1
|
Zhong F, Pu T, Hu Q, Li M, Wang L, Wang S, Ruan K, Shi Y, Sun B, Jiang Y, Lv M. NSUN6 inhibitor discovery guided by its mRNA substrate bound crystal structure. Structure 2025; 33:443-450.e4. [PMID: 39862858 DOI: 10.1016/j.str.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
NSUN6 preferentially catalyzes the methylation of cytosine nucleotides in mRNA substrates, which enhances transcription. Dysregulation of NSUN6 catalysis drives the oncogenesis of certain cancers. In this study, we determined the crystal structure of human NSUN6 in complex with its S-adenosyl-L-methionine analog and a bound NECT-2 3'-UTR RNA substrate at 2.9 Å resolution. The complex structure reveals how NSUN6 recognizes the specific CUC[CU]A consensus motif of the substrate and facilitates the methyl transfer from S-adenosyl-L-methionine (SAM) to mRNA. By combining the structural data with nuclear magnetic resonance (NMR)-based fragment screening, a virtual screening, and a further comprehensive biochemical verification, we identified thiamine disulfide as a non-SAM analog lead compound that competes with the CUC[CU]A substrate for binding to NSUN6. Our findings pave the way for the discovery of potent inhibitors for the treatment of NSUN6-driven cancers in the future.
Collapse
Affiliation(s)
- Fumei Zhong
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Tian Pu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qian Hu
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Mingwei Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Wang
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Suman Wang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ke Ruan
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Yunyu Shi
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yiyang Jiang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Life Science, Anhui Medical University, Hefei 230022, China.
| | - Mengqi Lv
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
2
|
Saha S, Mandal SK, Kanaujia SP. Distinct characteristics of putative archaeal 5-methylcytosine RNA methyltransferases unveil their substrate specificities and evolutionary ancestries. J Biomol Struct Dyn 2024:1-18. [PMID: 38450736 DOI: 10.1080/07391102.2024.2325670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
5-Methylcytosine methyltransferases (m5C MTases) are known to be involved in the modification of RNA. Although these enzymes have been relatively well characterized in bacteria and eukarya, a complete understanding of the archaeal counterparts is lacking. In this study, the identification and characterization of archaeal RNA m5C MTases were performed. As a case study, a hyperthermophilic archaeon, Pyrococcus horikoshii OT3, which possesses five putative RNA m5C MTases, was chosen. Among the five putative RNA m5C MTases, two proteins (PH0851 and PH1991) have been characterized as homologs of a bacterial rRNA MTase (RsmB) and eukaryal tRNA MTase (NSUN6), respectively. The in-depth characterization of the remaining three putative RNA m5C MTases (PH1078, PH1374, and PH1537) in this study suggests the presence of the signature architecture and catalytic residues plausibly involved in the binding of their cognate RNA substrates. Additionally, the results also suggest the existence of two RsmB-like proteins (PH0851 and PH1078) belonging to the same subfamily IV of m5C RNA MTase. However, the proteins PH1374 and PH1537 belong to the same subfamily V but bind to different substrates, rRNA and tRNA, respectively. The findings further indicate that archaeal RNA m5C MTases link those from bacteria and eukarya.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Suraj Kumar Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
3
|
Harun-Or-Roshid M, Maeda K, Phan LT, Manavalan B, Kurata H. Stack-DHUpred: Advancing the accuracy of dihydrouridine modification sites detection via stacking approach. Comput Biol Med 2024; 169:107848. [PMID: 38145601 DOI: 10.1016/j.compbiomed.2023.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Dihydrouridine (DHU, D) is one of the most abundant post-transcriptional uridine modifications found in tRNA, mRNA, and snoRNA, closely associated with disease pathogenesis and various biological processes in eukaryotes. Identifying D sites is important for understanding the modification mechanisms and/or epigenetic regulation. However, biological experiments for detecting D sites are time-consuming and expensive. Given these challenges, computational methods have been developed for accurately identifying the D sites in genome-wide datasets. However, existing methods have some limitations, and their prediction performance needs to be improved. In this work, we have developed a new computational predictor for accurately identifying D sites called Stack-DHUpred. Briefly, we trained 66 baseline models or single-feature models by connecting six machine learning classifiers with eleven different feature encoding methods and stacked different baseline models to build stacked ensemble learning models. Subsequently, the optimal combination of the baseline models was identified for the construction of the final stacked model. Remarkably, the Stack-DHUpred outperformed the existing predictors on our new independent dataset, indicating that the stacking approach significantly improved the prediction performance. We have made Stack-DHUpred available to the public through a web server (http://kurata35.bio.kyutech.ac.jp/Stack-DHUpred) and a standalone program (https://github.com/kuratahiroyuki/Stack-DHUpred). We believe that Stack-DHUpred will be a valuable tool for accelerating the discovery of D modifications and understanding their role in post-transcriptional regulation.
Collapse
Affiliation(s)
- Md Harun-Or-Roshid
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Le Thi Phan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
4
|
Liu Y, Shen Y, Wang H, Zhang Y, Zhu X. m5Cpred-XS: A New Method for Predicting RNA m5C Sites Based on XGBoost and SHAP. Front Genet 2022; 13:853258. [PMID: 35432446 PMCID: PMC9005994 DOI: 10.3389/fgene.2022.853258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
As one of the most important post-transcriptional modifications of RNA, 5-cytosine-methylation (m5C) is reported to closely relate to many chemical reactions and biological functions in cells. Recently, several computational methods have been proposed for identifying m5C sites. However, the accuracy and efficiency are still not satisfactory. In this study, we proposed a new method, m5Cpred-XS, for predicting m5C sites of H. sapiens, M. musculus, and A. thaliana. First, the powerful SHAP method was used to select the optimal feature subset from seven different kinds of sequence-based features. Second, different machine learning algorithms were used to train the models. The results of five-fold cross-validation indicate that the model based on XGBoost achieved the highest prediction accuracy. Finally, our model was compared with other state-of-the-art models, which indicates that m5Cpred-XS is superior to other methods. Moreover, we deployed the model on a web server that can be accessed through http://m5cpred-xs.zhulab.org.cn/, and m5Cpred-XS is expected to be a useful tool for studying m5C sites.
Collapse
Affiliation(s)
| | | | | | - Yong Zhang
- *Correspondence: Xiaolei Zhu, ; Yong Zhang,
| | | |
Collapse
|
5
|
Salaikumaran MR, Badiger VP, Burra VLSP. 16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis. Protein J 2022; 41:97-130. [PMID: 35112243 DOI: 10.1007/s10930-021-10029-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium tuberculosis (M.tb) whose natural history traces back to 70,000 years. TB remains a major global health burden. Methylation is a type of post-replication, post-transcriptional and post-translational epi-genetic modification involved in transcription, translation, replication, tissue specific expression, embryonic development, genomic imprinting, genome stability and chromatin structure, protein protein interactions and signal transduction indicating its indispensable role in survival of a pathogen like M.tb. The pathogens use this epigenetic mechanism to develop resistance against certain drug molecules and survive the lethality. Drug resistance has become a major challenge to tackle and also a major concern raised by WHO. Methyltransferases are enzymes that catalyze the methylation of various substrates. None of the current TB targets belong to methyltransferases which provides therapeutic opportunities to develop novel drugs through studying methyltransferases as potential novel targets against TB. Targeting 16S rRNA methyltransferases serves two purposes simultaneously: a) translation inhibition and b) simultaneous elimination of the ability to methylate its substrates hence stopping the emergence of drug resistance strains. There are ~ 40 different rRNA methyltransferases and 13 different 16S rRNA specific methyltransferases which are unexplored and provide a huge opportunity for treatment of TB.
Collapse
Affiliation(s)
- M R Salaikumaran
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - Veena P Badiger
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - V L S Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India.
| |
Collapse
|
6
|
Abstract
Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ, USA.
