1
|
Dyson HJ. Vital for Viruses: Intrinsically Disordered Proteins. J Mol Biol 2023; 435:167860. [PMID: 37330280 PMCID: PMC10656058 DOI: 10.1016/j.jmb.2022.167860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/19/2023]
Abstract
Viruses infect all kingdoms of life; their genomes vary from DNA to RNA and in size from 2kB to 1 MB or more. Viruses frequently employ disordered proteins, that is, protein products of virus genes that do not themselves fold into independent three-dimensional structures, but rather, constitute a versatile molecular toolkit to accomplish a range of functions necessary for viral infection, assembly, and proliferation. Interestingly, disordered proteins have been discovered in almost all viruses so far studied, whether the viral genome consists of DNA or RNA, and whatever the configuration of the viral capsid or other outer covering. In this review, I present a wide-ranging set of stories illustrating the range of functions of IDPs in viruses. The field is rapidly expanding, and I have not tried to include everything. What is included is meant to be a survey of the variety of tasks that viruses accomplish using disordered proteins.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Vávra J, Sergunin A, Pompach P, Savchenko D, Hraníček J, Šloufová I, Shimizu T, Martínková M. Characterization of the interaction between the tumour suppressor p53 and heme and its role in the protein conformational dynamics studied by various spectroscopic techniques and hydrogen/deuterium exchange coupled with mass spectrometry. J Inorg Biochem 2023; 243:112180. [PMID: 36934467 DOI: 10.1016/j.jinorgbio.2023.112180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
The tumour suppressor p53 regulates the expression of a myriad of proteins that are important for numerous cellular processes, including apoptosis, cell cycle arrest, DNA repair, metabolism, and even autophagy and ferroptosis. Aside from DNA, p53 can interact with many types of partners including proteins and small organic molecules. The ability of p53 to interact with heme has been reported so far. In this study, we used various spectroscopic studies to conduct a thorough biophysical characterization of the interaction between p53 and heme concerning the oxidation, spin, coordination, and ligand state of heme iron. We found that the p53 oligomeric state and zinc biding ability are preserved upon the interaction with heme. Moreover, we described the effect of heme binding on the conformational dynamics of p53 by hydrogen/deuterium exchange coupled with mass spectrometry. Specifically, the conformational flexibility of p53 is significantly increased upon interaction with heme, while its affinity to a specific DNA sequence is reduced by heme. The inhibitory effect of DNA binding by heme is partially reversible. We discuss the potential heme binding sites in p53 with respect to the observed conformational dynamics changes and perturbed DNA-binding ability of p53 upon interaction with heme.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic; National Radiation Protection Institute, Prague 4, 140 00, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Dariya Savchenko
- Institute of Physics of the Czech Academy of Sciences, Prague 8, 182 21, Czech Republic
| | - Jakub Hraníček
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Ivana Šloufová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic.
| |
Collapse
|
3
|
Unraveling the Structural Changes in the DNA-Binding Region of Tumor Protein p53 ( TP53) upon Hotspot Mutation p53 Arg248 by Comparative Computational Approach. Int J Mol Sci 2022; 23:ijms232415499. [PMID: 36555140 PMCID: PMC9779389 DOI: 10.3390/ijms232415499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
The vital tissue homeostasis regulator p53 forms a tetramer when it binds to DNA and regulates the genes that mediate essential biological processes such as cell-cycle arrest, senescence, DNA repair, and apoptosis. Missense mutations in the core DNA-binding domain (109-292) simultaneously cause the loss of p53 tumor suppressor function and accumulation of the mutant p53 proteins that are carcinogenic. The most common p53 hotspot mutation at codon 248 in the DNA-binding region, where arginine (R) is substituted by tryptophan (W), glycine (G), leucine (L), proline (P), and glutamine (Q), is reported in various cancers. However, it is unclear how the p53 Arg248 mutation with distinct amino acid substitution affects the structure, function, and DNA binding affinity. Here, we characterized the pathogenicity and protein stability of p53 hotspot mutations at codon 248 using computational tools PredictSNP, Align GVGD, HOPE, ConSurf, and iStable. We found R248W, R248G, and R248P mutations highly deleterious and destabilizing. Further, we subjected all five R248 mutant-p53-DNA and wt-p53-DNA complexes to molecular dynamics simulation to investigate the structural stability and DNA binding affinity. From the MD simulation analysis, we observed increased RMSD, RMSF, and Rg values and decreased protein-DNA intermolecular hydrogen bonds in the R248-p53-DNA than the wt-p53-DNA complexes. Likewise, due to high SASA values, we observed the shrinkage of proteins in R248W, R248G, and R248P mutant-p53-DNA complexes. Compared to other mutant p53-DNA complexes, the R248W, R248G, and R248P mutant-p53-DNA complexes showed more structural alteration. MM-PBSA analysis showed decreased binding energies with DNA in all five R248-p53-DNA mutants than the wt-p53-DNA complexes. Henceforth, we conclude that the amino acid substitution of Arginine with the other five amino acids at codon 248 reduces the p53 protein's affinity for DNA and may disrupt cell division, resulting in a gain of p53 function. The proposed study influences the development of rationally designed molecular-targeted treatments that improve p53-based therapeutic outcomes in cancer.
Collapse
|
4
|
Krois AS, Park S, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Biochemistry 2022; 61:2709-2719. [PMID: 36380579 PMCID: PMC9788666 DOI: 10.1021/acs.biochem.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The C-terminal region of the tumor suppressor protein p53 contains three domains, nuclear localization signal (NLS), tetramerization domain (TET), and C-terminal regulatory domain (CTD), which are essential for p53 function. Characterization of the structure and interactions of these domains within full-length p53 has been limited by the overall size and flexibility of the p53 tetramer. Using trans-intein splicing, we have generated full-length p53 constructs in which the C-terminal region is isotopically labeled with 15N for NMR analysis, allowing us to obtain atomic-level information on the C-terminal domains in the context of the full-length protein. Resonances of NLS and CTD residues have narrow linewidths, showing that these regions are largely solvent-exposed and dynamically disordered, whereas resonances from the folded TET are broadened beyond detection. Two regions of the CTD, spanning residues 369-374 and 381-388 and with high lysine content, make dynamic and sequence-independent interactions with DNA in regions that flank the p53 recognition element. The population of DNA-bound states increases as the length of the flanking regions is extended up to approximately 20 base pairs on either side of the recognition element. Acetylation of K372, K373, and K382, using a construct of the transcriptional coactivator CBP containing the TAZ2 and acetyltransferase domains, inhibits interaction of the CTD with DNA. This work provides high-resolution insights into the behavior of the intrinsically disordered C-terminal regions of p53 within the full-length tetramer and the molecular basis by which the CTD mediates DNA binding and specificity.
