contained accurate information on their chemical properties. Next, we showed that our method could be used to predict the druggability of target proteins. We also showed that a combination of sequence similarity and docking profile similarity could predict the enzyme EC numbers more accurately than sequence similarity alone. In two case studies, 5-fluorouracil and cycloheximide, we showed that our method can successfully find identifying target proteins. CONCLUSIONS By using a large number of protein structures, we improved the sensitivity of reverse docking and showed that using as many protein structure as possible was important in finding real binding targets.
Collapse
Affiliation(s)
- Minho Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | | |
Collapse
|
31
|
Abstract
Sir2 proteins, or sirtuins, are a family of enzymes that catalyze NAD(+)-dependent deacetylation reactions and can also process ribosyltransferase, demalonylase, and desuccinylase activities. More than 40 crystal structures of sirtuins have been determined, alone or in various liganded forms. These high-resolution architectural details lay the foundation for understanding the molecular mechanisms of catalysis, regulation, substrate specificity, and inhibition of sirtuins. In this minireview, we summarize these structural features and discuss their implications for understanding sirtuin function.
Collapse
Affiliation(s)
- Hua Yuan
- Program in Gene Expression and Regulation, The Wistar Institute, University of Pennsylvania,Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
32
|
Suzuki T, Khan MNA, Sawada H, Imai E, Itoh Y, Yamatsuta K, Tokuda N, Takeuchi J, Seko T, Nakagawa H, Miyata N. Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors. J Med Chem 2012; 55:5760-73. [PMID: 22642300 DOI: 10.1021/jm3002108] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective inhibitors of human sirtuin 2 (SIRT2), a deacetylase, are candidate therapeutic agents for neurodegenerative diseases such as Parkinson's disease and Huntington's disease as well as potential tools for elucidating the biological functions of SIRT2. On the basis of homology models of SIRT1 and SIRT2, we designed and prepared a series of 2-anilinobenzamide analogues. Enzyme assays using recombinant SIRT1 and SIRT2 revealed that 3'-phenethyloxy-2-anilinobenzamide analogues such as 33a and 33i are potent and selective SIRT2 inhibitors, showing more than 3.5-fold greater SIRT2-inhibitory activity and more than 35-fold greater SIRT2-selectivity compared with AGK2 (3), a previously reported SIRT2-selective inhibitor. Compound 33a also induced a dose-dependent selective increase of α-tubulin acetylation in human colon cancer HCT116 cells, indicating selective inhibition of SIRT2 in the cells. These 3'-phenethyloxy-2-anilinobenzamide derivatives represent an entry into a new class of SIRT2-selective inhibitors.
Collapse
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-cho, Kita-ku, Kyoto 603-8334, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chromatin affinity-precipitation using a small metabolic molecule: its application to analysis of O-acetyl-ADP-ribose. Cell Mol Life Sci 2011; 69:641-50. [PMID: 21796450 DOI: 10.1007/s00018-011-0771-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/19/2011] [Accepted: 07/05/2011] [Indexed: 10/17/2022]
Abstract
In the cell, many small endogenous metabolic molecules are involved in distinct cellular functions such as modulation of chromatin structure and regulation of gene expression. O-acetyl-ADP-ribose (AAR) is a small metabolic molecule that is generated during NAD-dependent deacetylation by Sir2. Sir2 regulates gene expression, DNA repair, and genome stability. Here, we developed a novel chromatin affinity-precipitation (ChAP) method to detect the chromatin fragments at which small molecules interact with binding partners. We used this method to demonstrate that AAR associated with heterochromatin. Moreover, we applied the ChAP method to whole genome tiling array chips to compare the association of AAR and Sir2. We found that AAR and Sir2 displayed similar genomic binding patterns. Furthermore, we identified 312 potential association cluster regions of AAR. The ChAP assay may therefore be a generally useful strategy to study the small molecule association with chromosomal regions. Our results further suggest that the small metabolic molecule AAR associates with silent chromatin regions in a Sir2-dependent manner and provide additional support for the role of AAR in assembly of silent chromatin.
