1
|
Lucignano R, Bologna A, Gramazio S, Wang PH, Taxis C, Essen LO, Picone D, Spadaccini R. Unravelling the amyloid aggregation mechanism of the sweet protein Monellin: Insights from circular permutated mutants. Int J Biol Macromol 2025; 308:142239. [PMID: 40118405 DOI: 10.1016/j.ijbiomac.2025.142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Protein amyloid aggregates, once regarded solely as pathological hallmarks of human neurodegenerative diseases, have recently gained attention for their potential in biotechnological applications. Among others, MNEI and its variants, initially developed as single-chain derivatives of the sweet protein monellin, also serve as valuable models for studying protein fibrillary aggregation. In this work, we have characterized three circular permutated mutants of MNEI obtained joining the N- and C-termini of MNEI with linkers of different length and restoring the splitting of the polypeptide chain of native monellin. All proteins are well folded but have a different propensity to form oligomeric structures in solution and aggregation rates comparable to or faster than MNEI, as indicated by Thioflavin-T binding assays. Transmission Electron Microscopy (TEM) studies indicate that only Perm1, the mutant with the longest linker, forms fibrillar aggregates. X-ray structures of the mutants show that they crystallize as domain-swapped dimers. Molecular dynamics study highlights potential hot spots controlling the ordered aggregation process of Perm1. Our data support the idea that the formation of a domain-swapped dimer does not favour the formation of fibrillar aggregates and highlight circular permutation as a valuable tool to build nanostructured biomaterials.
Collapse
Affiliation(s)
- Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Campania, Italy
| | - Andrea Bologna
- Department of Science and Technology, University of Sannio, Benevento, Campania, Italy
| | - Simona Gramazio
- Department of Science and Technology, University of Sannio, Benevento, Campania, Italy
| | - Po-Hsun Wang
- Structural Biochemistry Unit, Department of Chemistry, Philipps Marburg University, Marburg, Hesse, Germany
| | | | - Lars-Oliver Essen
- Structural Biochemistry Unit, Department of Chemistry, Philipps Marburg University, Marburg, Hesse, Germany
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Campania, Italy.
| | - Roberta Spadaccini
- Department of Science and Technology, University of Sannio, Benevento, Campania, Italy; Structural Biochemistry Unit, Department of Chemistry, Philipps Marburg University, Marburg, Hesse, Germany.
| |
Collapse
|
2
|
May JF, Gonske SJ. Insights into mechanisms and significance of domain swapping from emerging examples in the Mog1p/PsbP-like fold. Biochem Biophys Res Commun 2025; 755:151570. [PMID: 40048759 PMCID: PMC11963792 DOI: 10.1016/j.bbrc.2025.151570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Three-dimensional (3D) domain swapping in proteins occurs when identical polypeptide chains exchange structural elements to form a homo-oligomeric protein. Domain swapping can play a regulatory role for certain oligomeric proteins and has been implicated in deleterious protein aggregation. Here, we examine recently reported 3D domain swapping in proteins that contain the Mog1p/PsbP-like fold, which is a small fold found in non-enzymatic proteins that participate in a variety of distinct cellular processes. This fold was initially identified from structures of the yeast Mog1p protein, which regulates nuclear protein transport in eukaryotes, and PsbP proteins, which are part of photosystem II in plants, green algae, and cyanobacteria. The core structural element of the Mog1p/PsbP-like fold is an α-β-α sandwich that contains a 6- or 7-stranded antiparallel β-sheet. Additionally, most Mog1p/PsbP-like proteins contain an N-terminal β-hairpin that interacts with the α-β-α sandwich. Interestingly, domain-swapped dimers can form by exchange of this N-terminal β-hairpin in certain proteins. We discuss biochemical mechanisms and explore the functional significance of domain-swapping in the formation of an interaction interface in homo-dimers that bind a protein target. Lastly, we examine domain swapping between 2 tandem Mog1p/PsbP-like domains in a multidomain protein. In summary, this review provides recent examples of domain-swapping in proteins containing the Mog1p/PsbP-like fold and highlights general roles for domain-swapping in facilitating protein-protein interactions and in the evolution of multidomain proteins.
Collapse
Affiliation(s)
- John F May
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA.
| | - Sara J Gonske
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA
| |
Collapse
|
3
|
Fitriana W, Sakai T, Duan L, Hengphasatporn K, Shigeta Y, Mashima T, Uda T, Hifumi E, Hirota S. Experimental and Computational Studies on Domain-Swapped Structure Stabilization of an Antibody Light Chain by Disulfide Bond Introduction. J Med Chem 2024; 67:22313-22321. [PMID: 39656517 DOI: 10.1021/acs.jmedchem.4c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Development of different platforms would be useful for designing functional antibodies to improve the efficiency of antibody-based drugs. Three-dimensional domain swapping (3D-DS) may occur in the variable region of antibody light chain #4C214A, and a pair of domain-swapped dimers may interact with each other to form a tetramer. In this study, to stabilize the 3D-DS dimer structure in #4C214A, Val2 in strand A (swapping region) and Thr97 in strand G were replaced with Cys residues, generating #4 V2C/T97C/C214A with a Cys2-Cys97 disulfide bond that cross-links strands A and G of different protomers. The #4 V2C/T97C/C214A tetramer did not dissociate into monomers at low protein concentration (6 μM); however, some of the tetramers were converted to monomers by disulfide bond reduction. Two-dimensional free energy profile analysis for the tetramerization of two 3D-DS dimers was performed by molecular dynamics simulation. These results show that disulfide bond introduction is useful for controlling the dimerization/dissociation of the variable region through 3D-DS.
Collapse
Affiliation(s)
- Wahyu Fitriana
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Medilux Research Center, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4-1 Kyudai-Shinmachi, Fukuoka 879-5593, Japan
| | - Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-Shi, Oita 870-1192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
4
|
Duan L, Hengphasatporn K, Sakai T, Fujiki R, Yoshida N, Hirota S, Shigeta Y. Why is Dimeric 3D Domain Swapping in Antibody Light Chains Missing from the Solution? Atomistic Insights Mechanisms. J Phys Chem B 2024; 128:9086-9093. [PMID: 39268801 DOI: 10.1021/acs.jpcb.4c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Misfolding of antibody light chains can lead to systemic light chain amyloidosis, which is associated with misfolding and aggregation. The antibody light chain may engage in 3D domain swapping within the variable region (#4VL) through hydrogen bonding (HB) interactions, potentially forming the tetramer, as revealed in solution and crystal structures. However, the 3D-domain swapping (3D-DS) dimers could not be detected experimentally. This study investigates the absence of 3D-DS using computational approaches, focusing on structural dynamics, solvation effects, and stability relevant to the loss of 3D-DS. Microscale molecular dynamics simulations of #4VL and 3D-DS confirm that native HB interactions are essential to maintain β-sheet structures in both #4VL and 3D-DS. A flickering native HB interaction in the 3D-DS system, caused by repulsive interaction with water molecules in the hydrophobic region, leads to intramolecular breathing motions and oligomerization in another 3D-DS. Structural dynamics of the 3D-DS dimer in long-run simulations were analyzed using the newly developed integrated solvation-based principal component analysis (3D-RISM/PCA) and density-based spatial clustering of applications with noise, confirm that if the 3D-DS cannot form the tetramer within the breathing motion process, the 3D-DS will collapse. This finding provides insights into why the 3D-DS dimer is missing from the solution and can be used to design and develop 3D-DS in other antibodies.