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt/M., Germany.
| |
Collapse
|
7
|
Qureshi NA, Bakhtiar SM, Faheem M, Shah M, Bari A, Mahmood HM, Sohaib M, Mothana RA, Ullah R, Jamal SB. Genome-Based Drug Target Identification in Human Pathogen Streptococcus gallolyticus. Front Genet 2021; 12:564056. [PMID: 33841489 PMCID: PMC8027347 DOI: 10.3389/fgene.2021.564056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus gallolysticus (Sg) is an opportunistic Gram-positive, non-motile bacterium, which causes infective endocarditis, an inflammation of the inner lining of the heart. As Sg has acquired resistance with the available antibiotics, therefore, there is a dire need to find new therapeutic targets and potent drugs to prevent and treat this disease. In the current study, an in silico approach is utilized to link genomic data of Sg species with its proteome to identify putative therapeutic targets. A total of 1,138 core proteins have been identified using pan genomic approach. Further, using subtractive proteomic analysis, a set of 18 proteins, essential for bacteria and non-homologous to host (human), is identified. Out of these 18 proteins, 12 cytoplasmic proteins were selected as potential drug targets. These selected proteins were subjected to molecular docking against drug-like compounds retrieved from ZINC database. Furthermore, the top docked compounds with lower binding energy were identified. In this work, we have identified novel drug and vaccine targets against Sg, of which some have already been reported and validated in other species. Owing to the experimental validation, we believe our methodology and result are significant contribution for drug/vaccine target identification against Sg-caused infective endocarditis.
Collapse
Affiliation(s)
- Nosheen Afzal Qureshi
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Sohaib
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramzi A Mothana
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
8
|
Mariasina SS, Chang CF, Petrova OA, Efimov SV, Klochkov VV, Kechko OI, Mitkevich VA, Sergiev PV, Dontsova OA, Polshakov VI. Williams-Beuren syndrome-related methyltransferase WBSCR27: cofactor binding and cleavage. FEBS J 2020; 287:5375-5393. [PMID: 32255258 DOI: 10.1111/febs.15320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/20/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
Williams-Beuren syndrome, characterized by numerous physiological and mental problems, is caused by the heterozygous deletion of chromosome region 7q11.23, which results in the disappearance of 26 protein-coding genes. Protein WBSCR27 is a product of one of these genes whose biological function has not yet been established and for which structural information has been absent until now. Using NMR, we investigated the structural and functional properties of murine WBSCR27. For protein in the apo form and in a complex with S-(5'-adenosyl)-l-homocysteine (SAH), a complete NMR resonance assignment has been obtained and the secondary structure has been determined. This information allows us to attribute WBSCR27 to Class I methyltransferases. The interaction of WBSCR27 with the cofactor S-(5'-adenosyl)-l-methionine (SAM) and its metabolic products - SAH, 5'-deoxy-5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5'dAdo) - was studied by NMR and isothermal titration calorimetry. SAH binds WBSCR27 much tighter than SAM, leaving open the question of cofactor turnover in the methylation reaction. One possible answer to this question is the presence of weak but detectable nucleosidase activity for WBSCR27. We found that the enzyme catalyses the cleavage of the adenine moiety from SAH, MTA and 5'dAdo, similar to the action of bacterial SAH/MTA nucleosidases. We also found that the binding of SAM or SAH causes a significant change in the structure of WBSCR27 and in the conformational mobility of the protein fragments, which can be attributed to the substrate recognition site. This indicates that the binding of the cofactor modulates the folding of the substrate-recognizing region of the enzyme.
Collapse
Affiliation(s)
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Sergey V Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, Russia
| | | | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Petr V Sergiev
- M.V. Lomonosov Moscow State University, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga A Dontsova
- M.V. Lomonosov Moscow State University, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
9
|
Kuznetsova SA, Petrukov KS, Pletnev FI, Sergiev PV, Dontsova OA. RNA (C5-cytosine) Methyltransferases. BIOCHEMISTRY (MOSCOW) 2019; 84:851-869. [PMID: 31522668 DOI: 10.1134/s0006297919080029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The review summarizes the data on pro- and eukaryotic RNA (C5-cytosine) methyltransferases. The structure, intracellular location, RNA targets, and catalytic mechanisms of these enzymes, as well as the functional role of methylated cytosine residues in RNA are presented. The functions of RNA (C5-cytosine) methyltransferases unassociated with their methylation activity are discussed. Special attention is given to the similarities and differences in the structures and mechanisms of action of RNA and DNA methyltransferases. The data on the association of mutations in the RNA (C5-cytosine) methyltransferases genes and human diseases are presented.
Collapse
Affiliation(s)
- S A Kuznetsova
- Lomonosov Moscow State University, Institute of Functional Genomics, Moscow, 119234, Russia.
| | - K S Petrukov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - F I Pletnev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - P V Sergiev
- Lomonosov Moscow State University, Institute of Functional Genomics, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
| | - O A Dontsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
10
|
Trixl L, Amort T, Wille A, Zinni M, Ebner S, Hechenberger C, Eichin F, Gabriel H, Schoberleitner I, Huang A, Piatti P, Nat R, Troppmair J, Lusser A. RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cell Mol Life Sci 2018; 75:1483-1497. [PMID: 29103146 PMCID: PMC5852174 DOI: 10.1007/s00018-017-2700-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/17/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
Chemical modifications of RNA have been attracting increasing interest because of their impact on RNA fate and function. Therefore, the characterization of enzymes catalyzing such modifications is of great importance. The RNA cytosine methyltransferase NSUN3 was recently shown to generate 5-methylcytosine in the anticodon loop of mitochondrial tRNAMet. Further oxidation of this position is required for normal mitochondrial translation and function in human somatic cells. Because embryonic stem cells (ESCs) are less dependent on oxidative phosphorylation than somatic cells, we examined the effects of catalytic inactivation of Nsun3 on self-renewal and differentiation potential of murine ESCs. We demonstrate that Nsun3-mutant cells show strongly reduced mt-tRNAMet methylation and formylation as well as reduced mitochondrial translation and respiration. Despite the lower dependence of ESCs on mitochondrial activity, proliferation of mutant cells was reduced, while pluripotency marker gene expression was not affected. By contrast, ESC differentiation was skewed towards the meso- and endoderm lineages at the expense of neuroectoderm. Wnt3 was overexpressed in early differentiating mutant embryoid bodies and in ESCs, suggesting that impaired mitochondrial function disturbs normal differentiation programs by interfering with cellular signalling pathways. Interestingly, basal levels of reactive oxygen species (ROS) were not altered in ESCs, but Nsun3 inactivation attenuated induction of mitochondrial ROS upon stress, which may affect gene expression programs upon differentiation. Our findings not only characterize Nsun3 as an important regulator of stem cell fate but also provide a model system to study the still incompletely understood interplay of mitochondrial function with stem cell pluripotency and differentiation.
Collapse
Affiliation(s)
- Lukas Trixl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Thomas Amort
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Alexandra Wille
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Manuela Zinni
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Clara Hechenberger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Felix Eichin
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Hanna Gabriel
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ines Schoberleitner
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Anming Huang
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | | | - Roxana Nat
- Institute for Neuroscience, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
11
|
Liu RJ, Long T, Li J, Li H, Wang ED. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res 2017; 45:6684-6697. [PMID: 28531330 PMCID: PMC5499824 DOI: 10.1093/nar/gkx473] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
5-methylcytosine (m5C) modifications of RNA are ubiquitous in nature and play important roles in many biological processes such as protein translational regulation, RNA processing and stress response. Aberrant expressions of RNA:m5C methyltransferases are closely associated with various human diseases including cancers. However, no structural information for RNA-bound RNA:m5C methyltransferase was available until now, hindering elucidation of the catalytic mechanism behind RNA:m5C methylation. Here, we have solved the structures of NSun6, a human tRNA:m5C methyltransferase, in the apo form and in complex with a full-length tRNA substrate. These structures show a non-canonical conformation of the bound tRNA, rendering the base moiety of the target cytosine accessible to the enzyme for methylation. Further biochemical assays reveal the critical, but distinct, roles of two conserved cysteine residues for the RNA:m5C methylation. Collectively, for the first time, we have solved the complex structure of a RNA:m5C methyltransferase and addressed the catalytic mechanism of the RNA:m5C methyltransferase family, which may allow for structure-based drug design toward RNA:m5C methyltransferase–related diseases.