Collapse
|
34
|
Bheda P, Wang JT, Escalante-Semerena JC, Wolberger C. Structure of Sir2Tm bound to a propionylated peptide. Protein Sci 2011; 20:131-9. [PMID: 21080423 DOI: 10.1002/pro.544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lysine propionylation is a recently identified post-translational modification that has been observed in proteins such as p53 and histones and is thought to play a role similar to acetylation in modulating protein activity. Members of the sirtuin family of deacetylases have been shown to have depropionylation activity, although the way in which the sirtuin catalytic site accommodates the bulkier propionyl group is not clear. We have determined the 1.8 Å structure of a Thermotoga maritima sirtuin, Sir2Tm, bound to a propionylated peptide derived from p53. A comparison with the structure of Sir2Tm bound to an acetylated peptide shows that hydrophobic residues in the active site shift to accommodate the bulkier propionyl group. Isothermal titration calorimetry data show that Sir2Tm binds propionylated substrates more tightly than acetylated substrates, but kinetic assays reveal that the catalytic rate of Sir2Tm deacylation of propionyl-lysine is slightly reduced to acetyl-lysine. These results serve to broaden our understanding of the newly identified propionyl-lysine modification and the ability of sirtuins to depropionylate, as well as deacetylate, substrates.
Collapse
Affiliation(s)
- Poonam Bheda
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
35
|
Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. Structure and biochemical functions of SIRT6. J Biol Chem 2011; 286:14575-87. [PMID: 21362626 DOI: 10.1074/jbc.m111.218990] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SIRT6 is a member of the evolutionarily conserved sirtuin family of NAD(+)-dependent protein deacetylases and functions in genomic stability and transcriptional control of glucose metabolism. Early reports suggested that SIRT6 performs ADP-ribosylation, whereas more recent studies have suggested that SIRT6 functions mainly as a histone deacetylase. Thus, the molecular functions of SIRT6 remain uncertain. Here, we perform biochemical, kinetic, and structural studies to provide new mechanistic insight into the functions of SIRT6. Utilizing three different assays, we provide biochemical and kinetic evidence that SIRT6-dependent histone deacetylation produces O-acetyl-ADP-ribose but at a rate ∼1,000 times slower than other highly active sirtuins. To understand the molecular basis for such low deacetylase activity, we solved the first crystal structures of this class IV sirtuin in complex with ADP-ribose and the non-hydrolyzable analog of O-acetyl-ADP-ribose, 2'-N-acetyl-ADP-ribose. The structures revealed unique features of human SIRT6, including a splayed zinc-binding domain and the absence of a helix bundle that in other sirtuin structures connects the zinc-binding motif and Rossmann fold domain. SIRT6 also lacks the conserved, highly flexible, NAD(+)-binding loop and instead contains a stable single helix. These differences led us to hypothesize that SIRT6, unlike all other studied sirtuins, would be able to bind NAD(+) in the absence of an acetylated substrate. Indeed, we found that SIRT6 binds NAD(+) with relatively high affinity (K(d) = 27 ± 1 μM) in the absence of an acetylated substrate. Isothermal titration calorimetry and tryptophan fluorescence binding assays suggested that ADP-ribose and NAD(+) induce different structural perturbations and that NADH does not bind to SIRT6. Collectively, these new insights imply a unique activating mechanism and/or the possibility that SIRT6 could act as an NAD(+) metabolite sensor.
Collapse
Affiliation(s)
- Patricia W Pan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Smith BC, Settles B, Hallows WC, Craven MW, Denu JM. SIRT3 substrate specificity determined by peptide arrays and machine learning. ACS Chem Biol 2011; 6:146-57. [PMID: 20945913 PMCID: PMC3042044 DOI: 10.1021/cb100218d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Accumulating evidence suggests that reversible protein acetylation may be a major regulatory mechanism that rivals phosphorylation. With the recent cataloging of thousands of acetylation sites on hundreds of proteins comes the challenge of identifying the acetyltransferases and deacetylases that regulate acetylation levels. Sirtuins are a conserved family of NAD(+)-dependent protein deacetylases that are implicated in genome maintenance, metabolism, cell survival, and lifespan. SIRT3 is the dominant protein deacetylase in mitochondria, and emerging evidence suggests that SIRT3 may control major pathways by deacetylation of central metabolic enzymes. Here, to identify potential SIRT3 substrates, we have developed an unbiased screening strategy that involves a novel acetyl-lysine analogue (thiotrifluoroacetyl-lysine), SPOT-peptide libraries, machine learning, and kinetic validation. SPOT peptide libraries based on known and potential mitochondrial acetyl-lysine sites were screened for SIRT3 binding and then analyzed using machine learning to establish binding trends. These trends were then applied to the mitochondrial proteome as a whole to predict binding affinity of all lysine sites within human mitochondria. Machine learning prediction of SIRT3 binding correlated with steady-state kinetic k(cat)/K(m) values for 24 acetyl-lysine peptides that possessed a broad range of predicted binding. Thus, SPOT peptide-binding screens and machine learning prediction provides an accurate and efficient method to evaluate sirtuin substrate specificity from a relatively small learning set. These analyses suggest potential SIRT3 substrates involved in several metabolic pathways such as the urea cycle, ATP synthesis, and fatty acid oxidation.
