1
|
Leonarski F, Henning-Knechtel A, Kirmizialtin S, Ennifar E, Auffinger P. Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure - Part I: Mg2. Nucleic Acids Res 2025; 53:gkae1148. [PMID: 39791453 PMCID: PMC11724316 DOI: 10.1093/nar/gkae1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025] Open
Abstract
The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.55 Å Escherichia coli ribosome structure where incomplete ion assignments blurred our understanding of their binding patterns. We revisited this model to establish general binding principles applicable to any RNA of sufficient resolution. These principles rely on the 2.9 Å distance separating two water molecules bound in cis to Mg2+. By applying these rules, we could assign all Mg2+ ions bound with 2-4 non-water oxygens. We also uncovered unanticipated motifs where up to five adjacent nucleotides wrap around a single ion. The formation of such motifs involves a hierarchical Mg2+ ion dehydration process that plays a significant role in ribosome biogenesis and in the folding of large RNAs. Besides, we established a classification of the Mg2+…Mg2+ and Mg2+…K+ ion pairs observed in this ribosome. Overall, the uncovered binding principles enhance our understanding of the roles of ions in RNA structure and will help refining the solvation shell of other RNA systems.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Anja Henning-Knechtel
- Chemistry Program, Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, USA
| | - Eric Ennifar
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Pascal Auffinger
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| |
Collapse
|
2
|
Lee DY, Amirthalingam S, Lee C, Rajendran AK, Ahn YH, Hwang NS. Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles. NANOSCALE ADVANCES 2023; 5:3834-3856. [PMID: 37496613 PMCID: PMC10368001 DOI: 10.1039/d3na00198a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
Gene therapy is a promising approach for the treatment of many diseases. However, the effective delivery of the cargo without degradation in vivo is one of the major hurdles. With the advent of lipid nanoparticles (LNPs) and cell-derived nanovesicles (CDNs), gene delivery holds a very promising future. The targeting of these nanosystems is a prerequisite for effective transfection with minimal side-effects. In this review, we highlight the emerging strategies utilized for the effective targeting of LNPs and CDNs, and we summarize the preparation methodologies for LNPs and CDNs. We have also highlighted the non-ligand targeting of LNPs toward certain organs based on their composition. It is highly expected that continuing the developments in the targeting approaches of LNPs and CDNs for the delivery system will further promote them in clinical translation.
Collapse
Affiliation(s)
- Dong-Yup Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Young-Hyun Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
3
|
Westhof E, Watson ZL, Zirbel CL, Cate JHD. Anionic G•U pairs in bacterial ribosomal rRNAs. RNA (NEW YORK, N.Y.) 2023; 29:1069-1076. [PMID: 37068913 DOI: 10.1261/rna.079583.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/05/2023] [Indexed: 06/18/2023]
Abstract
Wobble GU pairs (or G•U) occur frequently within double-stranded RNA helices interspersed between standard G=C and A-U Watson-Crick pairs. Another type of G•U pair interacting via their Watson-Crick edges has been observed in the A site of ribosome structures between a modified U34 in the tRNA anticodon triplet and G + 3 in the mRNA. In such pairs, the electronic structure of the U is changed with a negative charge on N3(U), resulting in two H-bonds between N1(G)…O4(U) and N2(G)…N3(U). Here, we report that such pairs occur in other highly conserved positions in ribosomal RNAs of bacteria in the absence of U modification. An anionic cis Watson-Crick G•G pair is also observed and well conserved in the small subunit. These pairs are observed in tightly folded regions.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, F-67084 Strasbourg, France
| | - Zoe L Watson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Abbas SJ, Yesmin S, Xia F, Ali SI, Xiao Z, Tan W. Oligonucleotide nanoassemblies with allyl bromide scaffold-based small molecules. DISCOVER NANO 2023; 18:81. [PMID: 37382753 DOI: 10.1186/s11671-023-03846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 06/30/2023]
Abstract
The development of oligonucleotide nanoassemblies with small molecules has shown great potential in bio-medical applications. However, the interaction of negatively charged oligonucleotides with halogenated small molecules represents a scientific challenge. Here, we introduced a distinct allyl bromide halogenated scaffold, which exhibits specific interaction with adenine nucleic bases of the oligonucleotides, thus leading to the formation of self-assembled nanostructures.
Collapse
Affiliation(s)
- Sk Jahir Abbas
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
| | - Sabina Yesmin
- Department of Physics, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Fangfang Xia
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | - Zeyu Xiao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Molecular Science and Biomedicine Laboratory (MBL), Aptamer Engineering Centre of Hunan Province, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
5
|
Kensinger AH, Makowski JA, Pellegrene KA, Imperatore JA, Cunningham CL, Frye CJ, Lackey PE, Mihailescu MR, Evanseck JD. Structural, Dynamical, and Entropic Differences between SARS-CoV and SARS-CoV-2 s2m Elements Using Molecular Dynamics Simulations. ACS PHYSICAL CHEMISTRY AU 2023; 3:30-43. [PMID: 36711027 PMCID: PMC9578647 DOI: 10.1021/acsphyschemau.2c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The functional role of the highly conserved stem-loop II motif (s2m) in SARS-CoV and SARS-CoV-2 in the viral lifecycle remains enigmatic and an intense area of research. Structure and dynamics of the s2m are key to establishing a structure-function connection, yet a full set of atomistic resolution coordinates is not available for SARS-CoV-2 s2m. Our work constructs three-dimensional coordinates consistent with NMR solution phase data for SARS-CoV-2 s2m and provides a comparative analysis with its counterpart SARS-CoV s2m. We employed initial coordinates based on PDB ID 1XJR for SARS-CoV s2m and two models for SARS-CoV-2 s2m: one based on 1XJR in which we introduced the mutations present in SARS-CoV-2 s2m and the second based on the available SARS-CoV-2 NMR NOE data supplemented with knowledge-based methods. For each of the three systems, 3.5 μs molecular dynamics simulations were used to sample the structure and dynamics, and principal component analysis (PCA) reduced the ensembles to hierarchal conformational substates for detailed analysis. Dilute solution simulations of SARS-CoV s2m demonstrate that the GNRA-like terminal pentaloop is rigidly defined by base stacking uniquely positioned for possible kissing dimer formation. However, the SARS-CoV-2 s2m simulation did not retain the reported crystallographic SARS-CoV motifs and the terminal loop expands to a highly dynamic "nonaloop." Increased flexibility and structural disorganization are observed for the larger terminal loop, where an entropic penalty is computed to explain the experimentally observed reduction in kissing complex formation. Overall, both SARS-CoV and SARS-CoV-2 s2m elements have a similarly pronounced L-shape due to different motif interactions. Our study establishes the atomistic three-dimensional structure and uncovers dynamic differences that arise from s2m sequence changes, which sets the stage for the interrogation of different mechanistic pathways of suspected biological function.