Collapse
Affiliation(s)
- Ru-Juan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Tao Long
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jing Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Hao Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
| |
Collapse
|
12
|
Bai L, Wagner T, Xu T, Hu X, Ermler U, Shima S. A Water-Bridged H-Bonding Network Contributes to the Catalysis of the SAM-Dependent C-Methyltransferase HcgC. Angew Chem Int Ed Engl 2017; 56:10806-10809. [DOI: 10.1002/anie.201705605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Liping Bai
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Tristan Wagner
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Tao Xu
- Institute of Chemical Science and Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305; 1015 Lausanne Switzerland
| | - Xile Hu
- Institute of Chemical Science and Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305; 1015 Lausanne Switzerland
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik; Max-von-Laue-Straße 3 60438 Frankfurt/Main Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| |
Collapse
|
13
|
Bai L, Wagner T, Xu T, Hu X, Ermler U, Shima S. A Water-Bridged H-Bonding Network Contributes to the Catalysis of the SAM-Dependent C-Methyltransferase HcgC. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Liping Bai
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Tristan Wagner
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Tao Xu
- Institute of Chemical Science and Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305; 1015 Lausanne Switzerland
| | - Xile Hu
- Institute of Chemical Science and Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305; 1015 Lausanne Switzerland
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik; Max-von-Laue-Straße 3 60438 Frankfurt/Main Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| |
Collapse
|
14
|
Sharma S, Lafontaine DLJ. 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification. Trends Biochem Sci 2016; 40:560-575. [PMID: 26410597 DOI: 10.1016/j.tibs.2015.07.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/23/2023]
Abstract
Eukaryotic rRNA are modified frequently, although the diversity of modifications is low: in yeast rRNA, there are only 12 different types out of a possible natural repertoire exceeding 112. All nine rRNA base methyltransferases (MTases) and one acetyltransferase have recently been identified in budding yeast, and several instances of crosstalk between rRNA, tRNA, and mRNA modifications are emerging. Although the machinery has largely been identified, the functions of most rRNA modifications remain to be established. Remarkably, a eukaryote-specific bridge, comprising a single ribosomal protein (RP) from the large subunit (LSU), contacts four rRNA base modifications across the ribosomal subunit interface, potentially probing for their presence. We hypothesize in this article that long-range allosteric communication involving rRNA modifications is taking place between the two subunits during translation or, perhaps, the late stages of ribosome assembly.
Collapse
Affiliation(s)
- Sunny Sharma
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium; Center for Microscopy and Molecular Imaging, BioPark campus, B-6041 Charleroi-Gosselies, Belgium.
| |
Collapse
|
15
|
Iyer LM, Zhang D, Aravind L. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays 2015; 38:27-40. [PMID: 26660621 PMCID: PMC4738411 DOI: 10.1002/bies.201500104] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Perche-Letuvée P, Molle T, Forouhar F, Mulliez E, Atta M. Wybutosine biosynthesis: structural and mechanistic overview. RNA Biol 2015; 11:1508-18. [PMID: 25629788 DOI: 10.4161/15476286.2014.992271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over the last 10 years, significant progress has been made in understanding the genetics, enzymology and structural components of the wybutosine (yW) biosynthetic pathway. These studies have played a key role in expanding our understanding of yW biosynthesis and have revealed unexpected evolutionary ties, which are presently being unraveled. The enzymes catalyzing the 5 steps of this pathway, from genetically encoded guanosine to wybutosine base, provide an ensemble of amazing reaction mechanisms that are to be discussed in this review article.
Collapse
|
17
|
Abstract
The modified nucleosides of RNA are chemically altered versions of the standard A, G, U, and C nucleosides. This review reviews the nature and location of the modified nucleosides of Escherichia coli rRNA, the enzymes that form them, and their known and/or putative functional role. There are seven Ψ (pseudouridines) synthases to make the 11 pseudouridines in rRNA. There is disparity in numbers because RluC and RluD each make 3 pseudouridines. Crystal structures have shown that the Ψ synthase domain is a conserved fold found only in all five families of Ψ synthases. The conversion of uridine to Ψ has no precedent in known metabolic reactions. Other enzymes are known to cleave the glycosyl bond but none carry out rotation of the base and rejoining to the ribose while still enzyme bound. Ten methyltransferases (MTs) are needed to make all the methylated nucleosides in 16S RNA, and 14 are needed for 23S RNA. Biochemical studies indicate that the modes of substrate recognition are idiosyncratic for each Ψ synthase since no common mode of recognition has been detected in studies of the seven synthases. Eight of the 24 expected MTs have been identified, and six crystal structures have been determined. Seven of the MTs and five of the structures are class I MTs with the appropriate protein fold plus unique appendages for the Ψ synthases. The remaining MT, RlmB, has the class IV trefoil knot fold.
Collapse
|
18
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
19
|
Burgess AL, David R, Searle IR. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC PLANT BIOLOGY 2015; 15:199. [PMID: 26268215 PMCID: PMC4535395 DOI: 10.1186/s12870-015-0580-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Post-transcriptional methylation of RNA cytosine residues to 5-methylcytosine (m(5)C) is an important modification that regulates RNA metabolism and occurs in both eukaryotes and prokaryotes. Yet, to date, no transcriptome-wide identification of m(5)C sites has been undertaken in plants. Plants provide a unique comparative system for investigating the origin and evolution of m(5)C as they contain three different genomes, the nucleus, mitochondria and chloroplast. Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m(5)C sites in non-coding ribosomal RNAs and transfer RNAs of all three sub-cellular transcriptomes across six diverse species that included, the single-celled algae Nannochloropsis oculata, the macro algae Caulerpa taxifolia and multi-cellular higher plants Arabidopsis thaliana, Brassica rapa, Triticum durum and Ginkgo biloba. RESULTS Using the plant model Arabidopsis thaliana, we identified a total of 39 highly methylated m(5)C sites in predicted structural positions of nuclear tRNAs and 7 m(5)C sites in rRNAs from nuclear, chloroplast and mitochondrial transcriptomes. Both the nucleotide position and percent methylation of tRNAs and rRNAs m(5)C sites were conserved across all species analysed, from single celled algae N. oculata to multicellular plants. Interestingly the mitochondrial and chloroplast encoded tRNAs were devoid of m(5)C in A. thaliana and this is generally conserved across Plantae. This suggests independent evolution of organelle methylation in animals and plants, as animal mitochondrial tRNAs have m(5)C sites. Here we characterize 5 members of the RNA 5-methylcytosine family in Arabidopsis and extend the functional characterization of TRDMT1 and NOP2A/OLI2. We demonstrate that nuclear tRNA methylation requires two evolutionarily conserved methyltransferases, TRDMT1 and TRM4B. trdmt1 trm4b double mutants are hypersensitive to the antibiotic hygromycin B, demonstrating the function of tRNA methylation in regulating translation. Additionally we demonstrate that nuclear large subunit 25S rRNA methylation requires the conserved RNA methyltransferase NSUN5. Our results also suggest functional redundancy of at least two of the NOP2 paralogs in Arabidopsis. CONCLUSIONS Our data demonstrates widespread occurrence and conservation of non-coding RNA methylation in the kingdom Plantae, suggesting important and highly conserved roles of this post-transcriptional modification.
Collapse
Affiliation(s)
- Alice Louise Burgess
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Rakesh David
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Adelaide, Australia.
| |
Collapse
|
20
|
Abstract
Cells have developed molecular machineries, which can chemically modify DNA and RNA nucleosides. One particular and chemically simple modification, (cytosine-5) methylation (m(5)C), has been detected both in RNA and DNA suggesting universal use of m(5)C for the function of these nucleotide polymers. m(5)C can be reproducibly mapped to abundant noncoding RNAs (transfer RNA, tRNA and ribosomal RNA, rRNA), and recently, also nonabundant RNAs (including mRNAs) have been reported to carry this modification. Quantification of m(5)C content in total RNA preparations indicates that a limited number of RNAs carry this modification and suggests specific functions for (cytosine-5) RNA methylation. What exactly is the biological function of m(5)C in RNA? Before attempting to address this question, m(5)C needs to be mapped specifically and reproducibly, preferably on a transcriptome-wide scale. To facilitate the detection of m(5)C in its sequence context, RNA bisulfite sequencing (RNA-BisSeq) has been developed. This method relies on the efficient chemical deamination of nonmethylated cytosine, which can be read out as single nucleotide polymorphism (nonmethylated cytosine as thymine vs. methylated cytosine as cytosine), when differentially comparing cDNA libraries to reference sequences after DNA sequencing. Here, the basic protocol of RNA-BisSeq, its current applications and limitations are described.