Collapse
Affiliation(s)
- Lian Duan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Norio Yoshida
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
5
|
Gotte G. Effects of Pathogenic Mutants of the Neuroprotective RNase 5-Angiogenin in Amyotrophic Lateral Sclerosis (ALS). Genes (Basel) 2024; 15:738. [PMID: 38927674 PMCID: PMC11202570 DOI: 10.3390/genes15060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects the motoneurons. More than 40 genes are related with ALS, and amyloidogenic proteins like SOD1 and/or TDP-43 mutants are directly involved in the onset of ALS through the formation of polymorphic fibrillogenic aggregates. However, efficacious therapeutic approaches are still lacking. Notably, heterozygous missense mutations affecting the gene coding for RNase 5, an enzyme also called angiogenin (ANG), were found to favor ALS onset. This is also true for the less-studied but angiogenic RNase 4. This review reports the substrate targets and illustrates the neuroprotective role of native ANG in the neo-vascularization of motoneurons. Then, it discusses the molecular determinants of many pathogenic ANG mutants, which almost always cause loss of function related to ALS, resulting in failures in angiogenesis and motoneuron protection. In addition, ANG mutations are sometimes combined with variants of other factors, thereby potentiating ALS effects. However, the activity of the native ANG enzyme should be finely balanced, and not excessive, to avoid possible harmful effects. Considering the interplay of these angiogenic RNases in many cellular processes, this review aims to stimulate further investigations to better elucidate the consequences of mutations in ANG and/or RNase 4 genes, in order to achieve early diagnosis and, possibly, successful therapies against ALS.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
6
|
Sulatskaya AI, Stepanenko OV, Sulatsky MI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Stepanenko OV. Structural determinants of odorant-binding proteins affecting their ability to form amyloid fibrils. Int J Biol Macromol 2024; 264:130699. [PMID: 38460650 DOI: 10.1016/j.ijbiomac.2024.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The formation of amyloid fibrils is associated with many severe pathologies as well as the execution of essential physiological functions by proteins. Despite the diversity, all amyloids share a similar morphology and consist of stacked β-strands, suggesting high amyloidogenicity of native proteins enriched with β-structure. Such proteins include those with a β-barrel-like structure with β-strands arranged into a cylindrical β-sheet. However, the mechanisms responsible for destabilization of the native state and triggering fibrillogenesis have not thoroughly explored yet. Here we analyze the structural determinants of fibrillogenesis in proteins with β-barrel structures on the example of odorant-binding protein (OBP), whose amyloidogenicity was recently demonstrated in vitro. We reveal a crucial role in the fibrillogenesis of OBPs for the "open" conformation of the molecule. This conformation is achieved by disrupting the interaction between the β-barrel and the C-terminus of protein monomers or dimers, which exposes "sticky" amyloidogenic sites for interaction. The data suggest that the "open" conformation of OBPs can be induced by destabilizing the native β-barrel structure through the disruption of: 1) intramolecular disulfide cross-linking and non-covalent contacts between the C-terminal fragment and β-barrel in the protein's monomeric form, or 2) intermolecular contacts involved in domain swapping in the protein's dimeric form.
Collapse
Affiliation(s)
- Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
7
|
Sakai T, Mashima T, Kobayashi N, Ogata H, Duan L, Fujiki R, Hengphasatporn K, Uda T, Shigeta Y, Hifumi E, Hirota S. Structural and thermodynamic insights into antibody light chain tetramer formation through 3D domain swapping. Nat Commun 2023; 14:7807. [PMID: 38065949 PMCID: PMC10709643 DOI: 10.1038/s41467-023-43443-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Overexpression of antibody light chains in small plasma cell clones can lead to misfolding and aggregation. On the other hand, the formation of amyloid fibrils from antibody light chains is related to amyloidosis. Although aggregation of antibody light chain is an important issue, atomic-level structural examinations of antibody light chain aggregates are sparse. In this study, we present an antibody light chain that maintains an equilibrium between its monomeric and tetrameric states. According to data from X-ray crystallography, thermodynamic and kinetic measurements, as well as theoretical studies, this antibody light chain engages in 3D domain swapping within its variable region. Here, a pair of domain-swapped dimers creates a tetramer through hydrophobic interactions, facilitating the revelation of the domain-swapped structure. The negative cotton effect linked to the β-sheet structure, observed around 215 nm in the circular dichroism (CD) spectrum of the tetrameric variable region, is more pronounced than that of the monomer. This suggests that the monomer contains less β-sheet structures and exhibits greater flexibility than the tetramer in solution. These findings not only clarify the domain-swapped structure of the antibody light chain but also contribute to controlling antibody quality and advancing the development of future molecular recognition agents and drugs.
Collapse
Affiliation(s)
- Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4‑1 Kyudai‑Shinmachi, Fukuoka, 879‑5593, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870‑1192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
8
|
Noro I, Bettin I, Fasoli S, Smania M, Lunardi L, Giannini M, Andreoni L, Montioli R, Gotte G. Human RNase 1 can extensively oligomerize through 3D domain swapping thanks to the crucial contribution of its C-terminus. Int J Biol Macromol 2023; 249:126110. [PMID: 37536419 DOI: 10.1016/j.ijbiomac.2023.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Human ribonuclease (RNase) 1 and bovine RNase A are the proto-types of the secretory "pancreatic-type" (pt)-RNase super-family. RNase A can oligomerize through the 3D domain swapping (DS) mechanism upon acetic acid (HAc) lyophilisation, producing enzymatically active oligomeric conformers by swapping both N- and C-termini. Also some RNase 1 mutants were found to self-associate through 3D-DS, however forming only N-swapped dimers. Notably, enzymatically active dimers and larger oligomers of wt-RNase 1 were collected here, in higher amount than RNase A, from HAc lyophilisation. In particular, RNase 1 self-associates through the 3D-DS of its N-terminus and, at a higher extent, of the C-terminus. Since RNase 1 is four-residues longer than RNase A, we further analyzed its oligomerization tendency in a mutant lacking the last four residues. The C-terminus role has been investigated also in amphibian onconase (ONC®), a pt-RNase that can form only a N-swapped dimer, since its C-terminus, that is three-residues longer than RNase A, is locked by a disulfide bond. While ONC mutants designed to unlock or cut this constraint were almost unable to dimerize, the RNase 1 mutant self-associated at a higher extent than the wt, suggesting a specific role of the C-terminus in the oligomerization of different RNases. Overall, RNase 1 reaches here the highest ability, among pt-RNases, to extensively self-associate through 3D-DS, paving the way for new investigations on the structural and biological properties of its oligomers.
Collapse
Affiliation(s)
- Irene Noro
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Luca Lunardi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Michele Giannini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Leonardo Andreoni
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
9
|
Gotte G, Menegazzi M. Protein Oligomerization. Int J Mol Sci 2023; 24:10648. [PMID: 37445826 DOI: 10.3390/ijms241310648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Protein self-association is a biologically remarkable event that involves and affects the structural and functional properties of proteins [...].
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
10
|
Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? Int J Mol Sci 2022; 23:ijms231911192. [PMID: 36232496 PMCID: PMC9569824 DOI: 10.3390/ijms231911192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natively monomeric RNase A can oligomerize upon lyophilization from 40% acetic acid solutions or when it is heated at high concentrations in various solvents. In this way, it produces many dimeric or oligomeric conformers through the three-dimensional domain swapping (3D-DS) mechanism involving both RNase A N- or/and C-termini. Here, we found many of these oligomers evolving toward not negligible amounts of large derivatives after being stored for up to 15 months at 4 °C in phosphate buffer. We call these species super-aggregates (SAs). Notably, SAs do not originate from native RNase A monomer or from oligomers characterized by the exclusive presence of the C-terminus swapping of the enzyme subunits as well. Instead, the swapping of at least two subunits’ N-termini is mandatory to produce them. Through immunoblotting, SAs are confirmed to derive from RNase A even if they retain only low ribonucleolytic activity. Then, their interaction registered with Thioflavin-T (ThT), in addition to TEM analyses, indicate SAs are large and circular but not “amyloid-like” derivatives. This confirms that RNase A acts as an “auto-chaperone”, although it displays many amyloid-prone short segments, including the 16–22 loop included in its N-terminus. Therefore, we hypothesize the opening of RNase A N-terminus, and hence its oligomerization through 3D-DS, may represent a preliminary step favoring massive RNase A aggregation. Interestingly, this process is slow and requires low temperatures to limit the concomitant oligomers’ dissociation to the native monomer. These data and the hypothesis proposed are discussed in the light of protein aggregation in general, and of possible future applications to contrast amyloidosis.
Collapse
|
11
|
Hirota S, Chiu CL, Chang CJ, Lo PH, Chen T, Yang H, Yamanaka M, Mashima T, Xie C, Masuhara H, Sugiyama T. Structural region essential for amyloid fibril formation in cytochrome c elucidated by optical trapping. Chem Commun (Camb) 2022; 58:12839-12842. [DOI: 10.1039/d2cc04647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amyloid fibril formation of cytochrome c is spatially and temporally controlled by the optical trapping method, identifying that the structural change in the region containing Ala83 is essential for the amyloid fibril formation.