Collapse
Affiliation(s)
- Alexander S Krois
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Sangho Park
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| |
Collapse
|
5
|
Corrigan AN, Lemkul JA. Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. J Phys Chem B 2022; 126:4814-4827. [PMID: 35749260 PMCID: PMC9267131 DOI: 10.1021/acs.jpcb.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are an abundant class of highly charged proteins that participate in numerous crucial biological processes, often in regulatory roles. IDPs do not have one major free energy minimum with a dominant structure, instead existing as conformational ensembles of multiple semistable conformations. p53 is a prototypical protein with disordered regions and binds to many structurally diverse partners, making it a useful model for exploring the role of electrostatic interactions at IDP binding interfaces. In this study, we used the Drude-2019 force field to simulate the p53 transactivation domain with two protein partners to probe the role of electrostatic interactions in IDP protein-protein interactions. We found that the Drude-2019 polarizable force field reasonably reproduced experimental chemical shifts of the p53 transactivation domain (TAD) in one complex for which these data are available. We also found that the proteins in these complexes displayed dipole response at specific residues of each protein and that residues primarily involved in binding showed a large percent change in dipole moment between the unbound and complexed states. Probing the role of electrostatic interactions in IDP binding can allow us greater fundamental understanding of these interactions and may help with targeting p53 or its partners for drug design.
Collapse
Affiliation(s)
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 20461, United States,Center for Drug Discovery, Virginia Tech, Blacksburg, VA 20461, United States,Corresponding Author: , Address: 111 Engel Hall, 340 West Campus Dr., Blacksburg, VA 24061, Phone: +1 (540) 231-3129
| |
Collapse
|
6
|
Symphony of the DNA flexibility and sequence environment orchestrates p53 binding to its responsive elements. Gene 2021; 803:145892. [PMID: 34375633 DOI: 10.1016/j.gene.2021.145892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022]
Abstract
The p53 tumor suppressor protein maintains the genome fidelity and integrity by modulating several cellular activities. It regulates these events by interacting with a heterogeneous set of response elements (REs) of regulatory genes in the background of chromatin configuration. At the p53-RE interface, both the base readout and torsional-flexibility of DNA account for high-affinity binding. However, DNA structure is an entanglement of a multitude of physicochemical features, both local and global structure should be considered for dealing with DNA-protein interactions. The goal of current research work is to conceptualize and abstract basic principles of p53-RE binding affinity as a function of structural alterations in DNA such as bending, twisting, and stretching flexibility and shape. For this purpose, we have exploited high throughput in-vitro relative affinity information of responsive elements and genome binding events of p53 from HT-Selex and ChIP-Seq experiments respectively. Our results confirm the role of torsional flexibility in p53 binding, and further, we reveal that DNA axial bending, stretching stiffness, propeller twist, and wedge angles are intimately linked to p53 binding affinity when compared to homeodomain, bZIP, and bHLH proteins. Besides, a similar DNA structural environment is observed in the distal sequences encompassing the actual binding sites of p53 cistrome genes. Additionally, we revealed that p53 cistrome target genes have unique promoter architecture, and the DNA flexibility of genomic sequences around REs in cancer and normal cell types display major differences. Altogether, our work provides a keynote on DNA structural features of REs that shape up the in-vitro and in-vivo high-affinity binding of the p53 transcription factor.
Collapse
|
7
|
Timofeev O, Stiewe T. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Cancers (Basel) 2021; 13:2422. [PMID: 34067731 PMCID: PMC8155944 DOI: 10.3390/cancers13102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into "contact" and "structural" mutations, "cooperativity" mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| |
Collapse
|
8
|
Hayashi I. The C-terminal region of the plasmid partitioning protein TubY is a tetramer that can bind membranes and DNA. J Biol Chem 2020; 295:17770-17780. [PMID: 33454013 PMCID: PMC7762940 DOI: 10.1074/jbc.ra120.014705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Bacterial low-copy-number plasmids require partition (par) systems to ensure their stable inheritance by daughter cells. In general, these systems consist of three components: a centromeric DNA sequence, a centromere-binding protein and a nucleotide hydrolase that polymerizes and functions as a motor. Type III systems, however, segregate plasmids using three proteins: the FtsZ/tubulin-like GTPase TubZ, the centromere-binding protein TubR and the MerR-like transcriptional regulator TubY. Although the TubZ filament is sufficient to transport the TubR-centromere complex in vitro, TubY is still necessary for the stable maintenance of the plasmid. TubY contains an N-terminal DNA-binding helix-turn-helix motif and a C-terminal coiled-coil followed by a cluster of lysine residues. This study determined the crystal structure of the C-terminal domain of TubY from the Bacillus cereus pXO1-like plasmid and showed that it forms a tetrameric parallel four-helix bundle that differs from the typical MerR family proteins with a dimeric anti-parallel coiled-coil. Biochemical analyses revealed that the C-terminal tail with the conserved lysine cluster helps TubY to stably associate with the TubR-centromere complex as well as to nonspecifically bind DNA. Furthermore, this C-terminal tail forms an amphipathic helix in the presence of lipids but must oligomerize to localize the protein to the membrane in vivo. Taken together, these data suggest that TubY is a component of the nucleoprotein complex within the partitioning machinery, and that lipid membranes act as mediators of type III systems.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Binding and folding in transcriptional complexes. Curr Opin Struct Biol 2020; 66:156-162. [PMID: 33248428 DOI: 10.1016/j.sbi.2020.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 01/13/2023]
Abstract
Transcription factors are among the classes of proteins with the highest levels of disorder. Investigation of these regulatory proteins is uncovering not just the mechanisms that underlie gene regulation, but relationships that apply to all intrinsically disordered proteins. Recent studies confirm that binding does not necessarily induce folding but that when it does, it tends to follow induced fit mechanisms. Other work emphasises the importance of electrostatics to interactions involving intrinsically disordered proteins, and roles of intrinsic disorder in phase transitions. All these features help direct transcription factors to target sites in the genome to upregulate or downregulate transcription.
Collapse
|
10
|
Kamagata K, Itoh Y, Subekti DRG. How p53 Molecules Solve the Target DNA Search Problem: A Review. Int J Mol Sci 2020; 21:E1031. [PMID: 32033163 PMCID: PMC7037437 DOI: 10.3390/ijms21031031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Interactions between DNA and DNA-binding proteins play an important role in many essential cellular processes. A key function of the DNA-binding protein p53 is to search for and bind to target sites incorporated in genomic DNA, which triggers transcriptional regulation. How do p53 molecules achieve "rapid" and "accurate" target search in living cells? The search dynamics of p53 were expected to include 3D diffusion in solution, 1D diffusion along DNA, and intersegmental transfer between two different DNA strands. Single-molecule fluorescence microscopy enabled the tracking of p53 molecules on DNA and the characterization of these dynamics quantitatively. Recent intensive single-molecule studies of p53 succeeded in revealing each of these search dynamics. Here, we review these studies and discuss the target search mechanisms of p53.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Jin X, Hapsari ND, Lee S, Jo K. DNA binding fluorescent proteins as single-molecule probes. Analyst 2020; 145:4079-4095. [DOI: 10.1039/d0an00218f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA binding fluorescent proteins are useful probes for a broad range of biological applications.