Collapse
Affiliation(s)
- Matthias Schaefer
- Vienna Biocenter, Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Universität Wien, Vienna, Austria.
| |
Collapse
|
21
|
Moon HJ, Redman KL. Trm4 and Nsun2 RNA:m5C Methyltransferases Form Metabolite-Dependent, Covalent Adducts with Previously Methylated RNA. Biochemistry 2014; 53:7132-44. [DOI: 10.1021/bi500882b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Haley J. Moon
- Indiana University School of Medicine-Fort Wayne, 2101 Coliseum Boulevard East, Fort Wayne, Indiana 46805, United States
| | - Kent L. Redman
- Indiana University School of Medicine-Fort Wayne, 2101 Coliseum Boulevard East, Fort Wayne, Indiana 46805, United States
| |
Collapse
|
22
|
Boschi-Muller S, Motorin Y. Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification. BIOCHEMISTRY (MOSCOW) 2014; 78:1392-404. [PMID: 24490730 DOI: 10.1134/s0006297913130026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modified nucleotides are universally conserved in all living kingdoms and are present in almost all types of cellular RNAs, including tRNA, rRNA, sn(sno)RNA, and mRNA and in recently discovered regulatory RNAs. Altogether, over 110 chemically distinct RNA modifications have been characterized and localized in RNA by various analytical methods. However, this impressive list of known modified nucleotides is certainly incomplete, mainly due to difficulties in identification and characterization of these particular residues in low abundance cellular RNAs. In DNA, modified residues are formed by both enzymatic reactions (like DNA methylations, for example) and by spontaneous chemical reactions resulting from oxidative damage. In contrast, all modified residues characterized in cellular RNA molecules are formed by specific action of dedicated RNA-modification enzymes, which recognize their RNA substrate with high specificity. These RNA-modification enzymes display a great diversity in terms of the chemical reaction and use various low molecular weight cofactors (or co-substrates) in enzymatic catalysis. Depending on the nature of the target base and of the co-substrate, precise chemical mechanisms are used for appropriate activation of the base and the co-substrate in the enzyme active site. In this review, we give an extended summary of the enzymatic mechanisms involved in formation of different methylated nucleotides in RNA, as well as pseudouridine residues, which are almost universally conserved in all living organisms. Other interesting mechanisms include thiolation of uridine residues by ThiI and the reaction of guanine exchange catalyzed by TGT. The latter implies the reversible cleavage of the N-glycosidic bond in order to replace the initially encoded guanine by an aza-guanosine base. Despite the extensive studies of RNA modification and RNA-modification machinery during the last 20 years, our knowledge on the exact chemical steps involved in catalysis of RNA modification remains very limited. Recent discoveries of radical mechanisms involved in base methylation clearly demonstrate that numerous possibilities are used in Nature for these difficult reactions. Future studies are certainly required for better understanding of the enzymatic mechanisms of RNA modification, and this knowledge is crucial not only for basic research, but also for development of new therapeutic molecules.
Collapse
Affiliation(s)
- S Boschi-Muller
- Université de Lorraine, Laboratoire IMoPA, UMR 7365 CNRS-UL, Faculté de Médecine de Nancy, BP 184, Vandoeuvre les Nancy, 54505, France.
| | | |
Collapse
|
23
|
Sharma S, Yang J, Watzinger P, Kötter P, Entian KD. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res 2013; 41:9062-76. [PMID: 23913415 PMCID: PMC3799443 DOI: 10.1093/nar/gkt679] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Yeast 25S rRNA was reported to contain a single cytosine methylation (m5C). In the present study using a combination of RP-HPLC, mung bean nuclease assay and rRNA mutagenesis, we discovered that instead of one, yeast contains two m5C residues at position 2278 and 2870. Furthermore, we identified and characterized two putative methyltransferases, Rcm1 and Nop2 to be responsible for these two cytosine methylations, respectively. Both proteins are highly conserved, which correlates with the presence of two m5C residues at identical positions in higher eukaryotes, including humans. The human homolog of yeast Nop2, p120 has been discovered to be upregulated in various cancer tissues, whereas the human homolog of Rcm1, NSUN5 is completely deleted in the William's-Beuren Syndrome. The substrates and function of both human homologs remained unknown. In the present study, we also provide insights into the significance of these two m5C residues. The loss of m5C2278 results in anisomycin hypersensitivity, whereas the loss of m5C2870 affects ribosome synthesis and processing. Establishing the locations and enzymes in yeast will not only help identifying the function of their homologs in higher organisms, but will also enable understanding the role of these modifications in ribosome function and architecture.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Molecular Genetics & Cellular Microbiology, Institute of Molecular Biosciences, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt/M, Germany
| | | | | | | | | |
Collapse
|
24
|
Chi L, Delgado-Olguín P. Expression of NOL1/NOP2/sun domain (Nsun) RNA methyltransferase family genes in early mouse embryogenesis. Gene Expr Patterns 2013; 13:319-27. [PMID: 23816522 DOI: 10.1016/j.gep.2013.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 01/08/2023]
Abstract
The NOL1/NOP2/sun domain-containing genes encode the RNA methyltransferases Nsun2, 3, 4, 5, 6 and 7. Methylated RNA pervades the transcriptome, yet the function of RNA methyltransferases is poorly understood. Nsun2 and Nsun4 participate in cell proliferation and differentiation, protein biosynthesis and cancer. In addition, Nsun2 and Nsun7 dysfunction might cause intellectual disability and male sterility, respectively. The functions of Nsun3, Nsun5 and Nsun6 are unknown. Given the widespread distribution of RNA methylation, it is possible that Nsun genes participate in a broader range of relevant biological processes including the regulation of embryogenesis. Here, we describe the expression pattern of Nsun genes during mouse embryo development. In situ hybridization showed developmentally regulated Nsun gene expression. Nsun genes express broadly during gastrulation, but enrich in specific tissues as embryogenesis proceeds. Nsun transcripts enrich in the developing brain, consistent with proposed functions in neurocognitive development. In addition, Nsun transcripts enrich in the developing ear, eye, olfactory epithelium, branchial arches, heart and limb, suggesting possible overlapping functions of NSUN proteins in neural, craniofacial, cardiac, and limb morphogenesis. Furthermore, Nsun2 and Nsun6 enrich in the caudal neural tube and newly formed somites, suggesting possible functions in body axis extension. These results suggest possible overlapping functions of NSUN proteins and RNA methylation in broad aspects of embryonic development.
Collapse
Affiliation(s)
- Lijun Chi
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| | | |
Collapse
|
25
|
Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Proc Natl Acad Sci U S A 2012; 109:15253-8. [PMID: 22949673 DOI: 10.1073/pnas.1210688109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Proteins crucial for the respiratory chain are translated by the mitochondrial ribosome. Mitochondrial ribosome biogenesis is therefore critical for oxidative phosphorylation capacity and disturbances are known to cause human disease. This complex process is evolutionary conserved and involves several RNA processing and modification steps required for correct ribosomal RNA maturation. We recently showed that a member of the mitochondrial transcription termination factor (MTERF) family of proteins, MTERF4, recruits NSUN4, a 5-methylcytosine RNA methyltransferase, to the large ribosomal subunit in a process crucial for mitochondrial ribosome biogenesis. Here, we describe the 3D crystal structure of the human MTERF4-NSUN4 complex determined to 2.9 Å resolution. MTERF4 is composed of structurally repeated MTERF-motifs that form a nucleic acid binding domain. NSUN4 lacks an N- or C-terminal extension that is commonly used for RNA recognition by related RNA methyltransferases. Instead, NSUN4 binds to the C-terminus of MTERF4. A positively charged surface forms an RNA binding path from the concave to the convex side of MTERF4 and further along NSUN4 all of the way into the active site. This finding suggests that both subunits of the protein complex likely contribute to RNA recognition. The interface between MTERF4 and NSUN4 contains evolutionarily conserved polar and hydrophobic amino acids, and mutations that change these residues completely disrupt complex formation. This study provides a molecular explanation for MTERF4-dependent recruitment of NSUN4 to ribosomal RNA and suggests a unique mechanism by which other members of the large MTERF-family of proteins can regulate ribosomal biogenesis.
Collapse
|
26
|
Larsen LHG, Rasmussen A, Giessing AMB, Jogl G, Kirpekar F. Identification and characterization of the Thermus thermophilus 5-methylcytidine (m5C) methyltransferase modifying 23 S ribosomal RNA (rRNA) base C1942. J Biol Chem 2012; 287:27593-600. [PMID: 22711535 DOI: 10.1074/jbc.m112.376160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of cytidines at carbon-5 is a common posttranscriptional RNA modification encountered across all domains of life. Here, we characterize the modifications of C1942 and C1962 in Thermus thermophilus 23 S rRNA as 5-methylcytidines (m(5)C) and identify the two associated methyltransferases. The methyltransferase modifying C1942, named RlmO, has not been characterized previously. RlmO modifies naked 23 S rRNA, but not the assembled 50 S subunit or 70 S ribosomes. The x-ray crystal structure of this enzyme in complex with the S-adenosyl-l-methionine cofactor at 1.7 Å resolution confirms that RlmO is structurally related to other m(5)C rRNA methyltransferases. Key residues in the active site are located similar to the further distant 5-methyluridine methyltransferase RlmD, suggestive of a similar enzymatic mechanism. RlmO homologues are primarily found in mesophilic bacteria related to T. thermophilus. In accordance, we find that growth of the T. thermophilus strain with an inactivated C1942 methyltransferase gene is not compromised at non-optimal temperatures.