Collapse
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Chun-Liang Chiu
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Chieh-Ju Chang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Pei-Hua Lo
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Tien Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Hongxu Yang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Cheng Xie
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Teruki Sugiyama
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| |
Collapse
|
12
|
Yuan Z, Qu Z, Duan B, Wang T, Xu J, Xia B. Is amyloid fibrillation related to 3D domain swapping for the C-terminal domain of SARS-CoV main protease? Int J Biol Macromol 2021; 197:68-76. [PMID: 34953805 PMCID: PMC8694786 DOI: 10.1016/j.ijbiomac.2021.12.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022]
Abstract
The C-terminal domain of SARS-CoV main protease (Mpro-C) can form 3D domain-swapped dimer by exchanging the α1-helices fully buried inside the protein hydrophobic core, under non-denaturing conditions. Here, we report that Mpro-C can also form amyloid fibrils under the 3D domain-swappable conditions in vitro, and the fibrils are not formed through runaway/propagated domain swapping. It is found that there are positive correlations between the rates of domain swapping dimerization and amyloid fibrillation at different temperatures, and for different mutants. However, some Mpro-C mutants incapable of 3D domain swapping can still form amyloid fibrils, indicating that 3D domain swapping is not essential for amyloid fibrillation. Furthermore, NMR H/D exchange data and molecular dynamics simulation results suggest that the protofibril core region tends to unpack at the early stage of 3D domain swapping, so that the amyloid fibrillation can proceed during the 3D domain swapping process. We propose that 3D domain swapping makes it possible for the unpacking of the amyloidogenic fragment of the protein and thus accelerates the amyloid fibrillation process kinetically, which explains the well-documented correlations between amyloid fibrillation and 3D domain swapping observed in many proteins.
Collapse
Affiliation(s)
- Zhiliang Yuan
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi Qu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyi Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Xu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Ranjan R, Tiwari N, Kayastha AM, Sinha N. Biophysical Investigation of the Interplay between the Conformational Species of Domain-Swapped GB1 Amyloid Mutant through Real-Time Monitoring of Amyloid Fibrillation. ACS OMEGA 2021; 6:34359-34366. [PMID: 34963921 PMCID: PMC8697013 DOI: 10.1021/acsomega.1c04223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Mutant polypeptide GB1HS#124F26A, which is known to aggregate into amyloid-like fibrils, has been utilized as a model in this study for gaining insights into the mechanism of domain-swapped aggregation through real-time monitoring. Size exclusion with UV monitoring at 280 nm and dynamic light scattering (DLS) profiles through different time points of fibrillation reveal that the dimer transitions into monomeric intermediates during the aggregation, which could further facilitate domain swapping to form amyloid fibrils. The 1D 1H and 2D 1H-13C HSQC nuclear magnetic resonance (NMR) spectra profiling through different time points of fibrillation reveal that there may be some other species present along with the dimer during aggregation which contribute to different trends for the intensity of protons in the spectral peaks. Diffusion NMR reveals changes in the mobility of the dimeric species during the process of aggregation, indicating that the dimer gives rise to other lower molecular weight species midway during aggregation, which further add up to form the oligomers and amyloid fibrils successively. The present work is a preliminary study which explores the possibility of utilizing biophysical methods to gain atomistic level insights into the different stages of aggregation.
Collapse
Affiliation(s)
- Renuka Ranjan
- Centre
of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar
Pradesh
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh
| | - Nidhi Tiwari
- Centre
of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar
Pradesh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh
| | - Arvind M. Kayastha
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh
| | - Neeraj Sinha
- Centre
of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar
Pradesh
| |
Collapse
|
14
|
Gotte G, Campagnari R, Loreto D, Bettin I, Calzetti F, Menegazzi M, Merlino A. The crystal structure of the domain-swapped dimer of onconase highlights some catalytic and antitumor activity features of the enzyme. Int J Biol Macromol 2021; 191:560-571. [PMID: 34563576 DOI: 10.1016/j.ijbiomac.2021.09.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Onconase (ONC) is a monomeric amphibian "pancreatic-type" RNase endowed with remarkable anticancer activity. ONC spontaneously forms traces of a dimer (ONC-D) in solution, while larger amounts can be formed when ONC is lyophilized from mildly acidic solutions. Here, we report the crystal structure of ONC-D and analyze its catalytic and antitumor activities in comparison to ONC. ONC-D forms via the three-dimensional swapping of the N-terminal α-helix between two monomers, but it displays a significantly different quaternary structure from that previously modeled [Fagagnini A et al., 2017, Biochem J 474, 3767-81], and based on the crystal structure of the RNase A N-terminal swapped dimer. ONC-D presents a variable quaternary assembly deriving from a variable open interface, while it retains a catalytic activity that is similar to that of ONC. Notably, ONC-D displays antitumor activity against two human melanoma cell lines, although it exerts a slightly lower cytostatic effect than the monomer. The inhibition of melanoma cell proliferation by ONC or ONC-D is associated with the reduction of the expression of the anti-apoptotic B cell lymphoma 2 (Bcl2), as well as of the total expression and phosphorylation of the Signal Transducer and Activator of Transcription (STAT)-3. Phosphorylation is inhibited in both STAT3 Tyr705 and Ser727 key-residues, as well as in its upstream tyrosine-kinase Src. Consequently, both ONC species should exert their anti-cancer action by inhibiting the pro-tumor pleiotropic STAT3 effects deriving either by its phospho-tyrosine activation or by its non-canonical signaling pathways. Both ONC species, indeed, increase the portion of A375 cells undergoing apoptotic cell death. This study expands the variety of RNase domain-swapped dimeric structures, underlining the unpredictability of the open interface arrangement upon domain swapping. Structural data also offer valuable insights to analyze the differences in the measured ONC or ONC-D biological activities.
Collapse
Affiliation(s)
- Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Domenico Loreto
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Federica Calzetti
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy.
| |
Collapse
|
15
|
Hirota S, Mashima T, Kobayashi N. Use of 3D domain swapping in constructing supramolecular metalloproteins. Chem Commun (Camb) 2021; 57:12074-12086. [PMID: 34714300 DOI: 10.1039/d1cc04608j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecules, which are formed by assembling multiple molecules by noncovalent intermolecular interactions instead of covalent bonds, often show additional properties that cannot be exhibited by a single molecule. Supramolecules have evolved into molecular machines in the field of chemistry, and various supramolecular proteins are responsible for life activities in the field of biology. The design and creation of supramolecular proteins will lead to development of new enzymes, functional biomaterials, drug delivery systems, etc.; thus, the number of studies on the regulation of supramolecular proteins is increasing year by year. Several methods, including disulfide bond, metal coordination, and surface-surface interaction, have been utilized to construct supramolecular proteins. In nature, proteins have been shown to form oligomers by 3D domain swapping (3D-DS), a phenomenon in which a structural region is exchanged between molecules of the same protein. We have been studying the mechanism of 3D-DS and utilizing 3D-DS to construct supramolecular metalloproteins. Cytochrome c forms cyclic oligomers and polymers by 3D-DS, whereas other metalloproteins, such as various c-type cytochromes and azurin form small oligomers and myoglobin forms a compact dimer. We have also utilized 3D-DS to construct heterodimers with different active sites, a protein nanocage encapsulating a Zn-SO4 cluster in the internal cavity, and a tetrahedron with a designed building block protein. Protein oligomer formation was controlled for the 3D-DS dimer of a dimer-monomer transition protein. This article reviews our research on supramolecular metalloproteins.
Collapse
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
16
|
Bustamante A, Rivera R, Floor M, Babul J, Baez M. Single-molecule optical tweezers reveals folding steps of the domain swapping mechanism of a protein. Biophys J 2021; 120:4809-4818. [PMID: 34555362 PMCID: PMC8595740 DOI: 10.1016/j.bpj.2021.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/15/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Domain swapping is a mechanism of protein oligomerization by which two or more subunits exchange structural elements to generate an intertwined complex. Numerous studies support a diversity of swapping mechanisms in which structural elements can be exchanged at different stages of the folding pathway of a subunit. Here, we used single-molecule optical tweezers technique to analyze the swapping mechanism of the forkhead DNA-binding domain of human transcription factor FoxP1. FoxP1 populates folded monomers in equilibrium with a swapped dimer. We generated a fusion protein linking two FoxP1 domains in tandem to obtain repetitive mechanical folding and unfolding trajectories. Thus, by stretching the same molecule several times, we detected either the independent folding of each domain or the elusive swapping step between domains. We found that a swapped dimer can be formed directly from fully or mostly folded monomer. In this situation, the interaction between the monomers in route to the domain-swapped dimer is the rate-limiting step. This approach is a useful strategy to test the different proposed domain swapping mechanisms for proteins with relevant physiological functions.