Collapse
Affiliation(s)
- Adam H. Kensinger
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joseph A. Makowski
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Kendy A. Pellegrene
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joshua A. Imperatore
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caylee L. Cunningham
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caleb J. Frye
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Patrick E. Lackey
- Department
of Biochemistry and Chemistry, Westminster
College, New Wilmington, Pennsylvania16172, United States
| | - Mihaela Rita Mihailescu
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Jeffrey D. Evanseck
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| |
Collapse
|
6
|
Olson WK, Li Y, Fenley MO. Insights into DNA solvation found in protein-DNA structures. Biophys J 2022; 121:4749-4758. [PMID: 36380591 PMCID: PMC9808563 DOI: 10.1016/j.bpj.2022.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The proteins that bind double-helical DNA present various microenvironments that sense and/or induce signals in the genetic material. The high-resolution structures of protein-DNA complexes reveal the nature of both the microenvironments and the conformational responses in DNA and protein. Complex networks of interactions within the structures somehow tie the protein and DNA together and induce the observed spatial forms. Here we show how the cumulative buildup of amino acid atoms around the sugars, phosphates, and bases in different protein-DNA complexes produces a binding cloud around the double helix and how different types of atoms fill that cloud. Rather than focusing on the principles of molecular binding and recognition suggested by the arrangements of amino acids and nucleotides in the macromolecular complexes, we consider the proteins in contact with DNA as organized solvents. We describe differences in the mix of atoms that come in closest contact with DNA, subtle sequence-dependent features in the microenvironment of the sugar-phosphate backbone, a direct link between the localized buildup of ionic species and the electrostatic potential surfaces of the DNA bases, and sites of atomic buildup above and below the basepair planes that transmit the unique features of the base environments along the chain backbone. The inferences about solvation that can be drawn from the survey provide new stimuli for improvement of nucleic acid force fields and fresh ideas for exploration of the properties of DNA in solution.
Collapse
Affiliation(s)
- Wilma K Olson
- Department of Chemistry and Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey.
| | - Yun Li
- Department of Chemistry and Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Marcia O Fenley
- Department of Chemistry and Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| |
Collapse
|
7
|
Kiliszek A, Pluta M, Bejger M, Rypniewski W. Structure and thermodynamics of a UGG motif interacting with Ba2+ and other metal ions: accommodating changes in the RNA structure and the presence of a G(syn)-G(syn) pair. RNA (NEW YORK, N.Y.) 2022; 29:rna.079414.122. [PMID: 36319090 PMCID: PMC9808570 DOI: 10.1261/rna.079414.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The self-complementary triplet 5'UGG3'/5'UGG3' is a particular structural motif containing noncanonical G-G pair and two U·G wobble pairs. It constitutes a specific structural and electrostatic environment attracting metal ions, particularly Ba2+ ions. Crystallographic research has shown that two Ba2+ cations are located in the major groove of the helix and interact directly with the UGG triplet. A comparison with the unliganded structure has revealed global changes in the RNA structure in the presence of metal ions, whereas thermodynamic measurements have shown increased stability. Moreover, in the structure with Ba2+, an unusual noncanonical G(syn)-G(syn) pair is observed instead of the common G(anti)-G(syn). We further elucidate the metal binding properties of the UGG/UGG triplet by performing crystallographic and thermodynamic studies using DSC and UV melting with other metal ions. The results explain the preferences of the UGG sequence for Ba2+ cations and point to possible applications of this metal-binding propensity.
Collapse
|
8
|
The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly. Nat Commun 2022; 13:3112. [PMID: 35662248 PMCID: PMC9166708 DOI: 10.1038/s41467-022-30779-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
The programmable synthesis of rationally engineered crystal architectures for the precise arrangement of molecular species is a foundational goal in nanotechnology, and DNA has become one of the most prominent molecules for the construction of these materials. In particular, branched DNA junctions have been used as the central building block for the assembly of 3D lattices. Here, crystallography is used to probe the effect of all 36 immobile Holliday junction sequences on self-assembling DNA crystals. Contrary to the established paradigm in the field, most junctions yield crystals, with some enhancing the resolution or resulting in unique crystal symmetries. Unexpectedly, even the sequence adjacent to the junction has a significant effect on the crystal assemblies. Six of the immobile junction sequences are completely resistant to crystallization and thus deemed “fatal,” and molecular dynamics simulations reveal that these junctions invariably lack two discrete ion binding sites that are pivotal for crystal formation. The structures and dynamics detailed here could be used to inform future designs of both crystals and DNA nanostructures more broadly, and have potential implications for the molecular engineering of applied nanoelectronics, nanophotonics, and catalysis within the crystalline context. Engineered crystal architectures from DNA have become a foundational goal for nanotechnological precise arrangement. Here, the authors systematically investigate the structures of 36 immobile Holliday junction sequences and identify the features allowing the crystallisation of most of them, while 6 are considered fatal.
Collapse
|
9
|
fingeRNAt—A novel tool for high-throughput analysis of nucleic acid-ligand interactions. PLoS Comput Biol 2022; 18:e1009783. [PMID: 35653385 PMCID: PMC9197077 DOI: 10.1371/journal.pcbi.1009783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/14/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt—a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt)—a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction fingerprint-based similarity as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of interaction fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties. The fingeRNAt software is freely available at https://github.com/n-szulc/fingeRNAt.
Collapse
|
10
|
Corona-Motolinia ND, Martínez-Valencia B, Noriega L, Sánchez-Gaytán BL, Melendez FJ, García-García A, Choquesillo-Lazarte D, Rodríguez-Diéguez A, Castro ME, González-Vergara E. Tris(2-Pyridylmethylamine)V(O)2 Complexes as Counter Ions of Diprotonated Decavanadate Anion: Potential Antineoplastic Activity. Front Chem 2022; 10:830511. [PMID: 35252118 PMCID: PMC8888438 DOI: 10.3389/fchem.2022.830511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6–31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds’ main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate’s anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.
Collapse
Affiliation(s)
- Nidia D. Corona-Motolinia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Beatriz Martínez-Valencia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lisset Noriega
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Francisco J. Melendez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Amalia García-García
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| |
Collapse
|
11
|
Li H, Huang CY, Govorunova EG, Sineshchekov OA, Yi A, Rothschild KJ, Wang M, Zheng L, Spudich JL. The crystal structure of bromide-bound GtACR1 reveals a pre-activated state in the transmembrane anion tunnel. eLife 2021; 10:65903. [PMID: 33998458 PMCID: PMC8172240 DOI: 10.7554/elife.65903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/16/2021] [Indexed: 12/16/2022] Open
Abstract
The crystal structure of the light-gated anion channel GtACR1 reported in our previous Research Article (Li et al., 2019) revealed a continuous tunnel traversing the protein from extracellular to intracellular pores. We proposed the tunnel as the conductance channel closed by three constrictions: C1 in the extracellular half, mid-membrane C2 containing the photoactive site, and C3 on the cytoplasmic side. Reported here, the crystal structure of bromide-bound GtACR1 reveals structural changes that relax the C1 and C3 constrictions, including a novel salt-bridge switch mechanism involving C1 and the photoactive site. These findings indicate that substrate binding induces a transition from an inactivated state to a pre-activated state in the dark that facilitates channel opening by reducing free energy in the tunnel constrictions. The results provide direct evidence that the tunnel is the closed form of the channel of GtACR1 and shed light on the light-gated channel activation mechanism.