Collapse
Affiliation(s)
- Line H G Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
27
|
Lin H. S-Adenosylmethionine-dependent alkylation reactions: when are radical reactions used? Bioorg Chem 2011; 39:161-70. [PMID: 21762947 PMCID: PMC3188380 DOI: 10.1016/j.bioorg.2011.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
S-Adenosylmethionine (SAM) is a versatile small molecule used in many biological reactions. This review focuses on the mechanistic consideration of SAM-dependent methylation and 3-amino-3-carboxypropylation reactions. Special emphasis is given to methylation and 3-amino-3-carboxypropylation of carbon atoms, for which both nucleophilic mechanisms and radical mechanisms are used, depending on the specific enzymatic reactions. What is the logic behind Nature's choice of different reaction mechanisms? Here I aim to rationalize the choice of different reaction mechanisms in SAM-dependent alkylation reaction by analyzing a few enzymatic reactions in depth. These reactions include SAM-dependent cyclopropane fatty acid synthesis, DNA cytosine methylation, RNA adenosine C2 and C8 methylation, and 3-amino-3-carboxypropylation involved in diphthamide biosynthesis and wybutosine biosynthesis.
Collapse
Affiliation(s)
- Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
28
|
Galimand M, Schmitt E, Panvert M, Desmolaize B, Douthwaite S, Mechulam Y, Courvalin P. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA (NEW YORK, N.Y.) 2011; 17:251-262. [PMID: 21159796 PMCID: PMC3022275 DOI: 10.1261/rna.2233511] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/04/2010] [Indexed: 05/29/2023]
Abstract
Aminoglycosides are ribosome-targeting antibiotics and a major drug group of choice in the treatment of serious enterococcal infections. Here we show that aminoglycoside resistance in Enterococcus faecium strain CIP 54-32 is conferred by the chromosomal gene efmM, encoding the E. faecium methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m⁵C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S rRNA nucleotide at C1404. EfmM uses the methyl group donor S-adenosyl-L-methionine to catalyze formation of m⁵C1404 on the 30S ribosomal subunit, whereas naked 16S rRNA and the 70S ribosome are not substrates. Addition of the 5-methyl to C1404 sterically hinders aminoglycoside binding. Crystallographic structure determination of EfmM at 2.28 Å resolution reveals an N-terminal domain connected to a central methyltransferase domain that is linked by a flexible lysine-rich region to two C-terminal subdomains. Mutagenesis of the methyltransferase domain established that two cysteines at specific tertiary locations are required for catalysis. The tertiary structure of EfmM is highly similar to that of RsmF, consistent with m⁵C formation at adjacent sites on the 30S subunit, while distinctive structural features account for the enzymes' respective specificities for nucleotides C1404 and C1407.
Collapse
Affiliation(s)
- Marc Galimand
- Unité des Agents Antibactériens, Institut Pasteur, F-75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Natural history of eukaryotic DNA methylation systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:25-104. [PMID: 21507349 DOI: 10.1016/b978-0-12-387685-0.00002-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not a terminal DNA modification, with enzymes of the Tet/JBP family of 2-oxoglutarate- and iron-dependent dioxygenases further hydroxylating it to form 5-hydroxymethylcytosine (5hmC). These enzymes emerged first in bacteriophages and appear to have been transferred to eukaryotes on one or more occasions. Eukaryotes appear to have recruited three major types of DNA-binding domains (SRA/SAD, TAM/MBD, and CXXC) in discriminating DNA with methylated or unmethylated cytosines. Analysis of the domain architectures of these domains and the DNA methylases suggests that early in eukaryotic evolution they developed a close functional link with SET-domain methylases and Jumonji-related demethylases that operate on peptides in chromatin proteins. In several eukaryotes, other functional connections were elaborated in the form of various combinations between domains related to DNA methylation and those involved in ATP-dependent chromatin remodeling and RNAi. In certain eukaryotes, such as mammals and angiosperms, novel dependencies on the DNA methylation system emerged, which resulted in it affecting unexpected aspects of the biology of these organisms such as parent-offspring interactions. In genomic terms, this was reflected in the emergence of new proteins related to methylation, such as Stella. The well-developed methylation systems of certain heteroloboseans, stramenopiles, chlorophytes, and haptophyte indicate that these might be new model systems to explore the relevance of DNA modifications in eukaryotes.
Collapse
|
30
|
Demirci H, Larsen LHG, Hansen T, Rasmussen A, Cadambi A, Gregory ST, Kirpekar F, Jogl G. Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. RNA (NEW YORK, N.Y.) 2010; 16:1584-1596. [PMID: 20558545 PMCID: PMC2905757 DOI: 10.1261/rna.2088310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m(5)C) modifications in 16S rRNA of Thermus thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m(5)C967. In contrast to E. coli RsmF, which introduces a single m(5)C1407 modification, T. thermophilus RsmF modifies three positions, generating m(5)C1400 and m(5)C1404 in addition to m(5)C1407. These three residues are clustered near the decoding site of the ribosome, but are situated in distinct structural contexts, suggesting a requirement for flexibility in the RsmF active site that is absent from the E. coli enzyme. Two of these residues, C1400 and C1404, are sufficiently buried in the mature ribosome structure so as to require extensive unfolding of the rRNA to be accessible to RsmF. In vitro, T. thermophilus RsmF methylates C1400, C1404, and C1407 in a 30S subunit substrate, but only C1400 and C1404 when naked 16S rRNA is the substrate. The multispecificity of T. thermophilus RsmF is potentially explained by three crystal structures of the enzyme in a complex with cofactor S-adenosyl-methionine at up to 1.3 A resolution. In addition to confirming the overall structural similarity to E. coli RsmF, these structures also reveal that key segments in the active site are likely to be dynamic in solution, thereby expanding substrate recognition by T. thermophilus RsmF.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kuratani M, Hirano M, Goto-Ito S, Itoh Y, Hikida Y, Nishimoto M, Sekine SI, Bessho Y, Ito T, Grosjean H, Yokoyama S. Crystal structure of Methanocaldococcus jannaschii Trm4 complexed with sinefungin. J Mol Biol 2010; 401:323-33. [PMID: 20600111 DOI: 10.1016/j.jmb.2010.06.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 12/19/2022]
Abstract
tRNA:m(5)C methyltransferase Trm4 generates the modified nucleotide 5-methylcytidine in archaeal and eukaryotic tRNA molecules, using S-adenosyl-l-methionine (AdoMet) as methyl donor. Most archaea and eukaryotes possess several Trm4 homologs, including those related to diseases, while the archaeon Methanocaldococcus jannaschii has only one gene encoding a Trm4 homolog, MJ0026. The recombinant MJ0026 protein catalyzed AdoMet-dependent methyltransferase activity on tRNA in vitro and was shown to be the M. jannaschii Trm4. We determined the crystal structures of the substrate-free M. jannaschii Trm4 and its complex with sinefungin at 1.27 A and 2.3 A resolutions, respectively. This AdoMet analog is bound in a negatively charged pocket near helix alpha8. This helix can adopt two different conformations, thereby controlling the entry of AdoMet into the active site. Adjacent to the sinefungin-bound pocket, highly conserved residues form a large, positively charged surface, which seems to be suitable for tRNA binding. The structure explains the roles of several conserved residues that were reportedly involved in the enzymatic activity or stability of Trm4p from the yeast Saccharomyces cerevisiae. We also discuss previous genetic and biochemical data on human NSUN2/hTrm4/Misu and archaeal PAB1947 methyltransferase, based on the structure of M. jannaschii Trm4.