Collapse
Affiliation(s)
- Xuelin Jin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| | - Natalia Diyah Hapsari
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
- Chemistry Education Program
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| |
Collapse
|
12
|
Garg A, Hazra JP, Sannigrahi MK, Rakshit S, Sinha S. Variable Mutations at the p53-R273 Oncogenic Hotspot Position Leads to Altered Properties. Biophys J 2019; 118:720-728. [PMID: 31952808 DOI: 10.1016/j.bpj.2019.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in p53 protein, especially in the DNA-binding domain, is one of the major hallmarks of cancer. The R273 position is a DNA-contact position and has several oncogenic variants. Surprisingly, cancer patients carrying different mutant variants of R273 in p53 have different survival rates, indicating that the DNA-contact inhibition may not be the sole reason for reduced survival with R273 variants. Here, we probed the properties of three major oncogenic variants of the wild-type (WT) p53: [R273H]p53, [R273C]p53, and [R273L]p53. Using a series of biophysical, biochemical, and theoretical simulation studies, we observe that these oncogenic variants of the p53 not only suffer a loss in DNA binding, but they also show distinct structural stability, aggregation, and toxicity profiles. The WTp53 and the [R273H]p53 show the least destabilization and aggregation propensity. [R273C]p53 aggregation is disulfide mediated, leading to cross-β, thioflavin-T-positive aggregates, whereas hydrophobic interactions dominate self-assembly in [R273L]p53, leading to a mixture of amyloid and amorphous aggregates. Molecular dynamics simulations indicate different contact maps and secondary structures for the different variants along the course of the simulations. Our study indicates that each of the R273 variants has its own distinct property of stability and self-assembly, the molecular basis of which may lead to different types of cancer pathogenesis in vivo. These studies will aid the design of therapeutic strategies for cancer using residue-specific or process-specific protein aggregation as a target.
Collapse
Affiliation(s)
- Ankush Garg
- Institute of Nano Science and Technology, Habitat Centre, Punjab, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Malay Kumar Sannigrahi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India.
| | - Sharmistha Sinha
- Institute of Nano Science and Technology, Habitat Centre, Punjab, India.
| |
Collapse
|
13
|
Friedrich D, Friedel L, Finzel A, Herrmann A, Preibisch S, Loewer A. Stochastic transcription in the p53-mediated response to DNA damage is modulated by burst frequency. Mol Syst Biol 2019; 15:e9068. [PMID: 31885199 PMCID: PMC6886302 DOI: 10.15252/msb.20199068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Discontinuous transcription has been described for different mammalian cell lines and numerous promoters. However, our knowledge of how the activity of individual promoters is adjusted by dynamic signaling inputs from transcription factors is limited. To address this question, we characterized the activity of selected target genes that are regulated by pulsatile accumulation of the tumor suppressor p53 in response to ionizing radiation. We performed time-resolved measurements of gene expression at the single-cell level by smFISH and used the resulting data to inform a mathematical model of promoter activity. We found that p53 target promoters are regulated by frequency modulation of stochastic bursting and can be grouped along three archetypes of gene expression. The occurrence of these archetypes cannot solely be explained by nuclear p53 abundance or promoter binding of total p53. Instead, we provide evidence that the time-varying acetylation state of p53's C-terminal lysine residues is critical for gene-specific regulation of stochastic bursting.
Collapse
Affiliation(s)
- Dhana Friedrich
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
- Department for BiologyHumboldt Universität zu BerlinBerlinGermany
| | - Laura Friedel
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Ana Finzel
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
| | - Andreas Herrmann
- Department for BiologyHumboldt Universität zu BerlinBerlinGermany
| | - Stephan Preibisch
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
- Janelia Research CampusHoward Hughes Medical InstituteVAAshburnUSA
| | - Alexander Loewer
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
| |
Collapse
|
14
|
Krüger A, Stier A, Fischbach A, Bürkle A, Hauser K, Mangerich A. Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Nucleic Acids Res 2019; 47:4843-4858. [PMID: 30892621 PMCID: PMC6511852 DOI: 10.1093/nar/gkz175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Due to multiple domains and in part intrinsically disordered regions, structural analyses of p53 remain a challenging task, particularly in complex with DNA and other macromolecules. Here, we applied a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic approach to investigate changes in secondary structure of full-length p53 induced by non-covalent interactions with DNA and poly(ADP-ribose) (PAR). To validate our approach, we confirmed a positive regulatory function of p53’s C-terminal domain (CTD) with regard to sequence-specific DNA binding and verified that the CTD mediates p53–PAR interaction. Further, we demonstrate that DNA and PAR interactions result in distinct structural changes of p53, indicating specific binding mechanisms via different domains. A time-dependent analysis of the interplay of DNA and PAR binding to p53 revealed that PAR represents p53’s preferred binding partner, which efficiently controls p53–DNA interaction. Moreover, we provide infrared spectroscopic data on PAR pointing to the absence of regular secondary structural elements. Finally, temperature-induced melting experiments via CD spectroscopy show that DNA binding stabilizes the structure of p53, while PAR binding can shift the irreversible formation of insoluble p53 aggregates to higher temperatures. In conclusion, this study provides detailed insights into the dynamic interplay of p53 binding to DNA and PAR at a formerly inaccessible molecular level.
Collapse
Affiliation(s)
- Annika Krüger
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Department of Chemistry, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Anna Stier
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Arthur Fischbach
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
15
|
Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int J Mol Sci 2019; 20:ijms20153681. [PMID: 31357595 PMCID: PMC6696488 DOI: 10.3390/ijms20153681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
The p53 canonical consensus sequence is a 10-bp repeat of PuPuPuC(A/T)(A/T)GPyPyPy, separated by a spacer with up to 13 bases. C(A/T)(A/T)G is the core sequence and purine (Pu) and pyrimidine (Py) bases comprise the flanking sequence. However, in the p53 noncanonical sequences, there are many variations, such as length of consensus sequence, variance of core sequence or flanking sequence, and variance in number of bases making up the spacer or AT gap composition. In comparison to p53, the p53 family members p63 and p73 have been found to have more tolerance to bind and activate several of these noncanonical sequences. The p53 protein forms monomers, dimers, and tetramers, and its nonspecific binding domain is well-defined; however, those for p63 or p73 are still not fully understood. Study of p63 and p73 structure to determine the monomers, dimers or tetramers to bind and regulate noncanonical sequence is a new challenge which is crucial to obtaining a complete picture of structure and function in order to understand how p63 and p73 regulate genes differently from p53. In this review, we will summarize the rules of p53 family non-canonical sequences, especially focusing on the structure of p53 family members in the regulation of specific target genes. In addition, we will compare different software programs for prediction of p53 family responsive elements containing parameters with canonical or non-canonical sequences.