Collapse
Affiliation(s)
- Hai Li
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Elena G Govorunova
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Oleg A Sineshchekov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Adrian Yi
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, United States
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, United States
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| |
Collapse
|
12
|
Wickhorst PJ, Ihmels H. Berberrubine Phosphate: A Selective Fluorescent Probe for Quadruplex DNA. Molecules 2021; 26:2566. [PMID: 33924894 PMCID: PMC8124163 DOI: 10.3390/molecules26092566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
A phosphate-substituted, zwitterionic berberine derivative was synthesized and its binding properties with duplex DNA and G4-DNA were studied using photometric, fluorimetric and polarimetric titrations and thermal DNA denaturation experiments. The ligand binds with high affinity toward both DNA forms (Kb = 2-7 × 105 M-1) and induces a slight stabilization of G4-DNA toward thermally induced unfolding, mostly pronounced for the telomeric quadruplex 22AG. The ligand likely binds by aggregation and intercalation with ct DNA and by terminal stacking with G4-DNA. Thus, this compound represents one of the rare examples of phosphate-substituted DNA binders. In an aqueous solution, the title compound has a very weak fluorescence intensity (Φfl < 0.01) that increases significantly upon binding to G4-DNA (Φfl = 0.01). In contrast, the association with duplex DNA was not accompanied by such a strong fluorescence light-up effect (Φfl < 0.01). These different fluorimetric responses upon binding to particular DNA forms are proposed to be caused by the different binding modes and may be used for the selective fluorimetric detection of G4-DNA.
Collapse
Affiliation(s)
| | - Heiko Ihmels
- Department of Chemistry-Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering (Cµ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany;
| |
Collapse
|
13
|
Piccirilli F, Tardani F, D’Arco A, Birarda G, Vaccari L, Sennato S, Casciardi S, Lupi S. Infrared Nanospectroscopy Reveals DNA Structural Modifications upon Immobilization onto Clay Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1103. [PMID: 33923331 PMCID: PMC8147086 DOI: 10.3390/nano11051103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022]
Abstract
The growing demand for innovative means in biomedical, therapeutic and diagnostic sciences has led to the development of nanomedicine. In this context, naturally occurring tubular nanostructures composed of rolled sheets of alumino-silicates, known as halloysite nanotubes, have found wide application. Halloysite nanotubes indeed have surface properties that favor the selective loading of biomolecules. Here, we present the first, to our knowledge, structural study of DNA-decorated halloysite nanotubes, carried out with nanometric spatially-resolved infrared spectroscopy. Single nanotube absorption measurements indicate a partial covering of halloysite by DNA molecules, which show significant structural modifications taking place upon loading. The present study highlights the constraints for the use of nanostructured clays as DNA carriers and demonstrates the power of super-resolved infrared spectroscopy as an effective and versatile tool for the evaluation of immobilization processes in the context of drug delivery and gene transfer.
Collapse
Affiliation(s)
| | - Franco Tardani
- Istituto dei Sistemi Complessi (ISC)-CNR, UOS Roma Sapienza, 00185 Roma, Italy; (F.T.); (S.S.)
| | - Annalisa D’Arco
- Dipartimento di Fisica, “La Sapienza” Universitá di Roma, 00185 Roma, Italy;
- National Institute of Nuclear Physics Section Rome, P.le A. Moro 2, 00185 Roma, Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Simona Sennato
- Istituto dei Sistemi Complessi (ISC)-CNR, UOS Roma Sapienza, 00185 Roma, Italy; (F.T.); (S.S.)
- Dipartimento di Fisica, “La Sapienza” Universitá di Roma, 00185 Roma, Italy;
| | - Stefano Casciardi
- Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Istituto Nazionale per l’Assicurazione Contro gli Infortuni sul Lavoro, 00100 Roma, Italy;
| | - Stefano Lupi
- Istituto Officina dei Materiali CNR, 34149 Trieste, Italy;
- Dipartimento di Fisica, “La Sapienza” Universitá di Roma, 00185 Roma, Italy;
| |
Collapse
|
14
|
Wasonga MO, Maingi J, Omwoyo O. Effects of Contamination of Freshwater Habitat With Common Heavy Metals and Anions on the Prevalence of Human Adenoviruses and Enteroviruses. Front Public Health 2021; 8:603217. [PMID: 33553093 PMCID: PMC7855706 DOI: 10.3389/fpubh.2020.603217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022] Open
Abstract
The occurrence and survival of enteric viruses in open surface waters can be impacted by a host of factors including fecal emission levels, seasonal variations, virus stability and the physicochemical parameters. In this research, we aimed to document the association between contaminations of water samples with human enteric viruses (adenoviruses and enteroviruses) from a freshwater lake with variations in chemical contaminants. We collected 216 water samples from October 2010 to April 2012, from a 4 km stretch along Lake Victoria (LV) basin in Homa Bay town located in the western region of Kenya. The samples were analyzed for the existence of human adenoviruses (HAdV) and human enteroviruses (HEV), using the nested PCR (nPCR). We also assessed in the water samples the levels of twelve chemical contaminants consisting of six heavy metal elements and six anions. About 8.3 % of the samples were found to be contaminated with the enteric viruses. The concentrations of the 12 chemical contaminants were found to be largely within the WHO suggested limits. Most of the chemical contaminants were not related to the detection rates of the viruses from the statistical analysis. However, some positive and negative associations between the viral genome's detection and the chemical concentrations were established for only three metals (Fe, Pb, Cd) and the PO43− Radical. Cd had a weak positive significant relationship with HAdV (rho = 0.146, p = 0.032) while Pb and Fe had a weak positive significant relationship with HEV genome detection (rho = 0.156, p = 0.022) and (rho = 0.148 and p = 0.029) respectively. There was a modest negative relationship between phosphate ions and HEV (rho = −0.174, p = 0.010). The results of our study do not provide support for the hypothesis of an association between the presence of human enteric viruses and the levels of twelve chemical contaminants.
Collapse
Affiliation(s)
- Michael Opere Wasonga
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - John Maingi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Ombori Omwoyo
- Department of Plant Sciences, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
15
|
Auffinger P, Ennifar E, D'Ascenzo L. Deflating the RNA Mg 2+ bubble. Stereochemistry to the rescue! RNA (NEW YORK, N.Y.) 2020; 27:rna.076067.120. [PMID: 33268500 PMCID: PMC7901845 DOI: 10.1261/rna.076067.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/20/2020] [Indexed: 05/03/2023]
Abstract
Proper evaluation of the ionic structure of biomolecular systems through X ray and cryo-EM techniques remains challenging but is essential for advancing our understanding of the underlying structure/activity/solvent relationships. However, numerous studies overestimate the number of Mg2+ in deposited structures due to assignment errors finding their origin in improper consideration of stereochemical rules. Herein, to tackle such issues, we re-evaluate the PDBid 6QNR and 6SJ6 models of the ribosome ionic structure. We establish that stereochemical principles need to be carefully pondered when evaluating ion binding features, even when K+ anomalous signals are available as it is the case for the 6QNR PDB entry. For ribosomes, assignment errors can result in misleading conceptions of their solvent structure. For instance, present stereochemical analysis result in a significant decrease of the number of assigned Mg2+ in 6QNR, suggesting that K+ and not Mg2+ is the prevalent ion in the ribosome 1st solvation shell. We stress that the use of proper stereochemical guidelines in combination or not with other identification techniques, such as those pertaining to the detection of transition metals, of some anions and of K+ anomalous signals, is critical for deflating the current Mg2+ bubble witnessed in many ribosome and other RNA structures. We also stress that for the identification of lighter ions such as Mg2+, Na+, …, for which no anomalous signals can be detected, stereochemistry coupled with high resolution structures (<2.4 Å) remain the best currently available option.
