1
|
Tuffs SW, Dufresne K, Rishi A, Walton NR, McCormick JK. Novel insights into the immune response to bacterial T cell superantigens. Nat Rev Immunol 2024; 24:417-434. [PMID: 38225276 DOI: 10.1038/s41577-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Bacterial T cell superantigens (SAgs) are a family of microbial exotoxins that function to activate large numbers of T cells simultaneously. SAgs activate T cells by direct binding and crosslinking of the lateral regions of MHC class II molecules on antigen-presenting cells with T cell receptors (TCRs) on T cells; these interactions alter the normal TCR-peptide-MHC class II architecture to activate T cells in a manner that is independent of the antigen specificity of the TCR. SAgs have well-recognized, central roles in human diseases such as toxic shock syndrome and scarlet fever through their quantitative effects on the T cell response; in addition, numerous other consequences of SAg-driven T cell activation are now being recognized, including direct roles in the pathogenesis of endocarditis, bloodstream infections, skin disease and pharyngitis. In this Review, we summarize the expanding family of bacterial SAgs and how these toxins can engage highly diverse adaptive immune receptors. We highlight recent findings regarding how SAg-driven manipulation of the adaptive immune response may operate in multiple human diseases, as well as contributing to the biology and life cycle of SAg-producing bacterial pathogens.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Nicholas R Walton
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Mackay JP, Landsberg MJ, Whitten AE, Bond CS. Whaddaya Know: A Guide to Uncertainty and Subjectivity in Structural Biology. Trends Biochem Sci 2017; 42:155-167. [PMID: 28089412 DOI: 10.1016/j.tibs.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
The methods of structural biology, while powerful, are technically complex. Although the Protein Data Bank (PDB) provides a repository that allows anyone to download any structure, many users would not appreciate the caveats that should be considered when examining a structure. Here, we describe several key uncertainties associated with the application of X-ray crystallography, NMR spectroscopy, single-particle electron microscopy (SPEM), and small-angle scattering (SAS) to biological macromolecules. The take-home message is that structures are not absolute truths - they are models that fit the experimental data and therefore have uncertainty and subjectivity associated with them. These uncertainties must be appreciated - careful reading of the associated paper, and any validation report provided by the structure database, is highly recommended.
Collapse
Affiliation(s)
- Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Science, ANSTO, Lucas Heights, NSW, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6014, Australia
| |
Collapse
|
3
|
Monzón-Casanova E, Rudolf R, Starick L, Müller I, Söllner C, Müller N, Westphal N, Miyoshi-Akiyama T, Uchiyama T, Berberich I, Walter L, Herrmann T. The Forgotten: Identification and Functional Characterization of MHC Class II Molecules H2-Eb2 and RT1-Db2. THE JOURNAL OF IMMUNOLOGY 2016; 196:988-99. [DOI: 10.4049/jimmunol.1403070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/01/2015] [Indexed: 11/19/2022]
|
4
|
Superantigenic Yersinia pseudotuberculosis induces the expression of granzymes and perforin by CD4+ T cells. Infect Immun 2015; 83:2053-64. [PMID: 25754199 DOI: 10.1128/iai.02339-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/10/2015] [Indexed: 11/20/2022] Open
Abstract
Bacterial superantigens (SAgs) are immunostimulatory toxins that induce acute diseases mainly through the massive release of inflammatory cytokines. Yersinia pseudotuberculosis is the only Gram-negative bacterium known to produce a SAg (Y. pseudotuberculosis-derived mitogen [YPM]). This SAg binds major histocompatibility complex class II molecules on antigen-presenting cells and T cell receptors (TcR) bearing the variable region Vβ3, Vβ9, Vβ13.1, or Vβ13.2 (in humans) and Vβ7 or Vβ8 (in mice). We have previously shown that YPM exacerbates the virulence of Y. pseudotuberculosis in mice. With a view to understanding the mechanism of YPM's toxicity, we compared the immune response in BALB/c mice infected with a YPM-producing Y. pseudotuberculosis or the corresponding isogenic, SAg-deficient mutant. Five days after infection, we observed strong CD4(+) Vβ7(+) T cell expansion and marked interleukin-4 (IL-4) production in mice inoculated with SAg-producing Y. pseudotuberculosis. These phenomena were correlated with the activation of ypm gene transcription in liver and spleen. A transcriptomic analysis revealed that the presence of YPM also increased expression of granzyme and perforin genes in the host's liver and spleen. This expression was attributed to a CD4(+) T cell subset, rather than to natural killer T (NKT) cells that display a TcR with a Vβ region that is potentially recognized by YPM. Increased production of cytotoxic molecules was correlated with hepatotoxicity, as demonstrated by an increase in plasma alanine aminotransferase activity. Our results demonstrate that YPM activates a potentially hepatotoxic CD4(+) T cell population.