Collapse
Affiliation(s)
- Andres Bustamante
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Rivera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Martin Floor
- Bioinformatics and Medical Statistics Group, Faculty of Science and Technology, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain; Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Markova K, Kunka A, Chmelova K, Havlasek M, Babkova P, Marques SM, Vasina M, Planas-Iglesias J, Chaloupkova R, Bednar D, Prokop Z, Damborsky J, Marek M. Computational Enzyme Stabilization Can Affect Folding Energy Landscapes and Lead to Catalytically Enhanced Domain-Swapped Dimers. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Klara Markova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Klaudia Chmelova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Havlasek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petra Babkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Sérgio M. Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Enantis Ltd., Kamenice 771/34, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
18
|
Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms221810068. [PMID: 34576228 PMCID: PMC8468037 DOI: 10.3390/ijms221810068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
Human Angiogenin (hANG, or ANG, 14.1 kDa) promotes vessel formation and is also called RNase 5 because it is included in the pancreatic-type ribonuclease (pt-RNase) super-family. Although low, its ribonucleolytic activity is crucial for angiogenesis in tumor tissues but also in the physiological development of the Central Nervous System (CNS) neuronal progenitors. Nevertheless, some ANG variants are involved in both neurodegenerative Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Notably, some pt-RNases acquire new biological functions upon oligomerization. Considering neurodegenerative diseases correlation with massive protein aggregation, we analyzed the aggregation propensity of ANG and of three of its pathogenic variants, namely H13A, S28N, and R121C. We found no massive aggregation, but wt-ANG, as well as S28N and R121C variants, can form an enzymatically active dimer, which is called ANG-D. By contrast, the enzymatically inactive H13A-ANG does not dimerize. Corroborated by a specific cross-linking analysis and by the behavior of H13A-ANG that in turn lacks one of the two His active site residues necessary for pt-RNases to self-associate through the three-dimensional domain swapping (3D-DS), we demonstrate that ANG actually dimerizes through 3D-DS. Then, we deduce by size exclusion chromatography (SEC) and modeling that ANG-D forms through the swapping of ANG N-termini. In light of these novelties, we can expect future investigations to unveil other ANG determinants possibly related with the onset and/or development of neurodegenerative pathologies.
Collapse
|
19
|
Gaber A, Pavšič M. Modeling and Structure Determination of Homo-Oligomeric Proteins: An Overview of Challenges and Current Approaches. Int J Mol Sci 2021; 22:9081. [PMID: 34445785 PMCID: PMC8396596 DOI: 10.3390/ijms22169081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Protein homo-oligomerization is a very common phenomenon, and approximately half of proteins form homo-oligomeric assemblies composed of identical subunits. The vast majority of such assemblies possess internal symmetry which can be either exploited to help or poses challenges during structure determination. Moreover, aspects of symmetry are critical in the modeling of protein homo-oligomers either by docking or by homology-based approaches. Here, we first provide a brief overview of the nature of protein homo-oligomerization. Next, we describe how the symmetry of homo-oligomers is addressed by crystallographic and non-crystallographic symmetry operations, and how biologically relevant intermolecular interactions can be deciphered from the ordered array of molecules within protein crystals. Additionally, we describe the most important aspects of protein homo-oligomerization in structure determination by NMR. Finally, we give an overview of approaches aimed at modeling homo-oligomers using computational methods that specifically address their internal symmetry and allow the incorporation of other experimental data as spatial restraints to achieve higher model reliability.
Collapse
|
20
|
Parisi G, Palopoli N, Tosatto SC, Fornasari MS, Tompa P. "Protein" no longer means what it used to. Curr Res Struct Biol 2021; 3:146-152. [PMID: 34308370 PMCID: PMC8283027 DOI: 10.1016/j.crstbi.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
Every biologist knows that the word protein describes a group of macromolecules essential to sustain life on Earth. As biologists, we are invariably trained under a protein paradigm established since the early twentieth century. However, in recent years, the term protein unveiled itself as an euphemism to describe the overwhelming heterogeneity of these compounds. Most of our current studies are targeted on carefully selected subsets of proteins, but we tend to think and write about these as representative of the whole population. Here we discuss how seeking for universal definitions and general rules in any arbitrarily segmented study would be misleading about the conclusions. Of course, it is not our purpose to discourage the use of the word protein. Instead, we suggest to embrace the extended universe of proteins to reach a deeper understanding of their full potential, realizing that the term encompasses a group of molecules very heterogeneous in terms of size, shape, chemistry and functions, i.e. the term protein no longer means what it used to.
Collapse
Affiliation(s)
- Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | | | - María Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
21
|
Kumari P, Bhavesh NS. Human DND1-RRM2 forms a non-canonical domain swapped dimer. Protein Sci 2021; 30:1184-1195. [PMID: 33860980 PMCID: PMC8138521 DOI: 10.1002/pro.4083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/09/2022]
Abstract
RNA recognition motif (RRM) being the most abundant RNA binding domain in eukaryotes, is a major player in cellular regulation. Several variations in the canonical βαββαβ topology have been observed. We have determined the 2.3 Å crystal structure of the human DND1-RRM2 domain. The structure revealed an interesting non-canonical RRM fold, which is maintained by the formation of a 3D domain swapped dimer between β1 and β4 strands across protomers. We have delineated the structural basis of the stable domain swapped dimer formation using the residue level dynamics of protein explored by NMR spectroscopy and MD simulations. Our structural and dynamics studies substantiate major determinants and molecular basis for domain swapped dimerization observed in the RRM domain.
Collapse
Affiliation(s)
- Pooja Kumari
- Transcription Regulation GroupInternational Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia
| | - Neel Sarovar Bhavesh
- Transcription Regulation GroupInternational Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia
| |
Collapse
|
22
|
Pradhan T, Annamalai K, Sarkar R, Hegenbart U, Schönland S, Fändrich M, Reif B. Solid state NMR assignments of a human λ-III immunoglobulin light chain amyloid fibril. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:9-16. [PMID: 32946005 PMCID: PMC7973639 DOI: 10.1007/s12104-020-09975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
The aggregation of antibody light chains is linked to systemic light chain (AL) amyloidosis, a disease where amyloid deposits frequently affect the heart and the kidney. We here investigate fibrils from the λ-III FOR005 light chain (LC), which is derived from an AL-patient with severe cardiac involvement. In FOR005, five residues are mutated with respect to its closest germline gene segment IGLV3-19 and IGLJ3. All mutations are located close to the complementarity determining regions (CDRs). The sequence segments responsible for the fibril formation are not yet known. We use fibrils extracted from the heart of this particular amyloidosis patient as seeds to prepare fibrils for solid-state NMR. We show that the seeds induce the formation of a specific fibril structure from the biochemically produced protein. We have assigned the fibril core region of the FOR005-derived fibrils and characterized the secondary structure propensity of the observed amino acids. As the primary structure of the aggregated patient protein is different for every AL patient, it is important to study, analyze and report a greater number of light chain sequences associated with AL amyloidosis.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Karthikeyan Annamalai
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| |
Collapse
|
23
|
In Silico Therapeutic Peptide Design Against Pathogenic Domain Swapped Human Cystatin C Dimer. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10191-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Mondal B, Nagesh J, Reddy G. Double Domain Swapping in Human γC and γD Crystallin Drives Early Stages of Aggregation. J Phys Chem B 2021; 125:1705-1715. [PMID: 33566611 DOI: 10.1021/acs.jpcb.0c07833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human γD (HγD) and γC (HγC) are two-domain crystallin (Crys) proteins expressed in the nucleus of the eye lens. Structural perturbations in the protein often trigger aggregation, which eventually leads to cataract. To decipher the underlying molecular mechanism, it is important to characterize the partially unfolded conformations, which are aggregation-prone. Using a coarse grained protein model and molecular dynamics simulations, we studied the role of on-pathway folding intermediates in the early stages of aggregation. The multidimensional free energy surface revealed at least three different folding pathways with the population of partially structured intermediates. The two dominant pathways confirm sequential folding of the N-terminal [Ntd] and the C-terminal domains [Ctd], while the third, least favored, pathway involves intermediates where both the domains are partially folded. A native-like intermediate (I*), featuring the folded domains and disrupted interdomain contacts, gets populated in all three pathways. I* forms domain swapped dimers by swapping the entire Ntds and Ctds with other monomers. Population of such oligomers can explain the increased resistance to unfolding resulting in hysteresis observed in the folding experiments of HγD Crys. An ensemble of double domain swapped dimers are also formed during refolding, where intermediates consisting of partially folded Ntds and Ctds swap secondary structures with other monomers. The double domain swapping model presented in our study provides structural insights into the early events of aggregation in Crys proteins and identifies the key secondary structural swapping elements, where introducing mutations will aid in regulating the overall aggregation propensity.