Collapse
Affiliation(s)
- Bi-He Cai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Faye Chao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsueh-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
16
|
Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53. Sci Rep 2019; 9:8584. [PMID: 31253862 PMCID: PMC6599006 DOI: 10.1038/s41598-019-44688-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/22/2019] [Indexed: 01/19/2023] Open
Abstract
Intrinsically disordered regions (IDRs) of proteins are involved in many diseases. The rational drug design against disease-mediating proteins is often based on the 3D structure; however, the flexible structure of IDRs hinders the use of such structure-based design methods. Here, we developed a rational design method to obtain a peptide that can bind an IDR using only sequence information based on the statistical contact energy of amino acid pairs. We applied the method to the disordered C-terminal domain of the tumor suppressor p53. Titration experiments revealed that one of the designed peptides, DP6, has a druggable affinity of ~1 μM to the p53 C-terminal domain. NMR spectroscopy and molecular dynamics simulation revealed that DP6 selectively binds to the vicinity of the target sequence in the C-terminal domain of p53. DP6 inhibits the nonspecific DNA binding of a tetrameric form of the p53 C-terminal domain, but does not significantly affect the specific DNA binding of a tetrameric form of the p53 core domain. Single-molecule measurements revealed that DP6 retards the 1D sliding of p53 along DNA, implying modulation of the target searching of p53. Statistical potential-based design may be useful in designing peptides that target IDRs for therapeutic purposes.
Collapse
|
17
|
Reder H, Wagner S, Gamerdinger U, Sandmann S, Wuerdemann N, Braeuninger A, Dugas M, Gattenloehner S, Klussmann JP, Wittekindt C. Genetic alterations in human papillomavirus-associated oropharyngeal squamous cell carcinoma of patients with treatment failure. Oral Oncol 2019; 93:59-65. [PMID: 31109697 DOI: 10.1016/j.oraloncology.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Despite improved survival rates of patients with HPV-associated OPSCC, a subset has distant metastasis or develops local recurrence during follow-up. To investigate potential underlying genetic alterations, we analyzed patients with HPV-driven OPSCC who suffered from recurrence in comparison to matching pairs with successful tumor control. MATERIALS AND METHODS We performed chromosomal copy number analyses and targeted next generation sequencing using a custom panel comprising genes that are frequently mutated in HPV-associated OPSCC. RESULTS Specific differences regarding chromosomal aberrations were not observed between both groups. In HPV-driven OPSCC from patients with recurrence we found higher mutation rates compared to patients with successful tumor control. Especially mutation rates of HRAS (p ≤ 0.05) PIK3R1, STK11 and TP63 (p ≤ 0.1 each) were statistically significant or trending towards significance. The respective genes can be linked to transcription factors and signaling pathways involved in cell cycle regulation, proliferation and survival. Additionally, combinations of alterations were observed on chromosomes 16 and 19, which might also influence outcome. CONCLUSION Patients with HPV-driven OPSCC who develop recurrence or have metastasis may be defined by genetic alterations that might be responsible for poor outcome after standard therapy. This might be of importance for stratification in future de-escalation and targeted therapy.
Collapse
Affiliation(s)
- Henrike Reder
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Steffen Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ulrike Gamerdinger
- Department of Pathology, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, Westphalian Wilhelms University Muenster, 48149 Muenster, Germany
| | - Nora Wuerdemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University Giessen, 35392 Giessen, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University Hospital Cologne, 50931 Cologne, Germany
| | - Andreas Braeuninger
- Department of Pathology, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Westphalian Wilhelms University Muenster, 48149 Muenster, Germany
| | - Stefan Gattenloehner
- Department of Pathology, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Jens Peter Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University Giessen, 35392 Giessen, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University Hospital Cologne, 50931 Cologne, Germany
| | - Claus Wittekindt
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
18
|
Choi S, Chen M, Cryns VL, Anderson RA. A nuclear phosphoinositide kinase complex regulates p53. Nat Cell Biol 2019; 21:462-475. [PMID: 30886346 DOI: 10.1038/s41556-019-0297-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
The tumour suppressor p53 (encoded by TP53) protects the genome against cellular stress and is frequently mutated in cancer. Mutant p53 acquires gain-of-function oncogenic activities that are dependent on its enhanced stability. However, the mechanisms by which nuclear p53 is stabilized are poorly understood. Here, we demonstrate that the stability of stress-induced wild-type and mutant p53 is regulated by the type I phosphatidylinositol phosphate kinase (PIPKI-α (also known as PIP5K1A)) and its product phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Nuclear PIPKI-α binds to p53 upon stress, resulting in the production and association of PtdIns(4,5)P2 with p53. PtdIns(4,5)P2 binding promotes the interaction between p53 and the small heat shock proteins HSP27 (also known as HSPB1) and αB-crystallin (also known as HSPB5), which stabilize nuclear p53. Moreover, inhibition of PIPKI-α or PtdIns(4,5)P2 association results in p53 destabilization. Our results point to a previously unrecognized role of nuclear phosphoinositide signalling in regulating p53 stability and implicate this pathway as a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Mo Chen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
19
|
Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 2019; 20:199-210. [DOI: 10.1038/s41580-019-0110-x] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Offutt TL, Ieong PU, Demir Ö, Amaro RE. Dynamics and Molecular Mechanisms of p53 Transcriptional Activation. Biochemistry 2018; 57:6528-6537. [PMID: 30388364 DOI: 10.1021/acs.biochem.8b01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The "guardian of the genome", p53, functions as a tumor suppressor that responds to cell stressors such as DNA damage, hypoxia, and tumor formation by inducing cell-cycle arrest, senescence, or apoptosis. Mutation of p53 disrupts its tumor suppressor function, leading to various types of human cancers. One particular mutant, R175H, is a structural mutant that inactivates the DNA damage response pathway and acquires oncogenic functions that promotes both cancer and drug resistance. Our current work aims to understand how p53 wild-type function is disrupted due to the R175H mutation. We use a series of atomistic integrative models built previously from crystal structures of the full-length p53 tetramer bound to DNA and model the R175H mutant using in silico site-directed mutagenesis. Explicitly solvated all-atom molecular dynamics (MD) simulations on wild-type and the R175H mutant p53 reveal insights into how wild-type p53 searches and recognizes DNA, and how this mechanism is disrupted as a result of the R175H mutation. Specifically, our work reveals the optimal quaternary DNA binding mode of the DNA binding domain and shows how this binding mode is altered via symmetry loss as a result of the R175H mutation, indicating a recognition mechanism that is reminiscent of the asymmetry seen in wild type p53 binding to nonspecific genomic elements. Altogether our work sheds new light into the hitherto unseen molecular mechanisms governing transcription factor, DNA recognition.