Collapse
|
5
|
Fechner P, Bleher O, Ewald M, Freudenberger K, Furin D, Hilbig U, Kolarov F, Krieg K, Leidner L, Markovic G, Proll G, Pröll F, Rau S, Riedt J, Schwarz B, Weber P, Widmaier J. Size does matter! Label-free detection of small molecule-protein interaction. Anal Bioanal Chem 2014; 406:4033-51. [PMID: 24817356 DOI: 10.1007/s00216-014-7834-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Abstract
This review is focused on methods for detecting small molecules and, in particular, the characterisation of their interaction with natural proteins (e.g. receptors, ion channels). Because there are intrinsic advantages to using label-free methods over labelled methods (e.g. fluorescence, radioactivity), this review only covers label-free techniques. We briefly discuss available techniques and their advantages and disadvantages, especially as related to investigating the interaction between small molecules and proteins. The reviewed techniques include well-known and widely used standard analytical methods (e.g. HPLC-MS, NMR, calorimetry, and X-ray diffraction), newer and more specialised analytical methods (e.g. biosensors), biological systems (e.g. cell lines and animal models), and in-silico approaches.
Collapse
Affiliation(s)
- Peter Fechner
- Biametrics GmbH, Auf der Morgenstelle 18, 72076, Tübingen, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu L, Chen H, Brecher MB, Li Z, Wei B, Nandi B, Zhang J, Ling H, Winslow G, Braun J, Li H. Pfit is a structurally novel Crohn's disease-associated superantigen. PLoS Pathog 2013; 9:e1003837. [PMID: 24385909 PMCID: PMC3873459 DOI: 10.1371/journal.ppat.1003837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 11/02/2013] [Indexed: 01/07/2023] Open
Abstract
T cell responses to enteric bacteria are important in inflammatory bowel disease. I2, encoded by the pfiT gene of Pseudomonas fluorescens, is a T-cell superantigen associated with human Crohn's disease. Here we report the crystal structure of pfiT at 1.7Å resolution and provide a functional analysis of the interaction of pfiT and its homolog, PA2885, with human class II MHC. Both pfiT and PA2885 bound to mammalian cells and stimulated the proliferation of human lymphocytes. This binding was greatly inhibited by anti-class II MHC HLA-DR antibodies, and to a lesser extent, by anti HLA-DQ and DP antibodies, indicating that the binding was class II MHC-specific. GST-pfiT efficiently precipitated both endogenous and in vitro purified recombinant HLA-DR1 molecules, indicating that pfiT directly interacted with HLA-DR1. Competition studies revealed that pfiT and the superantigen Mycoplasma arthritidis mitogen (MAM) competed for binding to HLA-DR, indicating that their binding sites overlap. Structural analyses established that pfiT belongs to the TetR-family of DNA-binding transcription regulators. The distinct structure of pfiT indicates that it represents a new family of T cell superantigens. Human inflammatory bowel disease (IBD) is a family of chronic inflammatory disorders of the gastrointestinal tract which affect genetically susceptible individuals. IBD is a lifelong disease involving mostly young people, often severely. Crohn's disease (CD) and ulcerative colitis are the two major forms of IBD. Although the exact cause of these diseases remains unknown, both genetic and environmental factors together play significant roles in the disease pathogenesis. Several lines of evidence implicate commensal bacteria as an important pathogenic element in clinical disease, particularly in CD. We recently identified a novel microbial gene, I2, encoded by Pseudomonas fluorescens, a gram-negative commensal, which may be involved in the pathogenesis of CD. Both molecular and immunological approaches were used to identify the human receptor for the microbial antigen encoded by I2, to characterize the ligand-receptor interactions, and to determine the three-dimensional structure of the microbial gene product. In particular, we show that the pfiT is a T cell superantigen, which may help to explain how microbial flora can trigger immune activation in IBD, and may provide the groundwork for novel therapies to treat CD.