Collapse
Affiliation(s)
- Brian C. Smith
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Burr Settles
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - William C. Hallows
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mark W. Craven
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
37
|
Guo X, Williams JG, Schug TT, Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010; 285:13223-32. [PMID: 20167603 PMCID: PMC2857074 DOI: 10.1074/jbc.m110.102574] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/18/2010] [Indexed: 12/21/2022] Open
Abstract
DYRK1A (the dual specificity tyrosine phosphorylation-regulated kinase 1A) plays an important role in body growth and brain physiology. Overexpression of this kinase has been associated with the development of Down syndrome in both human and animal models, whereas single copy loss-of-function of DYRK1A leads to increased apoptosis and decreased brain size. Although more than a dozen of DYRK1A targets have been identified, the molecular basis of its involvement in neuronal development remains unclear. Here we show that DYRK1A and another pro-survival member of the DYRK family, DYRK3, promote cell survival through phosphorylation and activation of SIRT1, an NAD(+)-dependent protein deacetylase that is essential in a variety of physiological processes including stress response and energy metabolism. DYRK1A and DYRK3 directly phosphorylate SIRT1 at Thr(522), promoting deacetylation of p53. A SIRT1 phosphorylation mimetic (SIRT1 T522D) displays elevated deacetylase activity, thus inhibiting cell apoptosis. Conversely, a SIRT1 dephosphorylation mimetic (SIRT1 T522V) fails to mediate DYRK-induced deacetylation of p53 and cell survival. We show that knockdown of endogenous DYRK1A and DYRK3 leads to hypophosphorylation of SIRT1, sensitizing cells to DNA damage-induced cell death. We also provide evidence that phosphorylation of Thr(522) activates SIRT1 by promoting product release, thereby increasing its enzymatic turnover. Taken together, our findings provide a novel mechanism by which two anti-apoptotic DYRK members promote cell survival through direct modification of SIRT1. These findings may have important implications in understanding the molecular mechanisms of tumorigenesis, Down syndrome, and aging.
Collapse
Affiliation(s)
- Xiumei Guo
- From the
Laboratory of Signal Transduction and
| | - Jason G. Williams
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | - Xiaoling Li
- From the
Laboratory of Signal Transduction and
| |
Collapse
|
38
|
Romier C, Wurtz J, Renaud J, Cavarelli J. Structural Biology of Epigenetic Targets. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627073.ch2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Gurard-Levin ZA, Kim J, Mrksich M. Combining mass spectrometry and peptide arrays to profile the specificities of histone deacetylases. Chembiochem 2009; 10:2159-61. [PMID: 19688789 DOI: 10.1002/cbic.200900417] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zachary A Gurard-Levin
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60521, USA
| | | | | |
Collapse
|
40
|
Greiss S, Gartner A. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells 2009; 28:407-15. [PMID: 19936627 PMCID: PMC3710699 DOI: 10.1007/s10059-009-0169-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/01/2009] [Indexed: 12/29/2022] Open
Abstract
The sirtuins are a protein family named after the first identified member, S. cerevisiae Sir2p. Sirtuins are protein deacetylases whose activity is dependent on NAD(+) as a cosubstrate. They are structurally defined by two central domains that together form a highly conserved catalytic center, which catalyzes the transfer of an acetyl moiety from acetyllysine to NAD(+), yielding nicotinamide, the unique metabolite O-acetyl-ADP-ribose and deacetylated lysine. One or more sirtuins are present in virtually all species from bacteria to mammals. Here we describe a phylogenetic analysis of sirtuins. Based on their phylogenetic relationship, sirtuins can be grouped into over a dozen classes and subclasses. Humans, like most vertebrates, have seven sirtuins: SIRT1-SIRT7. These function in diverse cellular pathways, regulating transcriptional repression, aging, metabolism, DNA damage responses and apoptosis. We show that these seven sirtuins arose early during animal evolution. Conserved residues cluster around the catalytic center of known sirtuin family members.