Collapse
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
25
|
Montioli R, Campagnari R, Fasoli S, Fagagnini A, Caloiu A, Smania M, Menegazzi M, Gotte G. RNase A Domain-Swapped Dimers Produced Through Different Methods: Structure-Catalytic Properties and Antitumor Activity. Life (Basel) 2021; 11:life11020168. [PMID: 33669993 PMCID: PMC7926746 DOI: 10.3390/life11020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Upon oligomerization, RNase A can acquire important properties, such as cytotoxicity against leukemic cells. When lyophilized from 40% acetic acid solutions, the enzyme self-associates through the so-called three-dimensional domain swapping (3D-DS) mechanism involving both N- and/or C-terminals. The same species are formed if the enzyme is subjected to thermal incubation in various solvents, especially in 40% ethanol. We evaluated here if significant structural modifications might occur in RNase A N- or C-swapped dimers and/or in the residual monomer(s), as a function of the oligomerization protocol applied. We detected that the monomer activity vs. ss-RNA was partly affected by both protocols, although the protein does not suffer spectroscopic alterations. Instead, the two N-swapped dimers showed differences in the fluorescence emission spectra but almost identical enzymatic activities, while the C-swapped dimers displayed slightly different activities vs. both ss- or ds-RNA substrates together with not negligible fluorescence emission alterations within each other. Besides these results, we also discuss the reasons justifying the different relative enzymatic activities displayed by the N-dimers and C-dimers. Last, similarly with data previously registered in a mouse model, we found that both dimeric species significantly decrease human melanoma A375 cell viability, while only N-dimers reduce human melanoma MeWo cell growth.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andrea Fagagnini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andra Caloiu
- Department of Microbiology and Virology, Wexham Park Hospital, Wexham Road, Slough SL24HL, Berkshire, UK;
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| |
Collapse
|
26
|
Dudkina EV, Ulyanova VV, Ilinskaya ON. Supramolecular Organization As a Factor of Ribonuclease Cytotoxicity. Acta Naturae 2020; 12:24-33. [PMID: 33173594 PMCID: PMC7604891 DOI: 10.32607/actanaturae.11000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022] Open
Abstract
One of the approaches used to eliminate tumor cells is directed destruction/modification of their RNA molecules. In this regard, ribonucleases (RNases) possess a therapeutic potential that remains largely unexplored. It is believed that the biological effects of secreted RNases, namely their antitumor and antiviral properties, derive from their catalytic activity. However, a number of recent studies have challenged the notion that the activity of RNases in the manifestation of selective cytotoxicity towards cancer cells is exclusively an enzymatic one. In this review, we have analyzed available data on the cytotoxic effects of secreted RNases, which are not associated with their catalytic activity, and we have provided evidence that the most important factor in the selective apoptosis-inducing action of RNases is the structural organization of these enzymes, which determines how they interact with cell components. The new idea on the preponderant role of non-catalytic interactions between RNases and cancer cells in the manifestation of selective cytotoxicity will contribute to the development of antitumor RNase-based drugs.
Collapse
Affiliation(s)
- E. V. Dudkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| | - V. V. Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| | - O. N. Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| |
Collapse
|
27
|
Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. Small molecule AX-024 reduces T cell proliferation independently of CD3ϵ/Nck1 interaction, which is governed by a domain swap in the Nck1-SH3.1 domain. J Biol Chem 2020; 295:7849-7864. [PMID: 32317279 PMCID: PMC7278359 DOI: 10.1074/jbc.ra120.012788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1). Inhibition of this protein/protein interaction ameliorated inflammatory symptoms in mouse models of multiple sclerosis, psoriasis, and asthma. A small molecule, AX-024, was reported to inhibit the Nck/CD3ϵ interaction by physically binding to the Nck1-SH3.1 domain, suggesting a route to develop an inhibitor of the Nck1/CD3ϵ interaction for modulating TCR activity in autoimmune and inflammatory diseases. We show here that AX-024 reduces T cell proliferation upon weak TCR stimulation but does not significantly affect phosphorylation of Zap70 (ζ chain of T cell receptor–associated protein kinase 70). We also find that AX-024 is likely not involved in modulating the Nck/TCR interaction but probably has other targets in T cells. An array of biophysical techniques did not detect a direct interaction between AX-024 and Nck-SH3.1 in vitro. Crystal structures of the Nck-SH3.1 domain revealed its binding mode to the PRS in CD3ϵ. The SH3 domain tends to generate homodimers through a domain swap. Domain swaps observed previously in other SH3 domains indicate a general propensity of this protein fold to exchange structural elements. The swapped form of Nck-SH3.1 is unable to bind CD3ϵ, possibly representing an inactive form of Nck in cells.
Collapse
Affiliation(s)
- Kirsten Richter
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arne C Rufer
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Magali Muller
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dominique Burger
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Casagrande
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tabea Grossenbacher
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Melanie N Hug
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philipp Koldewey
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrea D'Osualdo
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Schlatter
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Theodor Stoll
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
28
|
Cosolvent effects on the growth of amyloid fibrils. Curr Opin Struct Biol 2020; 60:101-109. [DOI: 10.1016/j.sbi.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
|
29
|
Gotte G, Menegazzi M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front Immunol 2019; 10:2626. [PMID: 31849926 PMCID: PMC6901985 DOI: 10.3389/fimmu.2019.02626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases (RNases) are a large number of enzymes gathered into different bacterial or eukaryotic superfamilies. Bovine pancreatic RNase A, bovine seminal BS-RNase, human pancreatic RNase 1, angiogenin (RNase 5), and amphibian onconase belong to the pancreatic type superfamily, while binase and barnase are in the bacterial RNase N1/T1 family. In physiological conditions, most RNases secreted in the extracellular space counteract the undesired effects of extracellular RNAs and become protective against infections. Instead, if they enter the cell, RNases can digest intracellular RNAs, becoming cytotoxic and having advantageous effects against malignant cells. Their biological activities have been investigated either in vitro, toward a number of different cancer cell lines, or in some cases in vivo to test their potential therapeutic use. However, immunogenicity or other undesired effects have sometimes been associated with their action. Nevertheless, the use of RNases in therapy remains an appealing strategy against some still incurable tumors, such as mesothelioma, melanoma, or pancreatic cancer. The RNase inhibitor (RI) present inside almost all cells is the most efficacious sentry to counteract the ribonucleolytic action against intracellular RNAs because it forms a tight, irreversible and enzymatically inactive complex with many monomeric RNases. Therefore, dimerization or multimerization could represent a useful strategy for RNases to exert a remarkable cytotoxic activity by evading the interaction with RI by steric hindrance. Indeed, the majority of the mentioned RNases can hetero-dimerize with antibody derivatives, or even homo-dimerize or multimerize, spontaneously or artificially. This can occur through weak interactions or upon introducing covalent bonds. Immuno-RNases, in particular, are fusion proteins representing promising drugs by combining high target specificity with easy delivery in tumors. The results concerning the biological features of many RNases reported in the literature are described and discussed in this review. Furthermore, the activities displayed by some RNases forming oligomeric complexes, the mechanisms driving toward these supramolecular structures, and the biological rebounds connected are analyzed. These aspects are offered with the perspective to suggest possible efficacious therapeutic applications for RNases oligomeric derivatives that could contemporarily lack, or strongly reduce, immunogenicity and other undesired side-effects.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
30
|
Smaldone G, Ruggiero A, Balasco N, Abuhammad A, Autiero I, Caruso D, Esposito D, Ferraro G, Gelardi ELM, Moreira M, Quareshy M, Romano M, Saaret A, Selvam I, Squeglia F, Troisi R, Kroon-Batenburg LMJ, Esposito L, Berisio R, Vitagliano L. The non-swapped monomeric structure of the arginine-binding protein from Thermotoga maritima. Acta Crystallogr F Struct Biol Commun 2019; 75:707-713. [PMID: 31702584 PMCID: PMC6839819 DOI: 10.1107/s2053230x1901464x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
Domain swapping is a widespread oligomerization process that is observed in a large variety of protein families. In the large superfamily of substrate-binding proteins, non-monomeric members have rarely been reported. The arginine-binding protein from Thermotoga maritima (TmArgBP), a protein endowed with a number of unusual properties, presents a domain-swapped structure in its dimeric native state in which the two polypeptide chains mutually exchange their C-terminal helices. It has previously been shown that mutations in the region connecting the last two helices of the TmArgBP structure lead to the formation of a variety of oligomeric states (monomers, dimers, trimers and larger aggregates). With the aim of defining the structural determinants of domain swapping in TmArgBP, the monomeric form of the P235GK mutant has been structurally characterized. Analysis of this arginine-bound structure indicates that it consists of a closed monomer with its C-terminal helix folded against the rest of the protein, as typically observed for substrate-binding proteins. Notably, the two terminal helices are joined by a single nonhelical residue (Gly235). Collectively, the present findings indicate that extending the hinge region and conferring it with more conformational freedom makes the formation of a closed TmArgBP monomer possible. On the other hand, the short connection between the helices may explain the tendency of the protein to also adopt alternative oligomeric states (dimers, trimers and larger aggregates). The data reported here highlight the importance of evolutionary control to avoid the uncontrolled formation of heterogeneous and potentially harmful oligomeric species through domain swapping.