Collapse
Affiliation(s)
- Mitsuo Kuratani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 2009; 38:1415-30. [PMID: 20007150 PMCID: PMC2836557 DOI: 10.1093/nar/gkp1117] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nucleobase modification 5-methylcytosine (m5C) is widespread both in DNA and different cellular RNAs. The functions and enzymatic mechanisms of DNA m5C-methylation were extensively studied during the last decades. However, the location, the mechanism of formation and the cellular function(s) of the same modified nucleobase in RNA still remain to be elucidated. The recent development of a bisulfite sequencing approach for efficient m5C localization in various RNA molecules puts ribo-m5C in a highly privileged position as one of the few RNA modifications whose detection is amenable to PCR-based amplification and sequencing methods. Additional progress in the field also includes the characterization of several specific RNA methyltransferase enzymes in various organisms, and the discovery of a new and unexpected link between DNA and RNA m5C-methylation. Numerous putative RNA:m5C-MTases have now been identified and are awaiting characterization, including the identification of their RNA substrates and their related cellular functions. In order to bring these recent exciting developments into perspective, this review provides an ordered overview of the detection methods for RNA methylation, of the biochemistry, enzymology and molecular biology of the corresponding modification enzymes, and discusses perspectives for the emerging biological functions of these enzymes.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP Faculté des Sciences et Techniques, Université Henri Poincaré, Nancy 1, Bld des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
33
|
Fujikura U, Horiguchi G, Ponce MR, Micol JL, Tsukaya H. Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:499-508. [PMID: 19392710 DOI: 10.1111/j.1365-313x.2009.03886.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Co-ordination of cell proliferation and cell expansion is a key regulatory process in leaf-size determination, but its molecular details are unknown. In Arabidopsis thaliana, mutations in a positive regulator of cell proliferation often trigger excessive cell enlargement post-mitotically in leaves. This phenomenon, called compensation syndrome, is seen in the mutant angustifolia3 (an3), which is defective in a transcription co-activator. Such compensation, however, does not occur in response to a decrease in cell number in oligocellula (oli). oli2, oli5 and oli7 did not exhibit compensation and the reduction in cell number in these mutants was moderate. However, when an oli mutation was combined with a different oli mutation to create a double mutant, cell number was further reduced and compensation was induced. Similarly, weak suppression of AN3 expression reduced cell number moderately but did not induce compensation compared with an an3 null mutant. Furthermore, double mutants of either oli2, oli5 or oli7 and an3 showed markedly enhanced compensation. These results suggest that compensation is triggered when cell proliferation regulated by OLI2/OLI5/OLI7 and AN3 is compromised in a threshold-dependent manner. OLI2 encodes a Nop2 homolog in Saccharomyces cerevisiae that is involved in ribosome biogenesis, whereas OLI5 and OLI7 encode ribosome proteins RPL5A and RPL5B, respectively. This suggests that a factor involved in the induction of compensation may be under the dual control of AN3 and a ribosome-related process.
Collapse
Affiliation(s)
- Ushio Fujikura
- Graduate School of Science, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Pavlopoulou A, Kossida S. Phylogenetic analysis of the eukaryotic RNA (cytosine-5)-methyltransferases. Genomics 2009; 93:350-7. [DOI: 10.1016/j.ygeno.2008.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 11/21/2008] [Accepted: 12/10/2008] [Indexed: 12/29/2022]
|
35
|
Sunita S, Tkaczuk KL, Purta E, Kasprzak JM, Douthwaite S, Bujnicki JM, Sivaraman J. Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes. J Mol Biol 2008; 383:652-66. [PMID: 18789337 DOI: 10.1016/j.jmb.2008.08.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/19/2008] [Accepted: 08/21/2008] [Indexed: 11/28/2022]
Abstract
Methylation is the most common RNA modification in the three domains of life. Transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to specific atoms of RNA nucleotides is catalyzed by methyltransferase (MTase) enzymes. The rRNA MTase RlmI (rRNA large subunit methyltransferase gene I; previously known as YccW) specifically modifies Escherichia coli 23S rRNA at nucleotide C1962 to form 5-methylcytosine. Here, we report the crystal structure of RlmI refined at 2 A to a final R-factor of 0.194 (R(free)=0.242). The RlmI molecule comprises three domains: the N-terminal PUA domain; the central domain, which resembles a domain previously found in RNA:5-methyluridine MTases; and the C-terminal catalytic domain, which contains the AdoMet-binding site. The central and C-terminal domains are linked by a beta-hairpin structure that has previously been observed in several MTases acting on nucleic acids or proteins. Based on bioinformatics analyses, we propose a model for the RlmI-AdoMet-RNA complex. Comparative structural analyses of RlmI and its homologs provide insight into the potential function of several structures that have been solved by structural genomics groups and furthermore indicate that the evolutionary paths of RNA and DNA 5-methyluridine and 5-methylcytosine MTases have been closely intertwined.
Collapse
Affiliation(s)
- S Sunita
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
36
|
Critical residues for cofactor binding and catalytic activity in the aminoglycoside resistance methyltransferase Sgm. J Bacteriol 2008; 190:5855-61. [PMID: 18586937 DOI: 10.1128/jb.00076-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 16S rRNA methyltransferase Sgm from "Micromonospora zionensis" confers resistance to aminoglycoside antibiotics by specific modification of the 30S ribosomal A site. Sgm is a member of the FmrO family, distant relatives of the S-adenosyl-L-methionine (SAM)-dependent RNA subfamily of methyltransferase enzymes. Using amino acid conservation across the FmrO family, seven putative key amino acids were selected for mutation to assess their role in forming the SAM cofactor binding pocket or in methyl group transfer. Each mutated residue was found to be essential for Sgm function, as no modified protein could effectively support bacterial growth in liquid media containing gentamicin or methylate 30S subunits in vitro. Using isothermal titration calorimetry, Sgm was found to bind SAM with a K(D) (binding constant) of 17.6 microM, and comparable values were obtained for one functional mutant (N179A) and four proteins modified at amino acids predicted to be involved in catalysis in methyl group transfer. In contrast, none of the G135, D156, or D182 Sgm mutants bound the cofactor, confirming their role in creating the SAM binding pocket. These results represent the first functional characterization of any FmrO methyltransferase and may provide a basis for a further structure-function analysis of these aminoglycoside resistance determinants.
Collapse
|
37
|
Subcellular localization and RNA interference of an RNA methyltransferase gene from silkworm, Bombyx mori. Comp Funct Genomics 2008:571023. [PMID: 18509492 PMCID: PMC2396236 DOI: 10.1155/2008/571023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 03/17/2008] [Indexed: 11/24/2022] Open
Abstract
RNA methylation, which is a form of posttranscriptional modification, is catalyzed by S-adenosyl-L-methionone-dependent RNA methyltransterases (RNA MTases). We have identified a novel silkworm gene, BmRNAMTase, containing a 369-bp open reading frame that encodes a putative protein containing 122 amino acid residues and having a molecular weight of 13.88 kd. We expressed a recombinant His-tagged BmRNAMTase in E. coli BL21 (DE3), purified the fusion protein by metal-chelation affinity chromatography, and injected a New Zealand rabbit with the purified protein to generate anti-BmRNAMTase polyclonal antibodies. Immunohistochemistry revealed that BmRNAMTase is abundant in the cytoplasm of Bm5 cells. In addition, using RNA interference to reduce the intracellular activity and content of BmRNAMTase, we determined that this cytoplasmic RNA methyltransferase may be involved in preventing cell death in the silkworm.
Collapse
|
38
|
Walbott H, Auxilien S, Grosjean H, Golinelli-Pimpaneau B. The Carboxyl-terminal Extension of Yeast tRNA m5C Methyltransferase Enhances the Catalytic Efficiency of the Amino-terminal Domain. J Biol Chem 2007; 282:23663-71. [PMID: 17567576 DOI: 10.1074/jbc.m703818200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human tRNA m(5)C methyltransferase is a potential target for anticancer drugs because it is a novel downstream target of the proto-oncogene myc, mediating Myc-induced cell proliferation. Sequence comparisons of RNA m(5)C methyltransferases indicate that the eukaryotic enzymes possess, in addition to a conserved catalytic domain, a large characteristic carboxyl-terminal extension. To gain insight into the function of this additional domain, the modular architecture of the yeast tRNA m(5)C methyltransferase orthologue, Trm4p, was studied. The yeast enzyme catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to carbon 5 of cytosine at different positions depending on the tRNAs. By limited proteolysis, Trm4p was shown to be composed of two domains that have been separately produced and purified. Here we demonstrate that the aminoterminal domain, encompassing the active site, binds tRNA with similar affinity as the whole enzyme but shows low catalytic efficiency. The carboxyl-terminal domain displays only weak affinity for tRNA. It is not required for m(5)C formation and does not appear to contribute to substrate specificity. However, it enhances considerably the catalytic efficiency of the amino-terminal domain.