Collapse
Affiliation(s)
- Sebastian Greiss
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Anton Gartner
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
41
|
Du J, Jiang H, Lin H. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry 2009; 48:2878-90. [PMID: 19220062 DOI: 10.1021/bi802093g] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein ADP-ribosyltransferases catalyze the transfer of adenosine diphosphate ribose (ADP-ribose) from nicotinamide adenine dinucleotide (NAD) onto specific target proteins. Sirtuins, a class of enzymes with NAD-dependent deacetylase activity, have been reported to possess ADP-ribosyltransferase activity, too. Here we used NAD analogues and 32P-NAD to study the ADP-ribosyltransferase activity of several different sirtuins, including yeast Sir2, human SirT1, mouse SirT4, and mouse SirT6. The results showed that an alkyne-tagged NAD is the substrate for deacetylation reactions but cannot detect the ADP-ribosylation activity. Furthermore, comparing with a bacterial ADP-ribosyltransferase diphtheria toxin, the observed rate constant of sirtuin-dependent ADP-ribosylation is >5000-fold lower. Compared with the kcat/Km values of the deacetylation activity of sirtuins, the observed rate constant of sirtuin-dependent ADP-ribosyltion is 500 times weaker. The weak ADP-ribosylation events can be explained by both enzymatic and nonenzymatic reaction mechanisms. Combined with recent reports on several other sirtuins, we propose that the reported ADP-ribosyltransferase activity of sirtuins is likely some inefficient side reactions of the deacetylase activity and may not be physiologically relevant.
Collapse
Affiliation(s)
- Jintang Du
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
42
|
Sanders BD, Jackson B, Marmorstein R. Structural basis for sirtuin function: what we know and what we don't. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1604-16. [PMID: 19766737 DOI: 10.1016/j.bbapap.2009.09.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/26/2009] [Accepted: 09/10/2009] [Indexed: 12/18/2022]
Abstract
The sirtuin (silent information regulator 2) proteins are NAD(+)-dependent deacetylases that are implicated in diverse biological processes including DNA regulation, metabolism, and longevity. Homologues of the prototypic yeast Sir2p have been identified in all three kingdoms of life, and while bacteria and archaea typically contain one to two sirtuins, eukaryotic organisms contain multiple members. Sirtuins are regulated in part by the cellular concentrations of the noncompetitive inhibitor, nicotinamide, and several synthetic modulators of these enzymes have been identified. The x-ray crystal structures of several sirtuin proteins in various liganded forms have been determined. This wealth of structural information, together with related biochemical studies, have provided important insights into the catalytic mechanism, substrate specificity, and inhibitory mechanism of sirtuin proteins. Implications for future structural studies to address outstanding questions in the field are also discussed.
Collapse
Affiliation(s)
- Brandi D Sanders
- The Wistar Institute and Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Jin L, Wei W, Jiang Y, Peng H, Cai J, Mao C, Dai H, Choy W, Bemis JE, Jirousek MR, Milne JC, Westphal CH, Perni RB. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem 2009; 284:24394-405. [PMID: 19535340 PMCID: PMC2782032 DOI: 10.1074/jbc.m109.014928] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/01/2009] [Indexed: 01/24/2023] Open
Abstract
SIRT3 is a major mitochondrial NAD(+)-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first sets of crystal structures of human SIRT3, an apo-structure with no substrate, a structure with a peptide containing acetyl lysine of its natural substrate acetyl-CoA synthetase 2, a reaction intermediate structure trapped by a thioacetyl peptide, and a structure with the dethioacetylated peptide bound. These structures provide insights into the conformational changes induced by the two substrates required for the reaction, the acetylated substrate peptide and NAD(+). In addition, the binding study by isothermal titration calorimetry suggests that the acetylated peptide is the first substrate to bind to SIRT3, before NAD(+). These structures and biophysical studies provide key insight into the structural and functional relationship of the SIRT3 deacetylation activity.