Collapse
Affiliation(s)
- Tavina L Offutt
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States
| | - Pek U Ieong
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States
| | - Özlem Demir
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States
| |
Collapse
|
21
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ 2017; 25:133-143. [PMID: 29125602 PMCID: PMC5729533 DOI: 10.1038/cdd.2017.174] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022] Open
Abstract
p53 is a transcription factor that suppresses tumor growth through regulation of dozens of target genes with diverse biological functions. The activity of this master transcription factor is inactivated in nearly all tumors, either by mutations in the TP53 locus or by oncogenic events that decrease the activity of the wild-type protein, such as overexpression of the p53 repressor MDM2. However, despite decades of intensive research, our collective understanding of the p53 signaling cascade remains incomplete. In this review, we focus on recent advances in our understanding of mechanisms of p53-dependent transcriptional control as they relate to five key areas: (1) the functionally distinct N-terminal transactivation domains, (2) the diverse regulatory roles of its C-terminal domain, (3) evidence that p53 is solely a direct transcriptional activator, not a direct repressor, (4) the ability of p53 to recognize many of its enhancers across diverse chromatin environments, and (5) mechanisms that modify the p53-dependent transcriptional program in a context-dependent manner.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80203, USA
| |
Collapse
|
23
|
Probing the interaction of the p53 C-terminal domain to the histone demethylase LSD1. Arch Biochem Biophys 2017; 632:202-208. [PMID: 28784588 DOI: 10.1016/j.abb.2017.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
The p53 transcription factor plays a central role in the regulation of the expression of several genes, and itself is post-translationally regulated through its different domains. Of particular relevance for p53 function is its intrinsically disordered C-terminal domain (CTD), representing a hotspot for post-translational modifications and a docking site for transcriptional regulators. For example, the histone H3 lysine demethylase 1 (LSD1) interacts with p53 via the p53-CTD for mutual regulation. To biochemically and functionally characterize this complex, we evaluated the in vitro interactions of LSD1 with several p53-CTD peptides differing in length and modifications. Binding was demonstrated through thermal shift, enzymatic and fluorescence polarization assays, but no enzymatic activity could be detected on methylated p53-CTD peptides in vitro. These experiments were performed using the wild-type enzyme and LSD1 variants that are mutated on three active-site residues. We found that LSD1 demethylase activity is inhibited by p53-CTD. We also noted that the association between the two proteins is mediated by mostly non-specific electrostatic interactions involving conserved active-site residues of LSD1 and a highly charged segment of the p53-CTD. We conclude that p53-CTD inhibits LSD1 activity and that the direct association between the two proteins can contribute to their functional cross-talk.
Collapse
|
24
|
Subekti DRG, Murata A, Itoh Y, Fukuchi S, Takahashi H, Kanbayashi S, Takahashi S, Kamagata K. The Disordered Linker in p53 Participates in Nonspecific Binding to and One-Dimensional Sliding along DNA Revealed by Single-Molecule Fluorescence Measurements. Biochemistry 2017; 56:4134-4144. [DOI: 10.1021/acs.biochem.7b00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dwiky Rendra Graha Subekti
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Agato Murata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Fukuchi
- Faculty
of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Hiroto Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Saori Kanbayashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kiyoto Kamagata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
25
|
Wang D, Kon N, Tavana O, Gu W. The "readers" of unacetylated p53 represent a new class of acidic domain proteins. Nucleus 2017; 8:360-369. [PMID: 28406743 DOI: 10.1080/19491034.2017.1313939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acetylation of non-histone proteins plays important roles in regulating protein functions but the mechanisms of action are poorly understood. Our recent study uncovered a previously unknown mechanism by which C-terminal domain (CTD) acetylation of p53 serves as a "switch" to determine the interaction between a unique group of acidic domain-containing proteins and p53, as well as revealed that acidic domains may act as a novel class of "readers" for unacetylated p53. However, the properties of acidic domain "readers" are not well elucidated yet. Here, we identified that the charge effect between acidic domain "readers" and the p53 CTD is necessary for their interaction. Both the length and the amino acid composition of a given acidic domain contributed to its ability to recognize the p53 CTD. Finally, we summarized the characteristic features of our identified acidic domains, which would distinguish this kind of "readers" from other types of acidic amino acid-containing domains.
Collapse
Affiliation(s)
- Donglai Wang
- a Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons , Columbia University , New York , NY , USA
| | - Ning Kon
- a Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons , Columbia University , New York , NY , USA
| | - Omid Tavana
- a Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons , Columbia University , New York , NY , USA
| | - Wei Gu
- a Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons , Columbia University , New York , NY , USA
| |
Collapse
|
26
|
Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther 2017; 178:92-108. [PMID: 28351719 DOI: 10.1016/j.pharmthera.2017.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is one of the most important proteins for protection of genomic stability and cancer prevention. Cancers often inactivate it by either mutating its gene or disabling its function. Thus, activating p53 becomes an attractive approach for the development of molecule-based anti-cancer therapy. The past decade and half have witnessed tremendous progress in this area. This essay offers readers with a grand review on this progress with updated information about small molecule activators of p53 either still at bench work or in clinical trials.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States.
| |
Collapse
|
27
|
p53 Specifically Binds Triplex DNA In Vitro and in Cells. PLoS One 2016; 11:e0167439. [PMID: 27907175 PMCID: PMC5131957 DOI: 10.1371/journal.pone.0167439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.
Collapse
|
28
|
Han M, Xu J, Ren Y. Compromise in competition between free energy and binding effect of intrinsically disordered protein p53 C-terminal domain. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1237023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mengzhi Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, R.C. China
- University of Chinese Academy of Sciences, Beijing, R.C. China
| | - Ji Xu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, R.C. China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, R.C. China
| |
Collapse
|
29
|
Laptenko O, Tong DR, Manfredi J, Prives C. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein. Trends Biochem Sci 2016; 41:1022-1034. [PMID: 27669647 DOI: 10.1016/j.tibs.2016.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/22/2023]
Abstract
The p53 tumor suppressor is a transcription factor (TF) that exerts antitumor functions through its ability to regulate the expression of multiple genes. Within the p53 protein resides a relatively short unstructured C-terminal domain (CTD) that remarkably participates in virtually every aspect of p53 performance as a TF. Because these aspects are often interdependent and it is not always possible to dissect them experimentally, there has been a great deal of controversy about the CTD. In this review we evaluate the significance and key features of this interesting region of p53 and its impact on the many aspects of p53 function in light of previous and more recent findings.