Collapse
Affiliation(s)
- Giovanni Smaldone
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Alessia Ruggiero
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Nicole Balasco
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Areej Abuhammad
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ida Autiero
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Daniela Caruso
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Davide Esposito
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Giarita Ferraro
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | | | - Miguel Moreira
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Mussa Quareshy
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Maria Romano
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Annica Saaret
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Irwin Selvam
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Flavia Squeglia
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Romualdo Troisi
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Loes M. J. Kroon-Batenburg
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Crystal and Structural Chemistry, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Luciana Esposito
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Rita Berisio
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Luigi Vitagliano
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| |
Collapse
|
31
|
Mondal B, Reddy G. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping. Biochemistry 2019; 59:114-124. [DOI: 10.1021/acs.biochem.9b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| |
Collapse
|
32
|
Maszota-Zieleniak M, Jurczak P, Orlikowska M, Zhukov I, Borek D, Otwinowski Z, Skowron P, Pietralik Z, Kozak M, Szymańska A, Rodziewicz-Motowidło S. NMR and crystallographic structural studies of the extremely stable monomeric variant of human cystatin C with single amino acid substitution. FEBS J 2019; 287:361-376. [PMID: 31330077 DOI: 10.1111/febs.15010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 02/02/2023]
Abstract
Human cystatin C (hCC), a member of the superfamily of papain-like cysteine protease inhibitors, is the most widespread cystatin in human body fluids. This small protein, in addition to its physiological function, is involved in various diseases, including cerebral amyloid angiopathy, cerebral hemorrhage, stroke, and dementia. Physiologically active hCC is a monomer. However, all structural studies based on crystallization led to the dimeric structure formed as a result of a three-dimensional exchange of the protein domains (3D domain swapping). The monomeric structure was obtained only for hCC variant V57N and for the protein stabilized by an additional disulfide bridge. With this study, we extend the number of models of monomeric hCC by an additional hCC variant with a single amino acid substitution in the flexible loop L1. The V57G variant was chosen for the X-ray and NMR structural analysis due to its exceptional conformational stability in solution. In this work, we show for the first time the structural and dynamics studies of human cystatin C variant in solution. We were also able to compare these data with the crystal structure of the hCC V57G and with other cystatins. The overall cystatin fold is retained in the solute form. Additionally, structural information concerning the N terminus was obtained during our studies and presented for the first time. DATABASE: Crystallographic structure: structural data are available in PDB databases under the accession number 6ROA. NMR structure: structural data are available in PDB and BMRB databases under the accession numbers 6RPV and 34399, respectively.
Collapse
Affiliation(s)
| | | | | | - Igor Zhukov
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dominika Borek
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Piotr Skowron
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, Poznan, Poland
| | | | | |
Collapse
|
33
|
Lafita A, Tian P, Best RB, Bateman A. Tandem domain swapping: determinants of multidomain protein misfolding. Curr Opin Struct Biol 2019; 58:97-104. [PMID: 31260947 PMCID: PMC6863430 DOI: 10.1016/j.sbi.2019.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 11/25/2022]
Abstract
Domain swapping refers to the exchange of structural elements between protein domains. Experiments show that tandem homologous domains are prone to domain swapping. Recent studies establish a framework to understand the formation of tandem domain swaps. Prediction of tandem domain swaps is possible but hindered by the amount of available data.
Tandem homologous domains in proteins are susceptible to misfolding through the formation of domain swaps, non-native conformations involving the exchange of equivalent structural elements between adjacent domains. Cutting-edge biophysical experiments have recently allowed the observation of tandem domain swapping events at the single molecule level. In addition, computer simulations have shed light into the molecular mechanisms of domain swap formation and serve as the basis for methods to systematically predict them. At present, the number of studies on tandem domain swaps is still small and limited to a few domain folds, but they offer important insights into the folding and evolution of multidomain proteins with applications in the field of protein design.
Collapse
Affiliation(s)
- Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Pengfei Tian
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
34
|
Taube M, Pietralik Z, Szymanska A, Szutkowski K, Clemens D, Grubb A, Kozak M. The domain swapping of human cystatin C induced by synchrotron radiation. Sci Rep 2019; 9:8548. [PMID: 31189973 PMCID: PMC6561922 DOI: 10.1038/s41598-019-44811-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 02/04/2023] Open
Abstract
Domain swapping is observed for many proteins with flexible conformations. This phenomenon is often associated with the development of conformational diseases. Importantly, domain swapping has been observed for human cystatin C (HCC), a protein capable of forming amyloid deposits in brain arteries. In this study, the ability of short exposure to high-intensity X-ray radiation to induce domain swapping in solutions of several HCC variants (wild-type HCC and V57G, V57D, V57N, V57P, and L68V mutants) was determined. The study was conducted using time-resolved small-angle X-ray scattering (TR-SAXS) synchrotron radiation. The protein samples were also analysed using small-angle neutron scattering and NMR diffusometry. Exposing HCC to synchrotron radiation (over 50 ms) led to a gradual increase in the dimeric fraction, and for exposures longer than 150 ms, the oligomer fraction was dominant. In contrast, the non-irradiated protein solutions, apart from the V57P variant, were predominantly monomeric (e.g., V57G) or in monomer/dimer equilibrium. This work might represent the first observation of domain swapping induced by high-intensity X-rays.
Collapse
Affiliation(s)
- Michal Taube
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Kosma Szutkowski
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- NanoBioMedical Centre at Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614, Poznań, Poland
| | - Daniel Clemens
- Helmholtz-Zentrum Berlin für Materialien und Energie Lise-Meitner-Campus Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Anders Grubb
- Department of Clinical Chemistry, Lund University Hospital, S-22185, Lund, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
35
|
Honarmand S, Dabirmanesh B, Amanlou M, Khajeh K. The interaction of several herbal extracts with α-synuclein: Fibril formation and surface plasmon resonance analysis. PLoS One 2019; 14:e0217801. [PMID: 31185031 PMCID: PMC6559707 DOI: 10.1371/journal.pone.0217801] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/17/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins from their native conformation convert into highly ordered fibrillar aggregation under particular conditions; that are described as amyloid fibrils. α-Synuclein (α-Syn) is a small natively unfolded protein that its fibrillation is the causative factor of Parkinson's disease. One important approach in the development of therapeutic agents is the use of small molecules (such as flavonoids) that could specifically and efficiently inhibit the aggregation process. In this study the effect of few herbal extract (Berberis, Quercus robur, Zizyphus vulgaris, Salix aegyptica) containing flavonoids were investigated on fibril formation of α-syn by using conventional methods such as ThT fluorescence, circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The interaction of extracts were also analysed by surface plasmon resonance (SPR). Among extracts, Salix aegyptica revealed the highest inhibitory effect on fibril formation. As expected, Salix aegyptica extract also exhibited the highest affinity toward α-syn. Cell viability using MTT assay revealed that fibrils alone were more toxic than those containing the extract. Overall, we demonstrated that the affinity of compounds used in this study corresponds to their ability to arrest fibrillation and reduce cellular toxicity of α-syn fibrils.