Collapse
|
16
|
Extraction of Small RNAs by Titanium Dioxide Nanofibers. Methods Mol Biol 2020. [PMID: 32797454 DOI: 10.1007/978-1-0716-0743-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
MicroRNAs (miRNAs) are small RNAs, that bind to mRNA targets and regulate their translation. Functional study of miRNAs and exploration of their utility as disease markers require miRNA extraction from biological samples, which contain large amounts of interfering compounds for downstream RNA identification and quantification. The most common extraction methods employ either silica columns or TRIzol reagent, but these approaches afford low recovery for small RNAs, possibly due to their short strand lengths. Here, we describe the fabrication of titanium dioxide nanofibers and the optimal extraction conditions to improve miRNA recovery from biological buffers, cell lysate, and serum.
Collapse
|
17
|
Magriñá I, Jauset-Rubio M, Ortiz M, Tomaso H, Simonova A, Hocek M, O’Sullivan CK. Duplex Electrochemical DNA Sensor to Detect Bacillus anthracis CAP and PAG DNA Targets Based on the Incorporation of Tailed Primers and Ferrocene-Labeled dATP. ACS OMEGA 2019; 4:21900-21908. [PMID: 31891068 PMCID: PMC6933787 DOI: 10.1021/acsomega.9b02890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 05/08/2023]
Abstract
We report the duplex amplification of two plasmid DNA markers involved in the virulence of Bacillus anthracis, CAP and PAG, and the direct electrochemical detection of these amplicons. The method consists of the simultaneous amplification of the two targets in a single-pot reaction via polymerase chain reaction (PCR) using tailed primers and ferrocene-labeled dATP. Following amplification, the PCR products hybridize to probes immobilized on electrodes in a microfabricated electrode array chip. The incorporated ferrocene labeled dATP is then detected using square wave voltammetry. We evaluated the effect of electrolyte cations, anions, and concentration to condense, bend, and shrink double-stranded DNA and their effect on the intensity of the ferrocene signal. We obtained detection limits of 0.8 and 3.4 fM for CAP and PAG targets, respectively. We successfully developed a method to detect the presence of both targets in genomic DNA extracted from real samples.
Collapse
Affiliation(s)
- Ivan Magriñá
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Mayreli Ortiz
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Anna Simonova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Ciara K. O’Sullivan
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
- Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
18
|
Leonarski F, D'Ascenzo L, Auffinger P. Nucleobase carbonyl groups are poor Mg 2+ inner-sphere binders but excellent monovalent ion binders-a critical PDB survey. RNA (NEW YORK, N.Y.) 2019; 25:173-192. [PMID: 30409785 PMCID: PMC6348993 DOI: 10.1261/rna.068437.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/16/2018] [Indexed: 05/04/2023]
Abstract
Precise knowledge of Mg2+ inner-sphere binding site properties is vital for understanding the structure and function of nucleic acid systems. Unfortunately, the PDB, which represents the main source of Mg2+ binding sites, contains a substantial number of assignment issues that blur our understanding of the functions of these ions. Here, following a previous study devoted to Mg2+ binding to nucleobase nitrogens, we surveyed nucleic acid X-ray structures from the PDB with resolutions ≤2.9 Å to classify the Mg2+ inner-sphere binding patterns to nucleotide carbonyl, ribose hydroxyl, cyclic ether, and phosphodiester oxygen atoms. From this classification, we derived a set of "prior-knowledge" nucleobase Mg2+ binding sites. We report that crystallographic examples of trustworthy nucleobase Mg2+ binding sites are fewer than expected since many of those are associated with misidentified Na+ or K+ We also emphasize that binding of Na+ and K+ to nucleic acids is much more frequent than anticipated. Overall, we provide evidence derived from X-ray structures that nucleobases are poor inner-sphere binders for Mg2+ but good binders for monovalent ions. Based on strict stereochemical criteria, we propose an extended set of guidelines designed to help in the assignment and validation of ions directly contacting nucleobase and ribose atoms. These guidelines should help in the interpretation of X-ray and cryo-EM solvent density maps. When borderline Mg2+ stereochemistry is observed, alternative placement of Na+, K+, or Ca2+ must be considered. We also critically examine the use of lanthanides (Yb3+, Tb3+) as Mg2+ substitutes in crystallography experiments.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
| |
Collapse
|
19
|
Vicens Q, Mondragón E, Reyes FE, Coish P, Aristoff P, Berman J, Kaur H, Kells KW, Wickens P, Wilson J, Gadwood RC, Schostarez HJ, Suto RK, Blount KF, Batey RT. Structure-Activity Relationship of Flavin Analogues That Target the Flavin Mononucleotide Riboswitch. ACS Chem Biol 2018; 13:2908-2919. [PMID: 30107111 DOI: 10.1021/acschembio.8b00533] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The flavin mononucleotide (FMN) riboswitch is an emerging target for the development of novel RNA-targeting antibiotics. We previously discovered an FMN derivative, 5FDQD, that protects mice against diarrhea-causing Clostridium difficile bacteria. Here, we present the structure-based drug design strategy that led to the discovery of this fluoro-phenyl derivative with antibacterial properties. This approach involved the following stages: (1) structural analysis of all available free and bound FMN riboswitch structures; (2) design, synthesis, and purification of derivatives; (3) in vitro testing for productive binding using two chemical probing methods; (4) in vitro transcription termination assays; and (5) resolution of the crystal structures of the FMN riboswitch in complex with the most mature candidates. In the process, we delineated principles for productive binding to this riboswitch, thereby demonstrating the effectiveness of a coordinated structure-guided approach to designing drugs against RNA.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Estefanía Mondragón
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Francis E. Reyes
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Philip Coish
- BioRelix Inc., 124 Washington Street, Foxborough, Massachusetts 02035, United States
| | - Paul Aristoff
- Aristoff Consulting LLC, 3726 Green Spring Drive, Fort Collins, Colorado 80528, United States
| | - Judd Berman
- Dalton Pharma Services, 349 Wildcat Road, Toronto, ON M3J 2S3, Canada
| | - Harpreet Kaur
- Dalton Pharma Services, 349 Wildcat Road, Toronto, ON M3J 2S3, Canada
| | - Kevin W. Kells
- Dalton Pharma Services, 349 Wildcat Road, Toronto, ON M3J 2S3, Canada
| | - Phil Wickens
- Dalton Pharma Services, 349 Wildcat Road, Toronto, ON M3J 2S3, Canada
| | - Jeffery Wilson
- Dalton Pharma Services, 349 Wildcat Road, Toronto, ON M3J 2S3, Canada
| | - Robert C. Gadwood
- Kalexsyn, Inc., 4502 Campus Drive, Kalamazoo, Michigan 49008, United States
| | | | - Robert K. Suto
- Xtal BioStructures, Inc., 12 Michigan Drive, Natick, Massachusetts 01760, United States
| | - Kenneth F. Blount
- BioRelix Inc., 124 Washington Street, Foxborough, Massachusetts 02035, United States
| | - Robert T. Batey
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
20
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
21
|