Collapse
Affiliation(s)
- Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - James Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
30
|
Full-length p53 tetramer bound to DNA and its quaternary dynamics. Oncogene 2016; 36:1451-1460. [PMID: 27641333 DOI: 10.1038/onc.2016.321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023]
Abstract
P53 is a major tumor suppressor that is mutated and inactivated in ~50% of all human cancers. Thus, reactivation of mutant p53 using small molecules has been a long sought-after anticancer therapeutic strategy. Full structural characterization of the full-length oligomeric p53 is challenging because of its complex architecture and multiple highly flexible regions. To explore p53 structural dynamics, here we developed a series of atomistic integrative models with available crystal structures of the full-length p53 (fl-p53) tetramer bound to three different DNA sequences: a p21 response element, a puma response element and a nonspecific DNA sequence. Explicitly solvated, all-atom molecular dynamics simulations of the three complexes (totaling nearly 1 μs of aggregate simulation time) yield final structures consistent with electron microscopy maps and, for the first time, show the direct interactions of the p53 C-terminal with DNA. Through a collective principal component analysis, we identify sequence-dependent differential quaternary binding modes of the p53 tetramer interfacing with DNA. Additionally, L1 loop dynamics of fl-p53 in the presence of DNA is revealed, and druggable pockets of p53 are identified via solvent mapping to aid future drug discovery studies.
Collapse
|
31
|
Laptenko O, Shiff I, Freed-Pastor W, Zupnick A, Mattia M, Freulich E, Shamir I, Kadouri N, Kahan T, Manfredi J, Simon I, Prives C. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell 2016; 57:1034-1046. [PMID: 25794615 DOI: 10.1016/j.molcel.2015.02.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/23/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022]
Abstract
DNA binding by numerous transcription factors including the p53 tumor suppressor protein constitutes a vital early step in transcriptional activation. While the role of the central core DNA binding domain (DBD) of p53 in site-specific DNA binding has been established, the contribution of the sequence-independent C-terminal domain (CTD) is still not well understood. We investigated the DNA-binding properties of a series of p53 CTD variants using a combination of in vitro biochemical analyses and in vivo binding experiments. Our results provide several unanticipated and interconnected findings. First, the CTD enables DNA binding in a sequence-dependent manner that is drastically altered by either its modification or deletion. Second, dependence on the CTD correlates with the extent to which the p53 binding site deviates from the canonical consensus sequence. Third, the CTD enables stable formation of p53-DNA complexes to divergent binding sites via DNA-induced conformational changes within the DBD itself.
Collapse
Affiliation(s)
- Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Idit Shiff
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Will Freed-Pastor
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Andrew Zupnick
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Melissa Mattia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ella Freulich
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Inbal Shamir
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Noam Kadouri
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Tamar Kahan
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - James Manfredi
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel.
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
32
|
Kannan S, Lane DP, Verma CS. Long range recognition and selection in IDPs: the interactions of the C-terminus of p53. Sci Rep 2016; 6:23750. [PMID: 27030593 PMCID: PMC4814905 DOI: 10.1038/srep23750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/15/2016] [Indexed: 11/09/2022] Open
Abstract
The C-terminal domain of p53 is an extensively studied IDP, interacting with different partners through multiple distinct conformations. To explore the interplay between preformed structural elements and intrinsic fluctuations in its folding and binding we combine extensive atomistic equilibrium and non-equilibrium simulations. We find that the free peptide segment rapidly interconverts between ordered and disordered states with significant populations of the conformations that are seen in the complexed states. The underlying global folding-binding landscape points to a synergistic mechanism in which recognition is dictated via long range electrostatic recognition which results in the formation of reactive structures as far away as 10 Å, and binding proceeds with the steering of selected conformations followed by induced folding at the target surface or within a close range.
Collapse
Affiliation(s)
| | - David P Lane
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
33
|
Alam N, Zimmerman L, Wolfson NA, Joseph CG, Fierke CA, Schueler-Furman O. Structure-Based Identification of HDAC8 Non-histone Substrates. Structure 2016; 24:458-68. [PMID: 26933971 PMCID: PMC5590822 DOI: 10.1016/j.str.2016.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 11/17/2022]
Abstract
HDAC8 is a member of the family of histone deacetylases (HDACs) that catalyze the deacetylation of acetyl lysine residues within histone and non-histone proteins. The recent identification of novel non-histone HDAC8 substrates such as SMC3, ERRα, and ARID1A indicates a complex functionality of this enzyme in cellular homeostasis. To discover additional HDAC8 substrates, we developed a comprehensive, structure-based approach based on Rosetta FlexPepBind, a protocol that evaluates peptide-binding ability to a receptor from structural models of this interaction. Here we adapt this protocol to identify HDAC8 substrates using peptide sequences extracted from proteins with known acetylated sites. The many new in vitro HDAC8 peptide substrates identified in this study suggest that numerous cellular proteins are HDAC8 substrates, thus expanding our view of the acetylome and its regulation by HDAC8.
Collapse
Affiliation(s)
- Nawsad Alam
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Lior Zimmerman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Noah A Wolfson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Caleb G Joseph
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
34
|
Chang S, Shan X, Li X, Fan W, Zhang SQ, Zhang J, Jiang N, Ma D, Mao Z. Toxoplasma gondii Rhoptry Protein ROP16 Mediates Partially SH-SY5Y Cells Apoptosis and Cell Cycle Arrest by Directing Ser15/37 Phosphorylation of p53. Int J Biol Sci 2015; 11:1215-25. [PMID: 26327815 PMCID: PMC4551757 DOI: 10.7150/ijbs.10516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 07/11/2015] [Indexed: 02/04/2023] Open
Abstract
Toxoplasma rhoptries, an unusual set of apical organelles that are associated with Toxoplasma infection may cause subversion of the host cell functions. Parasite rhoptry protein 16 (ROP16) is a regulator of host cell transcription during cell invasion in which it migrates into the host cell cytoplasm and subsequently localizes to the nucleus. In the present study, we found that overexpression of ROP16 could partially mediate human neuroblastoma SH-SY5Y apoptosis (12.47%) and cell cycle arrest in G1 phase (60.77%) in a p53 dependent manner by influencing the expression of Bax/Bcl-2 and p21/CDKs. ROP16 was identified to co-localize with p53, a novel direct interaction partner in the nucleus of SH-SY5Y. Furthermore, SH-SY5Y apoptosis via the mitochondria-dependent p53 pathway and cell cycle arrest caused by ROP16 dealt with direct serine 15/37 phosphorylation of p53. Our studies provide a new mechanism by which ROP16 interacts with the nucleus proteins which subsequently subverts the host cells functions.