Collapse
Affiliation(s)
- Hélène Walbott
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS Bâtiment 34, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
39
|
Walbott H, Husson C, Auxilien S, Golinelli-Pimpaneau B. Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase. RNA (NEW YORK, N.Y.) 2007; 13:967-73. [PMID: 17475914 PMCID: PMC1894932 DOI: 10.1261/rna.515707] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sequence comparison of several RNA m(5)C methyltransferases identifies two conserved cysteine residues that belong to signature motifs IV and VI of RNA and DNA methyltransferases. While the cysteine of motif IV is used as the nucleophilic catalyst by DNA m(5)C methyltransferases, this role is fulfilled by the cysteine of motif VI in Escherichia coli 16S rRNA m(5)C967 methyltransferase, but whether this conclusion applies to other RNA m(5)C methyltransferases remains to be verified. Yeast tRNA m(5)C methyltransferase Trm4p is a multisite-specific S-adenosyl-L-methionine-dependent enzyme that catalyzes the methylation of cytosine at C5 in several positions of tRNA. Here, we confirm that Cys310 of motif VI in Trm4p is essential for nucleophilic catalysis, presumably by forming a covalent link with carbon 6 of cytosine. Indeed, the enzyme is able to form a stable covalent adduct with the 5-fluorocytosine-containing RNA substrate analog, whereas the C310A mutant protein is inactive and unable to form the covalent complex.
Collapse
Affiliation(s)
- Hélène Walbott
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
40
|
Schubert HL, Blumenthal RM, Cheng X. 1 Protein Methyltransferases: Their Distribution Among the Five Structural Classes of AdoMet-Dependent Methyltransferases. Enzymes 2007; 24:3-28. [PMID: 26718035 DOI: 10.1016/s1874-6047(06)80003-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
S-adenosyl-l-methionine (AdoMet) dependent methyltransferases (MTases) are involved in biosynthesis, signal transduction, protein repair, chromatin regulation, and gene silencing. Five different structural folds (designated I through V) have been described that bind AdoMet and catalyze methyltransfer to diverse substrates, although the great majority of known MTases have the Class I fold. Even within a particular MTase class the amino-acid sequence similarity can be as low as 10%. Thus, the structural and catalytic requirements for methyltransfer from AdoMet appear to be remarkably flexible. MTases that act on protein substrates have been found to date among three of the five structural classes (I, the classical fold; III, the corrin MTase fold; and V, the SET fold). "There are many paths to the top of the mountain, but the view is always the same."-Chinese proverb The Columbia World of Quotations, New York, Columbia University Press, 1996.
Collapse
Affiliation(s)
- Heidi L Schubert
- Department of Biochemistry University of Utah 15 North Medical DriveEast Salt Lake City, UT 84112, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics and Proteomics/Genomics Medical University of Ohio 3000 Arlington Avenue Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry Emory University School of Medicine 1510 Clifton Road Northeast Atlanta, GA 30322, USA
| |
Collapse
|
41
|
Sakita-Suto S, Kanda A, Suzuki F, Sato S, Takata T, Tatsuka M. Aurora-B regulates RNA methyltransferase NSUN2. Mol Biol Cell 2007; 18:1107-17. [PMID: 17215513 PMCID: PMC1805108 DOI: 10.1091/mbc.e06-11-1021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/15/2006] [Accepted: 12/29/2006] [Indexed: 01/03/2023] Open
Abstract
Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G(1) phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis.
Collapse
Affiliation(s)
- Shiho Sakita-Suto
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Akifumi Kanda
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Fumio Suzuki
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Sunao Sato
- Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takashi Takata
- Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masaaki Tatsuka
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| |
Collapse
|
42
|
Lesnyak DV, Osipiuk J, Skarina T, Sergiev PV, Bogdanov AA, Edwards A, Savchenko A, Joachimiak A, Dontsova OA. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure. J Biol Chem 2007; 282:5880-7. [PMID: 17189261 PMCID: PMC2885967 DOI: 10.1074/jbc.m608214200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.
Collapse
Affiliation(s)
- Dmitry V. Lesnyak
- Department of Bioinformatics and Bioengineering, Moscow State University, Moscow 119992, Russia
| | - Jerzy Osipiuk
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Tatiana Skarina
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G IL6, Canada
| | - Petr V. Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Alexey A. Bogdanov
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Aled Edwards
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G IL6, Canada
| | - Alexei Savchenko
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G IL6, Canada
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Olga A. Dontsova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
43
|
Redman KL. Assembly of protein-RNA complexes using natural RNA and mutant forms of an RNA cytosine methyltransferase. Biomacromolecules 2007; 7:3321-6. [PMID: 17154459 DOI: 10.1021/bm051012l] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work reveals that mutant forms of RNA methyltransferases that form 5-methylcytosine (m5C) have characteristics that may make them useful for biomacromolecular assembly. The experiments utilized bacterially expressed Trm4p, a tRNA methyltransferase cloned from Saccharomyces cerevisiae. Like DNA m5C methyltransferases, Trm4p mediates methylation using a covalent intermediate, which would allow Trm4p to be trapped as a stable protein-RNA complex when the substrate RNA contains a modified cytosine base such as 5-fluorocytosine. However, mutant forms of Trm4p are identified that fail to release RNA resulting in the formation of denaturant stable methyltransferase-RNA complexes that contain only natural nucleotides. The ability to form stable complexes with natural RNA gives these mutant forms of Trm4p greater potential versatility for biomacromolecule construction applications than the wild-type Trm4p enzyme or DNA methyltransferases for which the trapping of the covalent intermediate requires the presence of a nucleotide analogue at the site of modification.
Collapse
Affiliation(s)
- Kent L Redman
- Indiana University School of Medicine-Fort Wayne, 2101 Coliseum Boulevard East, Fort Wayne, Indiana 46805, USA.
| |
Collapse
|
44
|
Lesnyak DV, Sergiev PV, Bogdanov AA, Dontsova OA. Identification of Escherichia coli m2G methyltransferases: I. the ycbY gene encodes a methyltransferase specific for G2445 of the 23 S rRNA. J Mol Biol 2006; 364:20-5. [PMID: 17010378 DOI: 10.1016/j.jmb.2006.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/18/2022]
Abstract
N2-methylguanosine 2445 of the 23 S rRNA is located in a cluster of modified nucleotides concentrated at the peptidyl transferase center of the ribosome. Here we describe the identification of a gene, ycbY, as encoding an enzyme responsible for methylation of G2445. Knock-out of the ycbY gene leads to loss of modification at G2445 as revealed by reverse transcription. The modification is restored in the ycbY knock-out strain if co-transformed with a plasmid expressing the ycbY gene product. Recombinant YcbY protein is able to methylate 23 S rRNA purified from the ycbY knock-out strain in vitro, assembled 50 S subunits are not a substrate for the methylase. Knock-out of the ycbY gene leads to growth retardation. Growth competition with the parental wild-type strain leads to a gradual decrease in the knock-out strain cells proportion in the media. It is likely that the G2445 modification is necessary for prevention of non-functional secondary or tertiary structure formation at the peptidyl transferase center. Based on these results we suggest that YcbY be renamed to RlmL in accordance with the accepted nomenclature for rRNA methyltransferases.
Collapse
Affiliation(s)
- Dmitry V Lesnyak
- Department of Bioinformatics and Bioengineering, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
45
|
Hallberg BM, Ericsson UB, Johnson KA, Andersen NM, Douthwaite S, Nordlund P, Beuscher AE, Erlandsen H. The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain. J Mol Biol 2006; 360:774-87. [PMID: 16793063 DOI: 10.1016/j.jmb.2006.05.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/13/2006] [Accepted: 05/18/2006] [Indexed: 12/01/2022]
Abstract
Nucleotide methylations are the most common type of rRNA modification in bacteria, and are introduced post-transcriptionally by a wide variety of site-specific enzymes. Three 5-methylcytidine (m(5)C) bases are found in the rRNAs of Escherichia coli and one of these, at nucleotide 1407 in 16 S rRNA, is the modification product of the methyltransferase (MTase) YebU (also called RsmF). YebU requires S-adenosyl-l-methionine (SAM) and methylates C1407 within assembled 30 S subunits, but not in naked 16 S rRNA or within tight-couple 70 S ribosomes. Here, we describe the three-dimensional structure of YebU determined by X-ray crystallography, and we present a molecular model for how YebU specifically recognizes, binds and methylates its ribosomal substrate. The YebU protein has an N-terminal SAM-binding catalytic domain with structural similarity to the equivalent domains in several other m(5)C RNA MTases including RsmB and PH1374. The C-terminal one-third of YebU contains a domain similar to that in pseudouridine synthases and archaeosine-specific transglycosylases (PUA-domain), which was not predicted by sequence alignments. Furthermore, YebU is predicted to contain extended regions of positive electrostatic potential that differ from other RNA-MTase structures, suggesting that YebU interacts with its RNA target in a different manner. Docking of YebU onto the 30 S subunit indicates that the PUA and MTase domains make several contacts with 16 S rRNA as well as with the ribosomal protein S12. The ribosomal protein interactions would explain why the assembled 30 S subunit, and not naked 16 S rRNA, is the preferred substrate for YebU.