Weinhold F. Theoretical Prediction of Robust Second-Row Oxyanion Clusters in the Metastable Domain of Antielectrostatic Hydrogen Bonding. Inorg Chem 2018; 57:2035-2044. [PMID: 29381336 DOI: 10.1021/acs.inorgchem.7b02943] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We provide ab initio and density functional theory evidence for a family of surprisingly robust like-charged clusters of common HSO4- and H2PO4- oxyanions, ranging up to tetramers of net charge 4-. Our results support other recent theoretical and experimental evidence for "antielectrostatic" hydrogen-bonded (AEHB) species that challenge conventional electrostatic conceptions and force-field modeling of closed-shell ion interactions. We provide structural and energetic descriptors of the predicted kinetic well-depths (in the range 3-10 kcal/mol) and barrier widths (in the range 2-4 Å) for simple AEHB dimers, including evidence of extremely strong hydrogen bonding in the fluoride-bisulfate dianion. For more complex polyanionic species, we employ natural-bond-orbital-based descriptors to characterize the electronic features of the cooperative hydrogen-bonding network that are able to successfully defy Coulomb explosion. The computational results suggest a variety of kinetically stable AEHB species that may be suitable for experimental detection as long-lived gas-phase species or structural units of condensed phases, despite the imposing electrostatic barriers that oppose their formation under ambient conditions.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Jimenez LA, Gionet-Gonzales MA, Sedano S, Carballo JG, Mendez Y, Zhong W. Extraction of microRNAs from biological matrices with titanium dioxide nanofibers. Anal Bioanal Chem 2017; 410:1053-1060. [PMID: 29030663 DOI: 10.1007/s00216-017-0649-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small RNAs that bind to mRNA targets and regulate their translation. A functional study of miRNAs and exploration of their utility as disease markers require miRNA extraction from biological samples, which contain large amounts of interfering compounds for downstream RNA identification and quantification. The most common extraction methods employ silica columns or the TRIzol reagent but give out low recovery for small RNAs probably due to their short strand lengths. Herein, we fabricated the titanium dioxide nanofibers using electrospinning to facilitate miRNA extraction and developed the optimal buffer conditions to improve miRNA recovery from biological matrices of cell lysate and serum. We found that our TiO2 fibers could obtain a recovery of 18.0 ± 3.6% for miRNA fibers while carrying out the extraction in the more complex medium of cell lysate, much higher than the 0.02 ± 0.0001% recovery from the commercial kit. The much improved extraction of miRNAs from our fibers could be originated from the strong coordination between TiO2 and RNA's phosphate backbone. In addition, the binding, washing, and elution buffers judiciously developed in the present study can achieve selective extraction of small RNA shorter than 500 nucleotides in length. Our results demonstrate that TiO2 nanofibers can work as a valuable tool for extraction of miRNAs from biological samples with high recovery. Graphical abstract Schematic for extraction of small RNAs using TiO2 nanofibers.
Collapse
Affiliation(s)
- Luis A Jimenez
- Program in Biomedical Sciences, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | | | - Sabrina Sedano
- Department of Chemistry, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Jocelyn G Carballo
- Department of Chemistry, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Yomara Mendez
- Department of Chemistry, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
23
|
Wilson KA, Wetmore SD. Combining crystallographic and quantum chemical data to understand DNA-protein π-interactions in nature. Struct Chem 2017. [DOI: 10.1007/s11224-017-0954-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Leonarski F, D'Ascenzo L, Auffinger P. Mg2+ ions: do they bind to nucleobase nitrogens? Nucleic Acids Res 2017; 45:987-1004. [PMID: 27923930 PMCID: PMC5314772 DOI: 10.1093/nar/gkw1175] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/28/2023] Open
Abstract
Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments.
Collapse
Affiliation(s)
- Filip Leonarski
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Luigi D'Ascenzo
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| | - Pascal Auffinger
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| |
Collapse
|
25
|
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast activated spliceosome at 3.5 Å resolution. Science 2016; 353:904-11. [PMID: 27445306 DOI: 10.1126/science.aag0291] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
Pre-messenger RNA (pre-mRNA) splicing is carried out by the spliceosome, which undergoes an intricate assembly and activation process. Here, we report an atomic structure of an activated spliceosome (known as the B(act) complex) from Saccharomyces cerevisiae, determined by cryo-electron microscopy at an average resolution of 3.52 angstroms. The final refined model contains U2 and U5 small nuclear ribonucleoprotein particles (snRNPs), U6 small nuclear RNA (snRNA), nineteen complex (NTC), NTC-related (NTR) protein, and a 71-nucleotide pre-mRNA molecule, which amount to 13,505 amino acids from 38 proteins and a combined molecular mass of about 1.6 megadaltons. The 5' exon is anchored by loop I of U5 snRNA, whereas the 5' splice site (5'SS) and the branch-point sequence (BPS) of the intron are specifically recognized by U6 and U2 snRNA, respectively. Except for coordination of the catalytic metal ions, the RNA elements at the catalytic cavity of Prp8 are mostly primed for catalysis. The catalytic latency is maintained by the SF3b complex, which encircles the BPS, and the splicing factors Cwc24 and Prp11, which shield the 5' exon-5'SS junction. This structure, together with those determined earlier, outlines a molecular framework for the pre-mRNA splicing reaction.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Wan R, Yan C, Bai R, Huang G, Shi Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 2016; 353:895-904. [PMID: 27445308 DOI: 10.1126/science.aag2235] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022]
Abstract
Each cycle of pre-messenger RNA splicing, carried out by the spliceosome, comprises two sequential transesterification reactions, which result in the removal of an intron and the joining of two exons. Here we report an atomic structure of a catalytic step I spliceosome (known as the C complex) from Saccharomyces cerevisiae, as determined by cryo-electron microscopy at an average resolution of 3.4 angstroms. In the structure, the 2'-OH of the invariant adenine nucleotide in the branch point sequence (BPS) is covalently joined to the phosphate at the 5' end of the 5' splice site (5'SS), forming an intron lariat. The freed 5' exon remains anchored to loop I of U5 small nuclear RNA (snRNA), and the 5'SS and BPS of the intron form duplexes with conserved U6 and U2 snRNA sequences, respectively. Specific placement of these RNA elements at the catalytic cavity of Prp8 is stabilized by 15 protein components, including Snu114 and the splicing factors Cwc21, Cwc22, Cwc25, and Yju2. These features, representing the conformation of the spliceosome after the first-step reaction, predict structural changes that are needed for the execution of the second-step transesterification reaction.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Affiliation(s)
- Raúl Fuentes-Azcatl
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia C. Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Abstract
Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments.