Collapse
Affiliation(s)
- Lihui Liu
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Hui Chen
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Matthew B. Brecher
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Bo Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Bisweswar Nandi
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Hua Ling
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Gary Winslow
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Ilarraza R, Wu Y, Skappak CD, Ajamian F, Proud D, Adamko DJ. Rhinovirus has the unique ability to directly activate human T cells in vitro. J Allergy Clin Immunol 2013; 131:395-404. [PMID: 23374267 DOI: 10.1016/j.jaci.2012.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 10/22/2012] [Accepted: 11/30/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rhinovirus infection is a leading cause of exacerbation of airway diseases. We hypothesize that airway viruses activate inflammatory cells, inducing airway dysfunction. We have previously shown that airway viruses can induce eosinophil degranulation when cocultured with T cells and monocyte-derived dendritic cells (moDCs). These findings suggested that antigen presentation was important for T-cell activation. OBJECTIVE Given the clinical importance of rhinovirus, we sought to determine whether it had any unique abilities to activate inflammatory cells compared with another common virus, such as respiratory syncytial virus (RSV). METHODS We cocultured combinations of human leukocytes (T cells, moDCs, and eosinophils) with each virus. Using assays of BrdU incorporation, flow cytometry, and ELISA, we measured T-cell activation, rhinovirus expression, T-cell death, and eosinophil cysteinyl leukotriene release. RESULTS In contrast to RSV, rhinovirus induced T-cell activation without the involvement of moDCs. Without moDCs, rhinovirus induced T-cell proliferation of both CD4 and CD8(+) cells, cytokine production, and ultimately, eosinophil stimulation. Although chloroquine inhibited RSV-induced activation of T cells through moDCs, rhinovirus was not inhibited; UV inactivation did block the rhinovirus effect. We also found that T cells could be infected by rhinovirus in vitro and within human nasal explant tissue. Although Toll-like receptors did not appear to be involved in T-cell activation, antagonists of Jun N-terminal kinase and nuclear factor κB did inhibit T-cell responses to rhinovirus. CONCLUSION Rhinovirus has the unique ability to bypass antigen presentation and directly infect and activate human T cells. This could explain the strong association of rhinovirus with exacerbation of airway diseases.
Collapse
Affiliation(s)
- Ramses Ilarraza
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Cheng S, Brooks CL. Viral capsid proteins are segregated in structural fold space. PLoS Comput Biol 2013; 9:e1002905. [PMID: 23408879 PMCID: PMC3567143 DOI: 10.1371/journal.pcbi.1002905] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 12/16/2012] [Indexed: 02/04/2023] Open
Abstract
Viral capsid proteins assemble into large, symmetrical architectures that are not found in complexes formed by their cellular counterparts. Given the prevalence of the signature jelly-roll topology in viral capsid proteins, we are interested in whether these functionally unique capsid proteins are also structurally unique in terms of folds. To explore this question, we applied a structure-alignment based clustering of all protein chains in VIPERdb filtered at 40% sequence identity to identify distinct capsid folds, and compared the cluster medoids with a non-redundant subset of protein domains in the SCOP database, not including the viral capsid entries. This comparison, using Template Modeling (TM)-score, identified 2078 structural "relatives" of capsid proteins from the non-capsid set, covering altogether 210 folds following the definition in SCOP. The statistical significance of the 210 folds shared by two sets of the same sizes, estimated from 10,000 permutation tests, is less than 0.0001, which is an upper bound on the p-value. We thus conclude that viral capsid proteins are segregated in structural fold space. Our result provides novel insight on how structural folds of capsid proteins, as opposed to their surface chemistry, might be constrained during evolution by requirement of the assembled cage-like architecture. Also importantly, our work highlights a guiding principle for virus-based nanoplatform design in a wide range of biomedical applications and materials science.
Collapse
Affiliation(s)
- Shanshan Cheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles L. Brooks
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
The detection and quantitation of protein oligomerization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:19-41. [PMID: 22949109 DOI: 10.1007/978-1-4614-3229-6_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are many different techniques available to biologists and biochemists that can be used to detect and characterize the self-association of proteins. Each technique has strengths and weaknesses and it is often useful to combine several approaches to maximize the former and minimize the latter. Here we review a range of methodologies that identify protein self-association and/or allow the stoichiometry and affinity of the interaction to be determined, placing an emphasis on what type of information can be obtained and outlining the advantages and disadvantages involved. In general, in vitro biophysical techniques, such as size exclusion chromatography, analytical ultracentrifugation, scattering techniques, NMR spectroscopy, isothermal titration calorimetry, fluorescence anisotropy and mass spectrometry, provide information on stoichiometry and/or binding affinities. Other approaches such as cross-linking, fluorescence methods (e.g., fluorescence correlation spectroscopy, FCS; Förster resonance energy transfer, FRET; fluorescence recovery after photobleaching, FRAP; and proximity imaging, PRIM) and complementation approaches (e.g., yeast two hybrid assays and bimolecular fluorescence complementation, BiFC) can be used to detect protein self-association in a cellular context.