Collapse
Affiliation(s)
- B Martin Hallberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Andersen NM, Douthwaite S. YebU is a m5C Methyltransferase Specific for 16 S rRNA Nucleotide 1407. J Mol Biol 2006; 359:777-86. [PMID: 16678201 DOI: 10.1016/j.jmb.2006.04.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 11/24/2022]
Abstract
The rRNAs in Escherichia coli contain methylations at 24 nucleotides, which collectively are important for ribosome function. Three of these methylations are m5C modifications located at nucleotides C967 and C1407 in 16S rRNA and at nucleotide C1962 in 23S rRNA. Bacterial rRNA modifications generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere with methylation at C1962 in 23 S rRNA. Purified recombinant YebU protein retains its specificity for C1407 in vitro, and methylates 30 S subunits (but not naked 16 S rRNA or 70 S ribosomes) isolated from yebU knockout strains. Nucleotide C1407 is located at a functionally active region of the 30 S subunit interface close to the P site, and YebU-directed methylation of this nucleotide seems to be conserved in bacteria. The yebU knockout strains display slower growth and reduced fitness in competition with wild-type cells. We suggest that a more appropriate designation for yebU would be the rRNA small subunit methyltransferase gene rsmF, and that the nomenclature system be extended to include the rRNA methyltransferases that still await identification.
Collapse
MESH Headings
- Amino Acid Sequence
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Genome, Bacterial
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleotides/chemistry
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Niels Møller Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | |
Collapse
|
47
|
Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006; 311:395-8. [PMID: 16424344 DOI: 10.1126/science.1120976] [Citation(s) in RCA: 770] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sequence and the structure of DNA methyltransferase-2 (Dnmt2) bear close affinities to authentic DNA cytosine methyltransferases. A combined genetic and biochemical approach revealed that human DNMT2 did not methylate DNA but instead methylated a small RNA; mass spectrometry showed that this RNA is aspartic acid transfer RNA (tRNA(Asp)) and that DNMT2 specifically methylated cytosine 38 in the anticodon loop. The function of DNMT2 is highly conserved, and human DNMT2 protein restored methylation in vitro to tRNA(Asp) from Dnmt2-deficient strains of mouse, Arabidopsis thaliana, and Drosophila melanogaster in a manner that was dependent on preexisting patterns of modified nucleosides. Indirect sequence recognition is also a feature of eukaryotic DNA methyltransferases, which may have arisen from a Dnmt2-like RNA methyltransferase.
Collapse
Affiliation(s)
- Mary Grace Goll
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pioszak AA, Murayama K, Nakagawa N, Ebihara A, Kuramitsu S, Shirouzu M, Yokoyama S. Structures of a putative RNA 5-methyluridine methyltransferase, Thermus thermophilus TTHA1280, and its complex with S-adenosyl-L-homocysteine. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:867-74. [PMID: 16511182 PMCID: PMC1991318 DOI: 10.1107/s1744309105029842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/20/2005] [Indexed: 01/22/2023]
Abstract
The Thermus thermophilus hypothetical protein TTHA1280 belongs to a family of predicted S-adenosyl-L-methionine (AdoMet) dependent RNA methyltransferases (MTases) present in many bacterial and archaeal species. Inspection of amino-acid sequence motifs common to class I Rossmann-fold-like MTases suggested a specific role as an RNA 5-methyluridine MTase. Selenomethionine (SeMet) labelled and native versions of the protein were expressed, purified and crystallized. Two crystal forms of the SeMet-labelled apoprotein were obtained: SeMet-ApoI and SeMet-ApoII. Cocrystallization of the native protein with S-adenosyl-L-homocysteine (AdoHcy) yielded a third crystal form, Native-AdoHcy. The SeMet-ApoI structure was solved by the multiple anomalous dispersion method and refined at 2.55 A resolution. The SeMet-ApoII and Native-AdoHcy structures were solved by molecular replacement and refined at 1.80 and 2.60 A, respectively. TTHA1280 formed a homodimer in the crystals and in solution. Each subunit folds into a three-domain structure composed of a small N-terminal PUA domain, a central alpha/beta-domain and a C-terminal Rossmann-fold-like MTase domain. The three domains form an overall clamp-like shape, with the putative active site facing a deep cleft. The architecture of the active site is consistent with specific recognition of uridine and catalysis of methyl transfer to the 5-carbon position. The cleft is suitable in size and charge distribution for binding single-stranded RNA.
Collapse
Affiliation(s)
| | | | - Noriko Nakagawa
- RIKEN Harima Institute at SPring-8, Hyogo, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Akio Ebihara
- RIKEN Harima Institute at SPring-8, Hyogo, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Seiki Kuramitsu
- RIKEN Genomic Sciences Center, Yokohama, Japan
- RIKEN Harima Institute at SPring-8, Hyogo, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Mikako Shirouzu
- RIKEN Genomic Sciences Center, Yokohama, Japan
- RIKEN Harima Institute at SPring-8, Hyogo, Japan
| | - Shigeyuki Yokoyama
- RIKEN Harima Institute at SPring-8, Hyogo, Japan
- Graduate School of Science, University of Tokyo, Tokyo, Japan
- Correspondence e-mail:
| |
Collapse
|
49
|
Lee TT, Agarwalla S, Stroud RM. Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase. Structure 2004; 12:397-407. [PMID: 15016356 DOI: 10.1016/j.str.2004.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 10/31/2003] [Accepted: 11/13/2003] [Indexed: 11/20/2022]
Abstract
RumA catalyzes transfer of a methyl group from S-adenosylmethionine (SAM) specifically to uridine 1939 of 23S ribosomal RNA in Escherichia coli to yield 5-methyluridine. We determined the crystal structure of RumA at 1.95 A resolution. The protein is organized into three structural domains: The N-terminal domain contains sequence homology to the conserved TRAM motif and displays a five-stranded beta barrel architecture characteristic of an oligosaccharide/oligonucleotide binding fold. The central domain contains a [Fe(4)S(4)] cluster coordinated by four conserved cysteine residues. The C-terminal domain displays the typical SAM-dependent methyltransferase fold. The catalytic nucleophile Cys389 lies in a motif different from that in DNA 5-methylcytosine methyltransferases. The electrostatic potential surface reveals a predominately positively charged area that covers the concave surface of the first two domains and suggests an RNA binding mode. The iron-sulfur cluster may be involved in the correct folding of the protein or may have a role in RNA binding.
Collapse
Affiliation(s)
- Tom T Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94107 USA
| | | | | |
Collapse
|
50
|
Bujnicki JM, Feder M, Ayres CL, Redman KL. Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases. Nucleic Acids Res 2004; 32:2453-63. [PMID: 15121902 PMCID: PMC419452 DOI: 10.1093/nar/gkh564] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three types of methyltransferases (MTases) generate 5-methylpyrimidine in nucleic acids, forming m5U in RNA, m5C in RNA and m5C in DNA. The DNA:m5C MTases have been extensively studied by crystallographic, biophysical, biochemical and computational methods. On the other hand, the sequence-structure-function relationships of RNA:m5C MTases remain obscure, as do the potential evolutionary relationships between the three types of 5-methylpyrimidine-generating enzymes. Sequence analyses and homology modeling of the yeast tRNA:m5C MTase Trm4p (also called Ncl1p) provided a structural and evolutionary platform for identification of catalytic residues and modeling of the architecture of the RNA:m5C MTase active site. The analysis led to the identification of two invariant residues that are important for Trm4p activity in addition to the conserved Cys residues in motif IV and motif VI that were previously found to be critical. The newly identified residues include a Lys residue in motif I and an Asp in motif IV. A conserved Gln found in motif X was found to be dispensable for MTase activity. Locations of essential residues in the model of Trm4p are in very good agreement with the X-ray structure of an RNA:m5C MTase homolog PH1374. Theoretical and experimental analyses revealed that RNA:m5C MTases share a number of features with either RNA:m5U MTases or DNA:m5C MTases, which suggested a tentative phylogenetic model of relationships between these three classes of 5-methylpyrimidine MTases. We infer that RNA:m5C MTases evolved from RNA:m5U MTases by acquiring an additional Cys residue in motif IV, which was adapted to function as the nucleophilic catalyst only later in DNA:m5C MTases, accompanied by loss of the original Cys from motif VI, transfer of a conserved carboxylate from motif IV to motif VI and sequence permutation.
Collapse
Affiliation(s)
- Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | |
Collapse
|