Collapse
Affiliation(s)
- Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR 9002 CNRS/Université de Strasbourg, 15, rue René Descartes, Strasbourg Cedex, 67084, France
| | | |
Collapse
|
29
|
Abstract
In recent years a wide variety of RNA molecules regulating fundamental cellular processes has been discovered. Therefore, RNA structure determination is experiencing a boost and many more RNA structures are likely to be determined in the years to come. The broader availability of experimentally determined RNA structures implies that molecular replacement (MR) will be used more and more frequently as a method for phasing future crystallographic structures. In this report we describe various aspects relative to RNA structure determination by MR. First, we describe how to select and create MR search models for nucleic acids. Second, we describe how to perform MR searches on RNA using available crystallographic software. Finally, we describe how to refine and interpret the successful MR solutions. These protocols are applicable to determine novel RNA structures as well as to establish structural-functional relationships on existing RNA structures.
Collapse
|
30
|
Abstract
Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| |
Collapse
|
31
|
Auffinger P, Cheatham TE, Vaiana AC. Spontaneous Formation of KCl Aggregates in Biomolecular Simulations: A Force Field Issue? J Chem Theory Comput 2015; 3:1851-9. [PMID: 26627627 DOI: 10.1021/ct700143s] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Realistic all-atom simulation of biological systems requires accurate modeling of both the biomolecules and their ionic environment. Recently, ion nucleation phenomena leading to the rapid growth of KCl or NaCl clusters in the vicinity of biomolecular systems have been reported. To better understand this phenomenon, molecular dynamics simulations of KCl aqueous solutions at three (1.0, 0.25, and 0.10 M) concentrations were performed. Two popular water models (TIP3P and SPC/E) and two Lennard-Jones parameter sets (AMBER and Dang) were combined to produce a total of 80 ns of molecular dynamics trajectories. Results suggest that the use of the Dang cation Lennard-Jones parameters instead of those adopted by the AMBER force-field produces a more accurate description of the ionic solution. In the later case, formation of salt aggregates is probably indicative of an artifact resulting from misbalanced force-field parameters. Because similar results were obtained with two different water parameter sets, the simulations exclude a water model dependency in the formation of anomalous ionic clusters. Overall, the results strongly suggest that for accurate modeling of ions in biomolecular systems, great care should be taken in choosing balanced ionic parameters even when using the most popular force-fields. These results invite a reexamination of older data obtained using available force-fields and a thorough check of the quality of current parameters sets by performing simulations at finite (>0.25 M) instead of minimal salt conditions.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France, and Department of Medical Chemistry, Pharmaceutical Chemistry and Pharmaceutics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| | - Thomas E Cheatham
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France, and Department of Medical Chemistry, Pharmaceutical Chemistry and Pharmaceutics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| | - Andrea C Vaiana
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France, and Department of Medical Chemistry, Pharmaceutical Chemistry and Pharmaceutics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
32
|
Wilson KA, Wells RA, Abendong MN, Anderson CB, Kung RW, Wetmore SD. Landscape of π-π and sugar-π contacts in DNA-protein interactions. J Biomol Struct Dyn 2015; 34:184-200. [PMID: 25723403 DOI: 10.1080/07391102.2015.1013157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There were 1765 contacts identified between DNA nucleobases or deoxyribose and cyclic (W, H, F, Y) or acyclic (R, E, D) amino acids in 672 X-ray structures of DNA-protein complexes. In this first study to compare π-interactions between the cyclic and acyclic amino acids, visual inspection was used to categorize amino acid interactions as nucleobase π-π (according to biological edge) or deoxyribose sugar-π (according to sugar edge). Overall, 54% of contacts are nucleobase π-π interactions, which involve all amino acids, but are more common for Y, F, and R, and involve all DNA nucleobases with similar frequencies. Among binding arrangements, cyclic amino acids prefer more planar (stacked) π-systems than the acyclic counterparts. Although sugar-π interactions were only previously identified with the cyclic amino acids and were found to be less common (38%) than nucleobase-cyclic amino acid contacts, sugar-π interactions are more common than nucleobase π-π contacts for the acyclic series (61% of contacts). Similar to DNA-protein π-π interactions, sugar-π contacts most frequently involve Y and R, although all amino acids adopt many binding orientations relative to deoxyribose. These DNA-protein π-interactions stabilize biological systems, by up to approximately -40 kJ mol(-1) for neutral nucleobase or sugar-amino acid interactions, but up to approximately -95 kJ mol(-1) for positively or negatively charged contacts. The high frequency and strength, despite variation in structure and composition, of these π-interactions point to an important function in biological systems.
Collapse
Affiliation(s)
- Katie A Wilson
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Rachael A Wells
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Minette N Abendong
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Colin B Anderson
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Ryan W Kung
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Stacey D Wetmore
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| |
Collapse
|
33
|
Panteva MT, Dissanayake T, Chen H, Radak BK, Kuechler ER, Giambaşu GM, Lee TS, York DM. Multiscale methods for computational RNA enzymology. Methods Enzymol 2015; 553:335-74. [PMID: 25726472 PMCID: PMC4739856 DOI: 10.1016/bs.mie.2014.10.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA catalysis is of fundamental importance to biology and yet remains ill-understood due to its complex nature. The multidimensional "problem space" of RNA catalysis includes both local and global conformational rearrangements, changes in the ion atmosphere around nucleic acids and metal ion binding, dependence on potentially correlated protonation states of key residues, and bond breaking/forming in the chemical steps of the reaction. The goal of this chapter is to summarize and apply multiscale modeling methods in an effort to target the different parts of the RNA catalysis problem space while also addressing the limitations and pitfalls of these methods. Classical molecular dynamics simulations, reference interaction site model calculations, constant pH molecular dynamics (CpHMD) simulations, Hamiltonian replica exchange molecular dynamics, and quantum mechanical/molecular mechanical simulations will be discussed in the context of the study of RNA backbone cleavage transesterification. This reaction is catalyzed by both RNA and protein enzymes, and here we examine the different mechanistic strategies taken by the hepatitis delta virus ribozyme and RNase A.
Collapse
Affiliation(s)
- Maria T Panteva
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Thakshila Dissanayake
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Haoyuan Chen
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Brian K Radak
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Erich R Kuechler
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - George M Giambaşu
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Darrin M York
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
34
|
Ghosh MK, Choi TH, Choi CH. Like-charge ion pairs of hydronium and hydroxide in aqueous solution? Phys Chem Chem Phys 2015; 17:16233-7. [DOI: 10.1039/c5cp02182k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxide can form stronger like-ion pairs than hydronium in aqueous solution mostly due to its versatile coordination ability with solvents.