Collapse
Affiliation(s)
- Lei Jin
- Sirtris, a GSK Company, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase. J Bacteriol 2009; 191:1749-55. [PMID: 19136592 DOI: 10.1128/jb.01674-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report provides in vivo evidence for the posttranslational control of the acetyl coenzyme A (Ac-CoA) synthetase (AcsA) enzyme of Bacillus subtilis by the acuA and acuC gene products. In addition, both in vivo and in vitro data presented support the conclusion that the yhdZ gene of B. subtilis encodes a NAD(+)-dependent protein deacetylase homologous to the yeast Sir2 protein (also known as sirtuin). On the basis of this new information, a change in gene nomenclature, from yhdZ to srtN (for sirtuin), is proposed to reflect the activity associated with the YdhZ protein. In vivo control of B. subtilis AcsA function required the combined activities of AcuC and SrtN. Inactivation of acuC or srtN resulted in slower growth and cell yield under low-acetate conditions than those of the wild-type strain, and the acuC srtN strain grew under low-acetate conditions as poorly as the acsA strain. Our interpretation of the latter result was that both deacetylases (AcuC and SrtN) are needed to maintain AcsA as active (i.e., deacetylated) so the cell can grow with low concentrations of acetate. Growth of an acuA acuC srtN strain on acetate was improved over that of the acuA(+) acuC srtN strain, indicating that the AcuA acetyltransferase enzyme modifies (i.e., inactivates) AcsA in vivo, a result consistent with previously reported in vitro evidence that AcsA is a substrate of AcuA.
Collapse
|
46
|
Wang D. Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors. Curr Top Med Chem 2009; 9:241-56. [PMID: 19355989 PMCID: PMC2766262 DOI: 10.2174/156802609788085287] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The catalytic activity of the histone deacetylase (HDAC) enzymes is directly relevant to the pathogenesis of cancer as well as several other diseases. HDAC inhibitors have been shown to have the potential to treat several types of cancers. The role of computational study of the HDAC enzymes is reviewed, with particular emphasis on the important role of molecular modeling to the development of HDAC inhibitors with improved efficacy and selectivity. The use of two computational approaches--one structure-based, and the second ligand-based--toward inhibitors against the different HDAC sub-classes, are summarized.
Collapse
Affiliation(s)
- Difei Wang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Lee S, Tong L, Denu JM. Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose. Anal Biochem 2008; 383:174-9. [PMID: 18812159 PMCID: PMC2586145 DOI: 10.1016/j.ab.2008.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/26/2008] [Accepted: 08/28/2008] [Indexed: 11/24/2022]
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylases that mediate cellular processes such as lifespan extension and metabolic regulation. Sirtuins form a unique metabolite, 2'-O-acetyl-ADP-ribose (OAADPr), shown to block oocyte maturation, bind to chromatin-related proteins, and activate ion channels. Given the various sirtuin phenotypes, the potential of OAADPr as a signaling molecule is extensive. However, exploration of the biological roles of OAADPr has been hindered by the lack of in vivo evidence and a reliable method for quantification. Here we provide the first direct evidence and quantification of cellular OAADPr. Compared with endogenous OAADPr levels (0.56+/-0.13 microM) in wild-type Saccharomyces cerevisiae, deletion of all five yeast sirtuins (Sir2 and Hst1-4) yielded essentially no detectable OAADPr. The single deletion of Hst2 yielded 0.37+/-0.12 microM OAADPr. Deletion of an enzyme, Ysa1, previously shown in vitro to hydrolyze OAADPr, resulted in a significant increase (0.85+/-0.24 microM) in OAADPr. Together, these data provide evidence that cellular levels of OAADPr are controlled by the action of sirtuins and can be modulated by the Nudix hydrolase Ysa1. Our methodology, consisting of internal standard (13)C-labeled OAADPr and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, displays excellent sensitivity and a linear dynamic range from 0.2 to 500 pmol. Moreover, extraction efficiencies were greater than 75%. This methodology is an essential tool in probing the biological roles of OAADPr, especially under conditions in which sirtuin phenotypes are well established.