Collapse
Affiliation(s)
- Shuang Chang
- 1. Department of Parasitology and Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiumei Shan
- 1. Department of Parasitology and Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xingliang Li
- 1. Department of Parasitology and Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Weiwei Fan
- 1. Department of Parasitology and Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Steven Qian Zhang
- 1. Department of Parasitology and Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jin Zhang
- 2. Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Nan Jiang
- 2. Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Duan Ma
- 2. Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zuohua Mao
- 1. Department of Parasitology and Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
35
|
Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study. PLoS One 2015; 10:e0134638. [PMID: 26244575 PMCID: PMC4526489 DOI: 10.1371/journal.pone.0134638] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor protein p53 can lose its function upon DNA-contact mutations (R273C and R273H) in the core DNA-binding domain. The activity can be restored by second-site suppressor or rescue mutations (R273C_T284R, R273H_T284R, and R273H_S240R). In this paper, we elucidate the structural and functional consequence of p53 proteins upon DNA-contact mutations and rescue mutations and the underlying mechanisms at the atomic level by means of molecular dynamics simulations. Furthermore, we also apply the docking approach to investigate the binding phenomena between the p53 protein and DNA upon DNA-contact mutations and rescue mutations. This study clearly illustrates that, due to DNA-contact mutants, the p53 structure loses its stability and becomes more rigid than the native protein. This structural loss might affect the p53-DNA interaction and leads to inhibition of the cancer suppression. Rescue mutants (R273C_T284R, R273H_T284R and R273H_S240R) can restore the functional activity of the p53 protein upon DNA-contact mutations and show a good interaction between the p53 protein and a DNA molecule, which may lead to reactivate the cancer suppression function. Understanding the effects of p53 cancer and rescue mutations at the molecular level will be helpful for designing drugs for p53 associated cancer diseases. These drugs should be designed so that they can help to inhibit the abnormal function of the p53 protein and to reactivate the p53 function (cell apoptosis) to treat human cancer.
Collapse
|
36
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
38
|
Molecular basis for modulation of the p53 target selectivity by KLF4. PLoS One 2012; 7:e48252. [PMID: 23118962 PMCID: PMC3484126 DOI: 10.1371/journal.pone.0048252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/20/2012] [Indexed: 12/15/2022] Open
Abstract
The tumour suppressor p53 controls transcription of various genes involved in apoptosis, cell-cycle arrest, DNA repair and metabolism. However, its DNA-recognition specificity is not nearly sufficient to explain binding to specific locations in vivo. Here, we present evidence that KLF4 increases the DNA-binding affinity of p53 through the formation of a loosely arranged ternary complex on DNA. This effect depends on the distance between the response elements of KLF4 and p53. Using nuclear magnetic resonance and fluorescence techniques, we found that the amino-terminal domain of p53 interacts with the KLF4 zinc fingers and mapped the interaction site. The strength of this interaction was increased by phosphorylation of the p53 N-terminus, particularly on residues associated with regulation of cell-cycle arrest genes. Taken together, the cooperative binding of KLF4 and p53 to DNA exemplifies a regulatory mechanism that contributes to p53 target selectivity.
Collapse
|
39
|
Gabizon R, Brandt T, Sukenik S, Lahav N, Lebendiker M, Shalev DE, Veprintsev D, Friedler A. Specific recognition of p53 tetramers by peptides derived from p53 interacting proteins. PLoS One 2012; 7:e38060. [PMID: 22693587 PMCID: PMC3365014 DOI: 10.1371/journal.pone.0038060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/02/2012] [Indexed: 11/25/2022] Open
Abstract
Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81-92), which bound directly to the p53 tetramerization domain, and PKCα(281-295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53.
Collapse
Affiliation(s)
- Ronen Gabizon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tobias Brandt
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Shahar Sukenik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E. Shalev
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dmitry Veprintsev
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
40
|
Rivas S, Genin S. A plethora of virulence strategies hidden behind nuclear targeting of microbial effectors. FRONTIERS IN PLANT SCIENCE 2011; 2:104. [PMID: 22639625 PMCID: PMC3355726 DOI: 10.3389/fpls.2011.00104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/09/2011] [Indexed: 05/24/2023]
Abstract
Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes, and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics, and nucleocytoplasmic protein trafficking during a great variety of analyzed plant-pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins.
Collapse
Affiliation(s)
- Susana Rivas
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-MicroorganismesUMR 441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-MicroorganismesUMR 2594, Castanet-Tolosan, France
| | - Stéphane Genin
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-MicroorganismesUMR 441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-MicroorganismesUMR 2594, Castanet-Tolosan, France
| |
Collapse
|
41
|
Zhao J, Lu Y, Shen HM. Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Lett 2011; 314:8-23. [PMID: 22030255 DOI: 10.1016/j.canlet.2011.09.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/18/2011] [Accepted: 09/28/2011] [Indexed: 01/10/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been intensively studied as a cancer therapeutic agent due to its unique ability to induce apoptosis in malignant cells but not in normal cells. However, as more human cancer cells are reported to be resistant to TRAIL treatment, it is important to develop new therapeutic strategies to overcome this resistance. p53 is an important tumor suppressor that is widely involved in cellular responses to various stresses. In this mini-review, we aim to provide an overview of the intricate relationship between p53 and the TRAIL-mediated apoptosis pathway, and to summarize the current approaches of targeting p53 as a therapeutic strategy to sensitize TRAIL-induced apoptosis in human cancer cells. Although in some cases TRAIL kills cancer cells in a p53-independent manner, it is believed that in cancers with wild-type and functional p53, targeting p53 may be an important strategy for overcoming TRAIL-resistance in cancer therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, Republic of Singapore
| | | | | |
Collapse
|
42
|
Allen WJ, Capelluto DGS, Finkielstein CV, Bevan DR. Modeling the relationship between the p53 C-terminal domain and its binding partners using molecular dynamics. J Phys Chem B 2011; 114:13201-13. [PMID: 20873738 DOI: 10.1021/jp1011445] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fifty percent of all cancer cases result from mutations of the TP53 gene, which encodes the tumor suppressor p53, and it is hypothesized that the p53-mediated checkpoint pathway is compromised in most of the remaining cases. The p53 C-terminal domain (CTD) is an important site of p53 regulation but by nature is difficult to study, as it is intrinsically disordered. In this study, we performed molecular dynamics simulations on the p53 CTD and five known regulatory binding partners. We identified distinct trends in fluctuation within and around the p53 CTD binding site on each partner demonstrating a behavior that facilitates association. Further, we present evidence that the size of the hydrophobic pocket in each p53 CTD binding site governs the secondary structure of the p53 CTD when in the bound state. This information will be useful for predicting new binding partners for the p53 CTD, identifying interacting regions within other known partners, and discovering inhibitors that provide additional points of control over p53 activity.
Collapse
Affiliation(s)
- William J Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, 111 Engel Hall (0308), Blacksburg, Virginia 24061, United States
| | | | | | | |
Collapse
|
43
|
Chun PW, Lewis MS. Planck-Benzinger thermal work function: thermodynamic characterization of the carboxy-terminus of p53 peptide fragments. Protein J 2010; 29:617-30. [PMID: 21086029 DOI: 10.1007/s10930-010-9286-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The thermodynamic parameters for six p53 carboxy-terminus peptide fragments as determined by analytical ultracentrifugal analysis were compared over the experimental temperature range of 275-310 K to evaluate the Gibbs free energy change as a function of temperature, ΔG°(T), from 0 to 400 K using our general linear third-order fitting function, ΔG°(T) = α + βT² + γT³. Data obtained at the typical experimental temperature range are not sufficient to accurately describe the variations observed in the oligomerization of these p53 fragments. It is necessary to determine a number of thermodynamic parameters, all of which can be precisely assessed using this general third-order linear fitting function. These are the heat of reaction, innate temperature-invariant enthalpy, compensatory temperatures and the thermodynamic molecular switch occurring at the thermal set point. This methodology can be used to distinguish the characteristic structure and stability of p53 carboxy-terminal fragments or other p53 mutants. It should be used for the thermodynamic characterization of any interacting biological system.