Collapse
Affiliation(s)
- Manik Kumer Ghosh
- Department of Chemistry and Green-Nano Materials Research Center
- College of Natural Sciences
- Kyungpook National University
- Daegu 702-701
- South Korea
| | - Tae Hoon Choi
- Department of Chemical Engineering Education
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
| | - Cheol Ho Choi
- Department of Chemistry and Green-Nano Materials Research Center
- College of Natural Sciences
- Kyungpook National University
- Daegu 702-701
- South Korea
| |
Collapse
|
35
|
Wilson KA, Wetmore SD. A Survey of DNA–Protein π–Interactions: A Comparison of Natural Occurrences and Structures, and Computationally Predicted Structures and Strengths. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2015. [DOI: 10.1007/978-3-319-14163-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Pan F, Roland C, Sagui C. Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study. Nucleic Acids Res 2014; 42:13981-96. [PMID: 25428372 PMCID: PMC4267617 DOI: 10.1093/nar/gku1107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/30/2022] Open
Abstract
The ion atmosphere around nucleic acids is an integral part of their solvated structure. However, detailed aspects of the ionic distribution are difficult to probe experimentally, and comparative studies for different structures of the same sequence are almost non-existent. Here, we have used large-scale molecular dynamics simulations to perform a comparative study of the ion distribution around (5'-CGCGCGCGCGCG-3')2 dodecamers in solution in B-DNA, A-RNA, Z-DNA and Z-RNA forms. The CG sequence is very sensitive to ionic strength and it allows the comparison with the rare but important left-handed forms. The ions investigated include Na(+), K(+) and Mg(2 +), with various concentrations of their chloride salts. Our results quantitatively describe the characteristics of the ionic distributions for different structures at varying ionic strengths, tracing these differences to nucleic acid structure and ion type. Several binding pockets with rather long ion residence times are described, both for the monovalent ions and for the hexahydrated Mg[(H2O)6](2+) ion. The conformations of these binding pockets include direct binding through desolvated ion bridges in the GpC steps in B-DNA and A-RNA; direct binding to backbone oxygens; binding of Mg[(H2O)6](2+) to distant phosphates, resulting in acute bending of A-RNA; tight 'ion traps' in Z-RNA between C-O2 and the C-O2' atoms in GpC steps; and others.
Collapse
Affiliation(s)
- Feng Pan
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
37
|
Warner KD, Chen MC, Song W, Strack RL, Thorn A, Jaffrey SR, Ferré-D’Amaré AR. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat Struct Mol Biol 2014; 21:658-63. [PMID: 25026079 PMCID: PMC4143336 DOI: 10.1038/nsmb.2865] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/07/2014] [Indexed: 12/22/2022]
Abstract
GFP and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro-evolved RNA mimic of GFP, which as genetically encoded fusions makes possible live-cell, real-time imaging of biological RNAs without resorting to large RNA-binding protein-GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we solved the cocrystal structure of Spinach bound to its cognate exogenous chromophore, showing that Spinach activates the small molecule by immobilizing it between a base triple, a G-quadruplex and an unpaired G. Mutational and NMR analyses indicate that the G-quadruplex is essential for Spinach fluorescence, is also present in other fluorogenic RNAs and may represent a general strategy for RNAs to induce fluorescence of chromophores. The structure guided the design of a miniaturized 'Baby Spinach', and it provides a foundation for structure-driven design and tuning of fluorescent RNAs.
Collapse
Affiliation(s)
| | - Michael C. Chen
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Wenjiao Song
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY
| | - Rita L. Strack
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY
| | - Andrea Thorn
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY
| | | |
Collapse
|
38
|
Warner KD, Homan P, Weeks KM, Smith AG, Abell C, Ferré-D'Amaré AR. Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically. ACTA ACUST UNITED AC 2014; 21:591-5. [PMID: 24768306 DOI: 10.1016/j.chembiol.2014.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/26/2022]
Abstract
Thiamine pyrophosphate (TPP) riboswitches regulate essential genes in bacteria by changing conformation upon binding intracellular TPP. Previous studies using fragment-based approaches identified small molecule "fragments" that bind this gene-regulatory mRNA domain. Crystallographic studies now show that, despite having micromolar Kds, four different fragments bind the TPP riboswitch site-specifically, occupying the pocket that recognizes the aminopyrimidine of TPP. Unexpectedly, the unoccupied site that would recognize the pyrophosphate of TPP rearranges into a structure distinct from that of the cognate complex. This idiosyncratic fragment-induced conformation, also characterized by small-angle X-ray scattering and chemical probing, represents a possible mechanism for adventitious ligand discrimination by the riboswitch, and suggests that off-pathway conformations of RNAs can be targeted for drug development. Our structures, together with previous screening studies, demonstrate the feasibility of fragment-based drug discovery against RNA targets.
Collapse
Affiliation(s)
- Katherine Deigan Warner
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Philip Homan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Adrian R Ferré-D'Amaré
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
39
|
Marcia M, Pyle AM. Principles of ion recognition in RNA: insights from the group II intron structures. RNA (NEW YORK, N.Y.) 2014; 20:516-27. [PMID: 24570483 PMCID: PMC3964913 DOI: 10.1261/rna.043414.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/29/2014] [Indexed: 05/20/2023]
Abstract
Metal ions promote both RNA folding and catalysis, thus being essential in stabilizing the structure and determining the function of large RNA molecules, including group II introns. The latter are self-splicing metalloribozymes, containing a heteronuclear four-metal-ion center within the active site. In addition to these catalytic ions, group II introns bind many other structural ions, including delocalized ions that bind the RNA diffusively and well-ordered ions that bind the RNA tightly with high occupancy. The latter ions, which can be studied by biophysical methods, have not yet been analyzed systematically. Here, we compare crystal structures of the group IIC intron from Oceanobacillus iheyensis and classify numerous site-bound ions, which are primarily localized in the intron core and near long-range tertiary contacts. Certain ion-binding sites resemble motifs observed in known RNA structures, while others are idiosyncratic to the group II intron. Particularly interesting are (1) ions proximal to the active site, which may participate in splicing together with the catalytic four-metal-ion center, (2) organic ions that bind regions predicted to interact with intron-encoded proteins, and (3) unusual monovalent ions bound to GU wobble pairs, GA mismatches, the S-turn, the tetraloop-receptor, and the T-loop. Our analysis extends the general principles by which ions participate in RNA structural organization and it will aid in the determination and interpretation of future RNA structures.
Collapse
Affiliation(s)
- Marco Marcia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Corresponding authorE-mail
| |
Collapse
|
40
|
Galindo‐Murillo R, Bergonzo C, Cheatham TE. Molecular Modeling of Nucleic Acid Structure: Setup and Analysis. ACTA ACUST UNITED AC 2014; 56:7.10.1-21. [DOI: 10.1002/0471142700.nc0710s56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Christina Bergonzo
- Department of Medicinal Chemistry, University of Utah Salt Lake City Utah
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, University of Utah Salt Lake City Utah
| |
Collapse
|
41
|
Peselis A, Serganov A. Themes and variations in riboswitch structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:908-918. [PMID: 24583553 DOI: 10.1016/j.bbagrm.2014.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 11/19/2022]
Abstract
The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
42
|
Stasyuk OA, Szatylowicz H, Krygowski TM. Tautomerisation of thymine acts against the Hückel 4N + 2 rule. The effect of metal ions and H-bond complexations on the electronic structure of thymine. Org Biomol Chem 2014; 12:6476-83. [DOI: 10.1039/c4ob00964a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Not necessarily the π-electron delocalization is responsible for the stability of thymine tautomers.