Collapse
Affiliation(s)
- Susan Lee
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
48
|
Hu P, Wang S, Zhang Y. Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by ab initio QM/MM molecular dynamics simulations. J Am Chem Soc 2008; 130:16721-8. [PMID: 19049465 PMCID: PMC2627508 DOI: 10.1021/ja807269j] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sir2 enzymes catalyze the NAD+-dependent protein deacetylation and play critical roles in epigenetics, cell death, and lifespan regulation. In spite of a current flurry of experimental studies, the catalytic mechanism for this unique and important class of enzymes remains elusive. Employing on-the-fly Born-Oppenheimer molecular dynamics simulations with the B3LYP/6-31G(d) QM/MM potential and the umbrella sampling method, we have characterized the initial step of the Sir2Tm-catalyzed reaction, which is also the most controversial portion of its mechanism. Our results indicate that the nicotinamide cleavage reaction employs a highly dissociative and concerted displacement mechanism: the cleavage of the glycosidic bond is facilitated by the nucleophilic participation of the acetyl-lysine, and the dissociative transition state has a significant oxocarbenium ion character. During this step of the reaction, the Sir2Tm enzyme strongly stabilizes the covalent O-alkylamidate intermediate whereas its effect on the transition state is quite minimal. In addition, functional roles of key residues and motifs have been elucidated. This work further demonstrates the feasibility and applicability of the state-of-the-art ab initio QM/MM molecular dynamics approach in simulating enzyme reactions.
Collapse
Affiliation(s)
- Po Hu
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
49
|
Abstract
A screen for Saccharomyces cerevisiae temperature-sensitive silencing mutants identified a strain with a point mutation in the SIR2 gene. The mutation changed Ser276 to Cys. This amino acid is in the highly conserved NAD(+) binding pocket of the Sir2 family of proteins. Haploid strains of either mating type carrying the mutation were severely defective at mating at 37 degrees but normal at 25 degrees . Measurements of RNA from the HMR locus demonstrated that silencing was lost rapidly upon shifting the mutant from the low to the high temperature, but it took >8 hours to reestablish silencing after a shift back to 25 degrees . Silencing at the rDNA locus was also temperature sensitive. On the other hand, telomeric silencing was totally defective at both temperatures. Enzymatic activity of the recombinant wild-type and mutant Sir2 protein was compared by three different assays. The mutant exhibited less deacetylase activity than the wild-type protein at both 37 degrees and 25 degrees . Interestingly, the mutant had much more NAD(+)-nicotinamide exchange activity than wild type, as did a mutation in the same region of the protein in the Sir2 homolog, Hst2. Thus, mutations in this region of the NAD(+) binding pocket of the protein are able to carry out cleavage of NAD(+) to nicotinamide but are defective at the subsequent deacetylation step of the reaction.
Collapse
|
50
|
French J, Cen Y, Sauve A. Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 2008; 47:10227-39. [PMID: 18729382 PMCID: PMC2732577 DOI: 10.1021/bi800767t] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sirtuins are NAD (+)-dependent enzymes that deacetylate a variety of cellular proteins and in some cases catalyze protein ADP-ribosyl transfer. The catalytic mechanism of deacetylation is proposed to involve an ADPR-peptidylimidate, whereas the mechanism of ADP-ribosyl transfer to proteins is undetermined. Herein we characterize a Plasmodium falciparum sirtuin that catalyzes deacetylation of histone peptide sequences. Interestingly, the enzyme can also hydrolyze NAD (+). Two mechanisms of hydrolysis were identified and characterized. One is independent of acetyllysine substrate and produces alpha-stereochemistry as established by reaction of methanol which forms alpha-1- O-methyl-ADPR. This reaction is insensitive to nicotinamide inhibition. The second solvolytic mechanism is dependent on acetylated peptide and is proposed to involve the imidate to generate beta-stereochemistry. Stereochemistry was established by isolation of beta-1- O-methyl-ADPR when methanol was added as a cosolvent. This solvolytic reaction was inhibited by nicotinamide, suggesting that nicotinamide and solvent compete for the imidate. These findings establish new reactions of wildtype sirtuins and suggest possible mechanisms for ADP-ribosylation to proteins. These findings also illustrate the potential utility of nicotinamide as a probe for mechanisms of sirtuin-catalyzed ADP-ribosyl transfer.
Collapse
Affiliation(s)
- Jarrod French
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue LC216, New York NY 10065
- Tri-Institutional Program in Chemical Biology, Weill Cornell College of Medicine, 1300 York Avenue LC216, New York NY 10065
| | - Yana Cen
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue LC216, New York NY 10065
| | - Anthony Sauve
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue LC216, New York NY 10065
- Tri-Institutional Program in Chemical Biology, Weill Cornell College of Medicine, 1300 York Avenue LC216, New York NY 10065
| |
Collapse
|