Collapse
Affiliation(s)
- Shokouh Honarmand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University,Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University,Tehran, Iran
- * E-mail:
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University,Tehran, Iran
| |
Collapse
|
36
|
Esposito L, Donnarumma F, Ruggiero A, Leone S, Vitagliano L, Picone D. Structure, stability and aggregation propensity of a Ribonuclease A-Onconase chimera. Int J Biol Macromol 2019; 133:1125-1133. [PMID: 31026530 DOI: 10.1016/j.ijbiomac.2019.04.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
Abstract
Structural roles of loop regions are frequently overlooked in proteins. Nevertheless, they may be key players in the definition of protein topology and in the self-assembly processes occurring through domain swapping. We here investigate the effects on structure and stability of replacing the loop connecting the last two β-strands of RNase A with the corresponding region of the more thermostable Onconase. The crystal structure of this chimeric variant (RNaseA-ONC) shows that its terminal loop size better adheres to the topological rules for the design of stabilized proteins, proposed by Baker and coworkers [43]. Indeed, RNaseA-ONC displays a thermal stability close to that of RNase A, despite the lack of Pro at position 114, which, due to its propensity to favor a cis peptide bond, has been identified as an important stabilizing factor of the native protein. Accordingly, RNaseA-ONC is significantly more stable than RNase A variants lacking Pro114; RNaseA-ONC also displays a higher propensity to form oligomers in native conditions when compared to either RNase A or Onconase. This finding demonstrates that modifications of terminal loops should to be carefully controlled in terms of size and sequence to avoid unwanted and/or potentially harmful aggregation processes.
Collapse
Affiliation(s)
- Luciana Esposito
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Federica Donnarumma
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | - Alessia Ruggiero
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Serena Leone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | - Luigi Vitagliano
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Delia Picone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy.
| |
Collapse
|
37
|
Mondal B, Reddy G. Cosolvent Effects on the Growth of Protein Aggregates Formed by a Single Domain Globular Protein and an Intrinsically Disordered Protein. J Phys Chem B 2019; 123:1950-1960. [DOI: 10.1021/acs.jpcb.8b11128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
38
|
Nandwani N, Surana P, Negi H, Mascarenhas NM, Udgaonkar JB, Das R, Gosavi S. A five-residue motif for the design of domain swapping in proteins. Nat Commun 2019; 10:452. [PMID: 30692525 PMCID: PMC6349918 DOI: 10.1038/s41467-019-08295-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Domain swapping is the process by which identical monomeric proteins exchange structural elements to generate dimers/oligomers. Although engineered domain swapping is a compelling strategy for protein assembly, its application has been limited due to the lack of simple and reliable design approaches. Here, we demonstrate that the hydrophobic five-residue 'cystatin motif' (QVVAG) from the domain-swapping protein Stefin B, when engineered into a solvent-exposed, tight surface loop between two β-strands prevents the loop from folding back upon itself, and drives domain swapping in non-domain-swapping proteins. High-resolution structural studies demonstrate that engineering the QVVAG stretch independently into various surface loops of four structurally distinct non-domain-swapping proteins enabled the design of different modes of domain swapping in these proteins, including single, double and open-ended domain swapping. These results suggest that the introduction of the QVVAG motif can be used as a mutational approach for engineering domain swapping in diverse β-hairpin proteins.
Collapse
Affiliation(s)
- Neha Nandwani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Parag Surana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Hitendra Negi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.,Sastra University, Thanjavur, 613402, India
| | - Nahren M Mascarenhas
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.,Sacred Heart College, Tirupattur, Tamil Nadu, 635601, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India. .,Indian Institute of Science Education and Research, Pune, 411008, India.
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| | - Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
39
|
Bonì F, Milani M, Barbiroli A, Diomede L, Mastrangelo E, de Rosa M. Gelsolin pathogenic Gly167Arg mutation promotes domain-swap dimerization of the protein. Hum Mol Genet 2019; 27:53-65. [PMID: 29069428 PMCID: PMC5886171 DOI: 10.1093/hmg/ddx383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
AGel amyloidosis is a genetic degenerative disease characterized by the deposition of insoluble gelsolin protein aggregates in different tissues. Until recently, this disease was associated with two mutations of a single residue (Asp187 to Asn/Tyr) in the second domain of the protein. The general opinion is that pathogenic variants are not per se amyloidogenic but rather that the mutations trigger an aberrant proteolytic cascade, which results in the production of aggregation prone fragments. Here, we report the crystal structure of the second domain of gelsolin carrying the recently identified Gly167Arg mutation. This mutant dimerizes through a three-dimensional domain swapping mechanism, forming a tight but flexible assembly, which retains the structural topology of the monomer. To date, such dramatic conformational changes of this type have not been observed. Structural and biophysical characterizations reveal that the Gly167Arg mutation alone is responsible for the monomer to dimer transition and that, even in the context of the full-length protein, the pathogenic variant is prone to form dimers. These data suggest that, in addition to the well-known proteolytic-dependent mechanism, an alternative oligomerization pathway may participate in gelsolin misfolding and aggregation. We propose to integrate this alternative pathway into the current model of the disease that may also be relevant for other types of AGel amyloidosis, and other related diseases with similar underlying pathological mechanisms.
Collapse
Affiliation(s)
- Francesco Bonì
- CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mario Milani
- CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy
| | - Luisa Diomede
- Dipartimento di Biochimica e Farmacologia Molecolare, IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', 20156 Milan, Italy
| | - Eloise Mastrangelo
- CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo de Rosa
- CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
40
|
van der Kant R, van Durme J, Rousseau F, Schymkowitz J. SolubiS: Optimizing Protein Solubility by Minimal Point Mutations. Methods Mol Biol 2019; 1873:317-333. [PMID: 30341620 DOI: 10.1007/978-1-4939-8820-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein solubility is adapted to endogeneous protein abundance in the cell where protein folding is also assisted by multiple chaperones. During recombinant protein production, purification and storage proteins are frequently handled at concentrations that are several orders of magnitude above their physiological concentration, often resulting in protein aggregation. Here we describe SolubiS, a method allowing for (1) detection of aggregation prone linear segments within a protein sequence and (2) identification of mutations that abolish the aggregation propensity of these segments without affecting the thermodynamic stability of the protein. Provided the availability of structural information this method is applicable to all globular proteins including antibodies, resulting both in increased in vitro protein solubility and in better protein production yields.