Collapse
Affiliation(s)
- Olga A. Stasyuk
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw, Poland
| | - Halina Szatylowicz
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw, Poland
| | | |
Collapse
|
43
|
Wells RA, Kellie JL, Wetmore SD. Significant strength of charged DNA-protein π-π interactions: a preliminary study of cytosine. J Phys Chem B 2013; 117:10462-74. [PMID: 23991905 DOI: 10.1021/jp406829d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present work characterized the preferred gas-phase structure and optimum interaction energy of both parallel stacked and perpendicular T-shaped dimers between cytosine (C), as a representative nucleobase, and aspartic/glutamic acid (DE), aspartate/glutamate (DE(-)) or arginine (R(+)), using detailed M06-2X/6-31+G(d,p) potential energy surface scans as a function of the relative monomer orientation. Through comparison to previous literature on the π-π interactions between the DNA nucleobases and the aromatic amino acid residues, this work will allow for comparisons between DNA-protein interactions involving aromatic and acyclic R-side chains, as well as comparisons of the relative geometric dependence and magnitude of π-π (C:DE), πcation-π (C:R(+)), and πanion-π (C:DE(-)) interactions. Our results show that the preferred relative monomer orientation is highly dependent on the monomer composition and charge, and is dictated by electrostatic-driven interactions. More importantly, for the first time, we report that the π-π interactions between cytosine and (neutral) aspartic/glutamic acid are up to approximately -40 kJ mol(-1), while the πcation-π or πanion-π interactions between cytosine and arginine or aspartate/glutamate are up to approximately -90 and -99 kJ mol(-1), respectively. An extensive investigation of the effects of the computational methodology implemented, including comparisons to detailed CCSD(T)/CBS potential energy surfaces and interaction energies, supports the use of M06-2X, as well as ωB97X-D, to study DNA-protein π-π interactions of varying composition and charge. Most importantly, the CCSD(T)/CBS results verify the strong nature of these DNA-protein π-π interactions, as well as the unique nature of the πcation-π and πanion-π counterparts. Therefore, our results emphasize that a wide variety of different types of noncovalent interactions between both cyclic and acyclic π-containing components can significantly contribute to the stability of DNA-protein complexes and likely play a larger role in biology than currently accepted.
Collapse
Affiliation(s)
- Rachael A Wells
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | | | | |
Collapse
|
44
|
Choi CH, Re S, Rashid MHO, Li H, Feig M, Sugita Y. Solvent Electronic Polarization Effects on Na+–Na+ and Cl––Cl– Pair Associations in Aqueous Solution. J Phys Chem B 2013; 117:9273-9. [DOI: 10.1021/jp4049346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheol Ho Choi
- Department of Chemistry and
Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | - Suyong Re
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama
351-0198, Japan
| | - Mohammad H. O. Rashid
- Department of Chemistry and
Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | - Hui Li
- Department of
Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska
68588, United States
| | - Michael Feig
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama
351-0198, Japan
- Chemistry and Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- RIKEN Quantitative Biology Center, 7-1-26 minatojima-minamimachi, Chuo-ku,
Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama
351-0198, Japan
- RIKEN Quantitative Biology Center, 7-1-26 minatojima-minamimachi, Chuo-ku,
Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
45
|
Chatake T, Sunami T. Direct interactions between Z-DNA and alkaline earth cations, discovered in the presence of high concentrations of MgCl2 and CaCl2. J Inorg Biochem 2013; 124:15-25. [DOI: 10.1016/j.jinorgbio.2013.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/25/2022]
|
46
|
DNA self-assembly: from chirality to evolution. Int J Mol Sci 2013; 14:8252-70. [PMID: 23591841 PMCID: PMC3645741 DOI: 10.3390/ijms14048252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/03/2013] [Accepted: 03/21/2013] [Indexed: 01/12/2023] Open
Abstract
Transient or long-term DNA self-assembly participates in essential genetic functions. The present review focuses on tight DNA-DNA interactions that have recently been found to play important roles in both controlling DNA higher-order structures and their topology. Due to their chirality, double helices are tightly packed into stable right-handed crossovers. Simple packing rules that are imposed by DNA geometry and sequence dictate the overall architecture of higher order DNA structures. Close DNA-DNA interactions also provide the missing link between local interactions and DNA topology, thus explaining how type II DNA topoisomerases may sense locally the global topology. Finally this paper proposes that through its influence on DNA self-assembled structures, DNA chirality played a critical role during the early steps of evolution.
Collapse
|
47
|
Lee D, Lee J, Seok C. What stabilizes close arginine pairing in proteins? Phys Chem Chem Phys 2013; 15:5844-53. [PMID: 23486862 DOI: 10.1039/c3cp00160a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Close stacking of arginine residues are often observed in protein structures despite the highly repulsive nature of the close like-charged groups. Physical factors stabilizing the close guanidinium ions of arginine side-chains have been previously studied in water and in protein-like environments, and the hydration free energy has been emphasized to be an important factor. However, how close arginine pairs are stabilized in real proteins has not been fully understood yet. In this paper, we show that arginine pairs are more frequently found in the protein interior than expected from the frequency of unpaired arginines buried inside protein through a statistical analysis of the protein structure database. We then confirm that 4 selected arginine pairs buried in the protein are indeed positively charged rather than neutralized, by molecular dynamics simulations and pKa estimation with molecular mechanics-Poisson-Boltzmann calculations. Further energy decomposition analysis shows that the hydration free energy may not be strong enough to overcome the repulsive Coulomb interaction between the positively charged arginine residues buried inside the protein. Instead, a highly polar interaction network is identified around each buried arginine pair, and the electrostatic interactions within such network are strong enough to stabilize the repulsive interaction of the buried arginine pair for the 4 selected cases. The polar interaction network is highly conserved evolutionarily in some proteins, implicating their roles in protein stabilization or biochemical function.
Collapse
Affiliation(s)
- Dongseon Lee
- Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea
| | | | | |
Collapse
|
48
|
Carlomagno T, Amata I, Codutti L, Falb M, Fohrer J, Masiewicz P, Simon B. Structural principles of RNA catalysis in a 2'-5' lariat-forming ribozyme. J Am Chem Soc 2013; 135:4403-11. [PMID: 23472843 DOI: 10.1021/ja311868t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA-catalyzed lariat formation is present in both eukaryotes and prokaryotes. To date we lack structural insights into the catalytic mechanism of lariat-forming ribozymes. Here, we study an artificial 2'-5' AG1 lariat-forming ribozyme that shares the sequence specificity of lariat formation with the pre-mRNA splicing reaction. Using NMR, we solve the structure of the inactive state of the ribozyme in the absence of magnesium. The reaction center 5'-guanosine appears to be part of a helix with an exceptionally widened major groove, while the lariat-forming A48 is looped out at the apex of a pseudoknot. The model of the active state built by mutational analysis, molecular modeling, and small-angle X-ray scattering suggests that A48 is recognized by a conserved adenosine, juxtaposed to the 5'-guanosine in one base-pair step distance, while the G1-N7 coordinates a magnesium ion essential for the activation of the nucleophile. Our findings offer implications for lariat formation in RNA enzymes including the mechanism of the recognition of the branch-site adenosine.
Collapse
Affiliation(s)
- Teresa Carlomagno
- Structural and Computational Biology Unit, EMBL, Meyerhofstraße 1, D-69117 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Beššeová I, Banáš P, Kührová P, Košinová P, Otyepka M, Šponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J Phys Chem B 2012; 116:9899-916. [DOI: 10.1021/jp3014817] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavlína Košinová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
50
|
Collins KD. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys Chem 2012; 167:43-59. [DOI: 10.1016/j.bpc.2012.04.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/13/2023]
|