Collapse
Affiliation(s)
- Paul W Chun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245, USA.
| | | |
Collapse
|
44
|
Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, Kieffer-Jacquinod S, Rivas S, Marco Y, Deslandes L. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 2010; 6:e1001202. [PMID: 21124938 PMCID: PMC2987829 DOI: 10.1371/journal.ppat.1001202] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/21/2010] [Indexed: 12/23/2022] Open
Abstract
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as “guards”. The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity. Plant and animal bacterial pathogens have evolved to produce virulence factors, called type III effectors, which are injected into host cells to suppress host defences and provide an environment beneficial for pathogen growth. Type III effectors from pathogenic bacteria display enzymatic activities, often mimicking an endogenous eukaryotic activity, to target host signalling pathways. Elucidation of strategies used by pathogens to manipulate host protein activities is a subject of fundamental interest in pathology. PopP2 is a YopJ-like effector from the soil borne root pathogen Ralstonia solanacearum. Here, in addition to demonstrating PopP2 ability to stabilize the expression of its cognate Arabidopsis RRS1-R resistance protein and physically interact with it, we investigated the enzymatic activity of PopP2. Bacterial YopJ-like effectors are predicted to act as acetyl-transferases on host components. However, only two YopJ-like proteins from animal pathogens have been shown to be active acetyl-transferases. We show that PopP2 displays autoacetyl-transferase activity targeting a lysine residue well-conserved among YopJ-like family members. This lysine is a critical residue since its mutation prevents autoacetylation of PopP2 and abolishes its recognition by the host. This study provides new clues on the multiple properties displayed by bacterial type III effectors that may be used to target defense-related host components.
Collapse
Affiliation(s)
- Céline Tasset
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Maud Bernoux
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Alain Jauneau
- Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Cécile Pouzet
- Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Christian Brière
- Surfaces Cellulaires et Signalisation chez les Végétaux, Université de Toulouse, UMR CNRS-Université Paul Sabatier 5546, Castanet-Tolosan, France
| | | | - Susana Rivas
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Yves Marco
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
45
|
Posttranslational Modifications Affect the Interaction of S100 Proteins with Tumor Suppressor p53. J Mol Biol 2009; 394:922-30. [DOI: 10.1016/j.jmb.2009.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/30/2009] [Accepted: 10/04/2009] [Indexed: 11/24/2022]
|
46
|
Rajagopalan S, Sade RS, Townsley FM, Fersht AR. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res 2009; 38:893-906. [PMID: 19933256 PMCID: PMC2817464 DOI: 10.1093/nar/gkp1041] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p53 maintains genome integrity by initiating the transcription of genes involved in cell-cycle arrest, senescence, apoptosis and DNA repair. The activity of p53 is regulated by both post-translational modifications and protein–protein interactions. p53 that has been phosphorylated at S366, S378 and T387 binds 14-3-3 proteins in vitro. Here, we show that these sites are potential 14-3-3 binding sites in vivo. Epsilon (ε) and gamma (γ) isoforms required phosphorylation at either of these sites for efficient interaction with p53, while for sigma (σ) and tau (τ) these sites are dispensable. Further, σ and τ bound more weakly to p53 C-terminal phosphopeptides than did ε and γ. However, the four isoforms bound tightly to di-phosphorylated p53 C-terminal peptides than did the mono-phosphorylated counterparts. Interestingly, all the isoforms studied transcriptionally activated wild-type p53. σ and τ stabilized p53 levels in cells, while ε and γ stimulated p53-DNA binding activity in vitro. Overall, the results suggest that structurally and functionally similar 14-3-3 isoforms may exert their regulatory potential on p53 through different mechanisms. We discuss the isoform-specific roles of 14-3-3 in p53 stabilization and activation of specific-DNA binding.
Collapse
|
47
|
Abstract
The tumor suppressor protein p53 is a transcription factor that plays a key role in the prevention of cancer development. In response to oncogenic or other stresses, the p53 protein is activated and regulates the expression of a variety of target genes, resulting in cell cycle arrest, senescence, or apoptosis. Mutation of the p53 gene is the most common genetic alteration in human cancer, affecting more than 50% of human tumors. Most of these mutations inactivate the DNA-binding domain of the protein. In this chapter, we describe the structure of the wild-type p53 protein and present structural and functional data that provide the molecular basis for understanding the effects of common cancer mutations. Further, we assess novel therapeutic strategies that aim to rescue the function of p53 cancer mutants.
Collapse
Affiliation(s)
- Andreas C Joerger
- MRC Centre for Protein Engineering, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
48
|
Buganim Y, Rotter V. p53: Balancing tumour suppression and implications for the clinic. Eur J Cancer 2009; 45 Suppl 1:217-34. [DOI: 10.1016/s0959-8049(09)70037-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Bassett EA, Wang W, Rastinejad F, El-Deiry WS. Structural and functional basis for therapeutic modulation of p53 signaling. Clin Cancer Res 2008; 14:6376-86. [PMID: 18927276 DOI: 10.1158/1078-0432.ccr-08-1526] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective modulation of structural features and/or functional properties of the major tumor suppressor p53 as a wild-type or cancer-associated mutant protein represents a major challenge in drug development for cancer. p53 is an attractive target for therapeutic design because of its involvement as a mediator of growth arrest and apoptosis after exposure to chemoradiotherapy and/or radiotherapy. Although most clinically used cytotoxic agents target stabilization of wild-type p53, there are a number of approaches that hold promise for reactivation of mutant p53. On the other hand, brief blockade of p53 may reduce toxicity from systemic cytotoxic therapy. Screens for restoration of p53 transcriptional responses in p53-deficient cells may provide a functional means to develop anticancer therapeutics. Structure-based modulation continues to hold promise for development of peptides or small molecules capable of modulation of either wild-type or mutant p53 proteins.
Collapse
Affiliation(s)
- Emily A Bassett
- Department of Medicine, The Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
50
|
Rajagopalan S, Jaulent AM, Wells M, Veprintsev DB, Fersht AR. 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res 2008; 36:5983-91. [PMID: 18812399 PMCID: PMC2566891 DOI: 10.1093/nar/gkn598] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, epsilon and gamma. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM.
Collapse
Affiliation(s)
- Sridharan Rajagopalan
- MRC Laboratory of Molecular Biology and MRC Centre for Protein Engineering, Hills Road, Cambridge, CB2 0QH, UK
| | | | | | | | | |
Collapse
|