Collapse
|
10
|
Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP. Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 2011; 278:687-703. [PMID: 21214860 DOI: 10.1111/j.1742-4658.2011.08004.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NMR spectroscopy is a powerful tool for studying the structure, function and dynamics of biological macromolecules. However, non-spectroscopists often find NMR theory daunting and data interpretation nontrivial. As the first of two back-to-back reviews on NMR spectroscopy aimed at non-spectroscopists, the present review first provides an introduction to the basics of macromolecular NMR spectroscopy, including a discussion of typical sample requirements and what information can be obtained from simple NMR experiments. We then review the use of NMR spectroscopy for determining the 3D structures of macromolecules and examine how to judge the quality of NMR-derived structures.
Collapse
Affiliation(s)
- Ann H Kwan
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
11
|
Liu L, Li Z, Guo Y, VanVranken SJ, Mourad W, Li H. Crystal structure of the Mycoplasma arthritidis-derived mitogen in apo form reveals a 3D domain-swapped dimer. J Mol Biol 2010; 399:367-76. [PMID: 20417218 DOI: 10.1016/j.jmb.2010.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing particular Vbeta elements of T cell receptor. Here, we report the crystal structure of a MAM mutant K201A in apo form (unliganded) at 2.8-A resolutions. We also partially refined the crystal structures of the MAM wild type and another MAM mutant L50A in apo forms at low resolutions. Unexpectedly, the structures of these apo MAM molecules display a three-dimensional domain-swapped dimer. The entire C-terminal domains of these MAM molecules are involved in the domain swapping. Functional analyses demonstrated that the K201A and L50A mutants do not show altered ability to bind to their host receptors and that they stimulate the activation of T cells as efficiently as does the wild type. Structural comparisons indicated that the "reconstituted" MAM monomer from the domain-swapped dimer displays large differences at the hinge regions from the MAM(wt) molecule in the receptor-bound form. Further comparison indicated that MAM has a flexible N-terminal loop, implying that conformational changes could occur upon receptor binding.
Collapse
Affiliation(s)
- Lihui Liu
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Bacterial toxins damage the host at the site of bacterial infection or distant from the site. Bacterial toxins can be single proteins or oligomeric protein complexes that are organized with distinct AB structure-function properties. The A domain encodes a catalytic activity. ADP ribosylation of host proteins is the earliest post-translational modification determined to be performed by bacterial toxins; other modifications include glucosylation and proteolysis. Bacterial toxins also catalyze the non-covalent modification of host protein function or can modify host cell properties through direct protein-protein interactions. The B domain includes two functional domains: a receptor-binding domain, which defines the tropism of a toxin for a cell and a translocation domain that delivers the A domain across a lipid bilayer, either on the plasma membrane or the endosome. Bacterial toxins are often characterized based upon the secretion mechanism that delivers the toxin out of the bacterium, termed types I-VII. This review summarizes the major families of bacterial toxins and also describes the specific structure-function properties of the botulinum neurotoxins.
Collapse
Affiliation(s)
- James S Henkel
- Medical College of Wisconsin, Department of Microbiology and Molecular Genetics, Milwaukee, WI 53151, USA.
| | | | | |
Collapse
|
13
|
Hauk P, Guzzo CR, Ramos HR, Ho PL, Farah CS. Structure and Calcium-Binding Activity of LipL32, the Major Surface Antigen of Pathogenic Leptospira sp. J Mol Biol 2009; 390:722-36. [DOI: 10.1016/j.jmb.2009.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
|
14
|
Diedershagen M, Overbeck S, Arlt S, Plümäkers B, Lintges M, Rink L. Mycoplasma arthritidis-derived superantigen (MAM) displays DNase activity. ACTA ACUST UNITED AC 2007; 49:266-71. [PMID: 17328760 DOI: 10.1111/j.1574-695x.2006.00189.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial superantigens are potent stimulators of the immune system. In this study, we expressed recombinant superantigens, which were then affinity purified and used for growth curves and DNase activity assays. Overexpression of Mycoplasma arthritidis-derived superantigen in Escherichia coli reduced bacterial growth. This is unique, as staphylococcal enterotoxin A and toxic shock syndrome toxin-1, expressed in the same vector system, showed no growth impairment. The observed growth inhibition was caused by the DNase activity of recombinant M. arthritidis-derived superantigen, thus describing the first superantigen showing enzymatic activity, which may be a result of the separate evolution of this toxin.
Collapse
Affiliation(s)
- Markus Diedershagen
- Institute of Immunology, RWTH Aachen University, University Hospital, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Li H, Zhao Y, Guo Y, VanVranken SJ, Li Z, Eisele L, Mourad W. Mutagenesis, biochemical, and biophysical characterization of Mycoplasma arthritidis-derived mitogen. Mol Immunol 2006; 44:763-73. [PMID: 16753217 PMCID: PMC3923304 DOI: 10.1016/j.molimm.2006.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 04/11/2006] [Indexed: 02/02/2023]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen (SAg) that can activate large fractions of T cells bearing particular TCR Vbeta elements. Here we report the mutagenesis, biochemical and biophysical studies on the dimerization of MAM in solution. Our studies showed that although MAM mainly exists as a monomer in solution, a small percentage of MAM molecules form homodimer at high protein concentration, regardless of the presence of Zn2+. A distinct peak corresponding to a MAM homodimer was detected in the presence of EDTA, using both chemical cross-linking and analytical ultracentrifugation methods. Further mutagenesis studies revealed that single mutation of residues at the interface of the crystallographic dimer of MAM does not significantly affect the dimerization of MAM in solution. Circular dichroism (CD) analysis indicated that addition of Zn2+ does not induce conformational changes of MAM from its apo-state. Thermal denaturation experiments indicated that addition of Zn2+ to MAM solution resulted in a decrease of melting point (Tm), whereas addition of EDTA did not affect the Tm of MAM. These results imply that there is no defined Zn2+-binding site on MAM.
Collapse
Affiliation(s)
- Hongmin Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
- Corresponding author. Tel.: +1 518 486 9154; fax: +1 518 474 7992. (H. Li)
| | - Yiwei Zhao
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Yi Guo
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Sandra J. VanVranken
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Leslie Eisele
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Walid Mourad
- Université de Montreal, CHUM, Campus St-Luc, PEA, 264, Boul. René Lévesque Est, Bureau 313, Montréal, Qué. H2X 1P1, Canada
| |
Collapse
|
16
|
Guo Y, Li Z, Van Vranken SJ, Li H. A single point mutation changes the crystallization behavior of Mycoplasma arthritidis-derived mitogen. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:238-41. [PMID: 16511311 PMCID: PMC2197180 DOI: 10.1107/s1744309106003691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/30/2006] [Indexed: 11/10/2022]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM) functions as a conventional superantigen (SAg). Although recombinant MAM has been crystallized by the hanging-drop vapour-diffusion method, the crystals diffracted poorly to only 5.0 A resolution, with large unit-cell parameters a = 163.8, b = 93.0, c = 210.9 A, beta = 93.7 degrees in the monoclinic space group P2(1). Unit-cell content analysis revealed that as many as 24 molecules could be present in the asymmetric unit. Systematic alanine mutagenesis was applied in order to search for mutants that give crystals of better quality. Two mutants, L50A and K201A, were crystallized under the same conditions as wild-type MAM (MAMwt). Crystals of the L50A mutant are isomorphous with those of MAMwt, while a new crystal form was obtained for the K201 mutant, belonging to the cubic space group P4(1)32 with unit-cell parameters a = b = c = 181.9 A. Diffraction data were collected to 3.6 and 2.8 A resolution from crystals of the MAM L50A and K201A mutants, respectively. Molecular-replacement calculations suggest the presence of two molecules in the asymmetric unit for the MAM K201A mutant crystal, resulting in a VM of 5.0 A Da(-1) and a solvent content of 75%. An interpretable electron-density map for the MAM K201A mutant crystal was produced using the molecular-replacement method.
Collapse
Affiliation(s)
- Yi Guo
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Sandra J. Van Vranken
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| |
Collapse
|
17
|
Papageorgiou AC, Saarinen S, Ramirez-Bartutis R, Kato H, Uchiyama T, Kirikae T, Miyoshi-Akiyama T. Expression, purification and crystallization of Streptococcus dysgalactiae-derived mitogen. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:242-4. [PMID: 16511312 PMCID: PMC2197169 DOI: 10.1107/s1744309106003678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 01/30/2006] [Indexed: 11/10/2022]
Abstract
Superantigens are bacterial or viral toxins with potent immunostimulatory properties. Streptococcus dysgalactiae-derived mitogen, a 25 kDa protein, is a recently discovered superantigen isolated from S. dysgalactiae culture supernatant. Sequence considerations suggest that it belongs to a new superantigen family distinct from other superantigens. The protein was expressed in Escherichia coli cells and purified to homogeneity. Crystals were grown at pH 4.2-4.4 in the presence of 18-20%(w/v) PEG 3350 and 0.4 M lithium nitrate. A complete data set to 2.4 A resolution was collected from a single crystal at liquid-nitrogen temperatures using synchrotron radiation. The crystals belong to space group P3/P3(1)/P3(2), with unit-cell parameters a = b = 52.7, c = 62.4 A, gamma = 120 degrees and one molecule in the crystallographic asymmetric unit.
Collapse
|
18
|
Réty S, Salamitou S, Garcia-Verdugo I, Hulmes DJS, Le Hégarat F, Chaby R, Lewit-Bentley A. The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins. J Biol Chem 2005; 280:43073-8. [PMID: 16249180 DOI: 10.1074/jbc.m510087200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The lethal disease anthrax is propagated by spores of Bacillus anthracis, which can penetrate into the mammalian host by inhalation, causing a rapid progression of the disease and a mostly fatal outcome. We have solved the three-dimensional structure of the major surface protein BclA on B. anthracis spores. Surprisingly, the structure resembles C1q, the first component of complement, despite there being no sequence homology. Although most assays for C1q-like activity, including binding to C1q receptors, suggest that BclA does not mimic C1q, we show that BclA, as well as C1q, interacts with components of the lung alveolar surfactant layer. Thus, to better recognize and invade its hosts, this pathogenic soil bacterium may have evolved a surface protein whose structure is strikingly close to a mammalian protein.
Collapse
Affiliation(s)
- Stéphane Réty
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquées, CNRS, Unité Mixte de Recherche 8113, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Collyn F, Fukushima H, Carnoy C, Simonet M, Vincent P. Linkage of the horizontally acquired ypm and pil genes in Yersinia pseudotuberculosis. Infect Immun 2005; 73:2556-8. [PMID: 15784605 PMCID: PMC1087444 DOI: 10.1128/iai.73.4.2556-2558.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The superantigen-encoding ypm gene and the pil gene cluster governing type IV pilus biogenesis have been laterally acquired by Yersinia pseudotuberculosis. PCR assays on 270 unrelated strains from various environmental and animal sources revealed a significant association of ypm and pil in isolates.
Collapse
|
20
|
De Marzí MC, Fernández MM, Sundberg EJ, Molinero L, Zwirner NW, Llera AS, Mariuzza RA, Malchiodi EL. Cloning, expression and interaction of human T-cell receptors with the bacterial superantigen SSA. ACTA ACUST UNITED AC 2004; 271:4075-83. [PMID: 15479236 DOI: 10.1111/j.1432-1033.2004.04345.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Superantigens (SAgs) are a class of disease-causing and immunostimulatory proteins of bacterial or viral origin that activate a large number of T-cells through interaction with the Vbeta domain of T-cell receptors (TCRs). In this study, recombinant TCR beta chains were constructed with human variable domains Vbeta5.2, Vbeta1 and Vbeta2.1, expressed as inclusion bodies, refolded and purified. The Streptococcus pyogenes SAg SSA-1 was cloned and expressed as a soluble periplasmic protein. SSA-1 was obtained both as a monomer and a dimer that has an intermolecular disulfide bond. We analyzed the biological activity of the recombinant SAgs by proliferation assays. The results suggest that SSA dimerization occludes the TCR interaction site. Naturally occurring SSA dimerization was also observed in supernatants of S. pyogenes isolates. An SSA mutant [SSA(C26S)] was produced to eliminate the Cys responsible for dimerization. Affinity assays using a resonant biosensor showed that both the mutant and monomeric wild type SSA have affinity for human Vbeta5.2 and Vbeta1 with Kd of 9-11 microm with a fast kass and a moderately fast kdiss. In spite of the reported stimulation of Vbeta2.1 bearing T-cells by SSA, we observed no measurable interaction.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Cloning, Molecular
- Dimerization
- Dose-Response Relationship, Immunologic
- Electrophoresis, Polyacrylamide Gel
- Gene Expression
- Humans
- Immunoblotting
- Lymphocyte Activation
- Mice
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Streptococcus pyogenes/immunology
- Superantigens/chemistry
- Superantigens/immunology
- Superantigens/metabolism
- Superantigens/pharmacology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Mauricio C De Marzí
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|