Collapse
Affiliation(s)
- Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Joost van Durme
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
41
|
Chen M, Schafer NP, Wolynes PG. Surveying the Energy Landscapes of Aβ Fibril Polymorphism. J Phys Chem B 2018; 122:11414-11430. [PMID: 30215519 DOI: 10.1021/acs.jpcb.8b07364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many unrelated proteins and peptides have been found spontaneously to form amyloid fibers above a critical concentration. Even for a single sequence, however, the amyloid fold is not a single well-defined structure. Although the cross-β hydrogen bonding pattern is common to all amyloids, all other aspects of amyloid fiber structures are sensitive to both the sequence of the aggregating peptides and the solvent conditions under which the aggregation occurs. Amyloid fibers are easy to identify and grossly characterize using microscopy, but their insolubility and aperiodicity along the dimensions transverse to the fiber axis have complicated detailed experimental structural characterization. In this paper, we explore the landscape of possibilities for amyloid protofilament structures that are made up of a single stack of peptides associated in a parallel in-register manner. We view this landscape as a two-dimensional version of the usual three-dimensional protein folding problem: the survey of the two-dimensional folds of protein ribbons. Adopting this view leads to a practical method of predicting stable protofilament structures of arbitrary sequences. We apply this scheme to variants of Aβ, the amyloid forming peptide that is characteristically associated with Alzheimer's disease. Consistent with what is known from experiment, we find that Aβ protofibrils are polymorphic. To our surprise, however, the ribbon-folding landscape of Aβ turned out to be strikingly simple. We confirm that, at the level of the monomeric protofilament, the landscape for the Aβ sequence is reasonably well funneled toward structures that are similar to those that have been determined by experiment. The landscape has more distinct minima than does a typical globular protein landscape but fewer and deeper minima than the landscape of a randomly shuffled sequence having the same overall composition. It is tempting to consider the possibility that the significant degree of funneling of Aβ's ribbon-folding landscape has arisen as a result of natural selection. More likely, however, the intermediate complexity of Aβ's ribbon-folding landscape has come from the post facto selection of the Aβ sequence as an object of study by researchers because only by having a landscape with some degree of funneling can ordered aggregation of such a peptide occur at in vivo concentrations. In addition to predicting polymorph structures, we show that predicted solubilities of polymorphs correlate with experiment and with their elongation free energies computed by coarse-grained molecular dynamics.
Collapse
Affiliation(s)
- Mingchen Chen
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Bioengineering , Rice University , Houston , Texas 77005 , United States
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
42
|
Atomic insights into the genesis of cellular filaments by globular proteins. Nat Struct Mol Biol 2018; 25:705-714. [PMID: 30076408 PMCID: PMC6185745 DOI: 10.1038/s41594-018-0096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/21/2018] [Indexed: 02/04/2023]
Abstract
Self-assembly of proteins into filaments, such as actin and tubulin filaments, underlies essential cellular processes in all three domains of life. The early emergence of filaments in evolutionary history suggests that filament genesis might be a robust process. Here we describe the fortuitous construction of GFP fusion proteins that self-assemble as fluorescent polar filaments in Escherichia coli. Filament formation is achieved by appending as few as 12 residues. Crystal structures reveal that the protomers each donate an appendage to fill a groove between two following protomers along the filament. This exchange of appendages resembles runaway domain swapping but is distinguished by higher efficiency because monomers cannot competitively bind their own appendages. Ample evidence of this “runaway domain coupling” mechanism in nature suggests it could facilitate the evolutionary pathway from globular protein to polar filament, requiring a minimal extension of protein sequence and no significant refolding.
Collapse
|
43
|
Morreale FE, Testa A, Chaugule VK, Bortoluzzi A, Ciulli A, Walden H. Mind the Metal: A Fragment Library-Derived Zinc Impurity Binds the E2 Ubiquitin-Conjugating Enzyme Ube2T and Induces Structural Rearrangements. J Med Chem 2017; 60:8183-8191. [PMID: 28933844 PMCID: PMC5663392 DOI: 10.1021/acs.jmedchem.7b01071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Efforts
to develop inhibitors, activators, and effectors of biological
reactions using small molecule libraries are often hampered by interference
compounds, artifacts, and false positives that permeate the pool of
initial hits. Here, we report the discovery of a promising initial
hit compound targeting the Fanconi anemia ubiquitin-conjugating enzyme
Ube2T and describe its biophysical and biochemical characterization.
Analysis of the co-crystal structure led to the identification of
a contaminating zinc ion as solely responsible for the observed effects.
Zinc binding to the active site cysteine induces a domain swap in
Ube2T that leads to cyclic trimerization organized in an open-ended
linear assembly. Our study serves as a cautionary tale for screening
small molecule libraries and provides insights into the structural
plasticity of ubiquitin-conjugating enzymes.
Collapse
Affiliation(s)
- Francesca E Morreale
- MRC Protein Phosphorylation and Ubiquitylation Unit, ‡Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dundee DD1 5EH, United Kingdom
| | - Andrea Testa
- MRC Protein Phosphorylation and Ubiquitylation Unit, ‡Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dundee DD1 5EH, United Kingdom
| | - Viduth K Chaugule
- MRC Protein Phosphorylation and Ubiquitylation Unit, ‡Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dundee DD1 5EH, United Kingdom
| | - Alessio Bortoluzzi
- MRC Protein Phosphorylation and Ubiquitylation Unit, ‡Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dundee DD1 5EH, United Kingdom
| | - Alessio Ciulli
- MRC Protein Phosphorylation and Ubiquitylation Unit, ‡Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dundee DD1 5EH, United Kingdom
| | - Helen Walden
- MRC Protein Phosphorylation and Ubiquitylation Unit, ‡Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dundee DD1 5EH, United Kingdom
| |
Collapse
|
44
|
Hora M, Sarkar R, Morris V, Xue K, Prade E, Harding E, Buchner J, Reif B. MAK33 antibody light chain amyloid fibrils are similar to oligomeric precursors. PLoS One 2017; 12:e0181799. [PMID: 28746363 PMCID: PMC5528828 DOI: 10.1371/journal.pone.0181799] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/09/2017] [Indexed: 12/25/2022] Open
Abstract
Little structural information is available so far on amyloid fibrils consisting of immunoglobulin light chains. It is not understood which features of the primary sequence of the protein result in fibril formation. We report here MAS solid-state NMR studies to identify the structured core of κ-type variable domain light chain fibrils. The core contains residues of the CDR2 and the β-strands D, E, F and G of the native immunoglobulin fold. The assigned core region of the fibril is distinct in comparison to the core identified in a previous solid-state NMR study on AL-09 by Piehl at. al, suggesting that VL fibrils can adopt different topologies. In addition, we investigated a soluble oligomeric intermediate state, previously termed the alternatively folded state (AFS), using NMR and FTIR spectroscopy. The NMR oligomer spectra display a high degree of similarity when compared to the fibril spectra, indicating a high structural similarity of the two aggregation states. Based on comparison to the native state NMR chemical shifts, we suggest that fibril formation via domain-swapping seems unlikely. Moreover, we used our results to test the quality of different amyloid prediction algorithms.
Collapse
Affiliation(s)
- Manuel Hora
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (HMGU), Neuherberg, Germany
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (HMGU), Neuherberg, Germany
| | - Vanessa Morris
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (HMGU), Neuherberg, Germany
| | - Kai Xue
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (HMGU), Neuherberg, Germany
| | - Elke Prade
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Germany
| | - Emma Harding
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Germany
| | - Johannes Buchner
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Germany
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (HMGU), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
45
|
Perlenfein TJ, Mehlhoff JD, Murphy RM. Insights into the mechanism of cystatin C oligomer and amyloid formation and its interaction with β-amyloid. J Biol Chem 2017; 292:11485-11498. [PMID: 28487367 DOI: 10.1074/jbc.m117.786558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
Cystatin C (CysC) is a versatile and ubiquitously-expressed member of the cysteine protease inhibitor family that is present at notably high concentrations in cerebrospinal fluid. Under mildly denaturing conditions, CysC forms inactive domain-swapped dimers. A destabilizing mutation, L68Q, increases the rate of domain-swapping and causes a fatal amyloid disease, hereditary cystatin C amyloid angiopathy. Wild-type (wt) CysC will also aggregate into amyloid fibrils under some conditions. Propagated domain-swapping has been proposed as the mechanism by which CysC fibrils grow. We present evidence that a CysC mutant, V57N, stabilized against domain-swapping, readily forms fibrils, contradicting the propagated domain-swapping hypothesis. Furthermore, in physiological buffer, wt CysC can form oligomers without undergoing domain-swapping. These non-swapped oligomers are identical in secondary structure to CysC monomers and completely retain protease inhibitory activity. However, unlike monomers or dimers, the oligomers bind fluorescent dyes that indicate they have characteristics of pre-amyloid aggregates. Although these oligomers appear to be a pre-amyloid assembly, they are slower than CysC monomers to form fibrils. Fibrillation of CysC therefore likely initiates from the monomer and does not require domain-swapping. The non-swapped oligomers likely represent a dead-end offshoot of the amyloid pathway and must dissociate to monomers prior to rearranging to amyloid fibrils. These prefibrillar CysC oligomers were potent inhibitors of aggregation of the Alzheimer's-related peptide, β-amyloid. This result illustrates an example where heterotypic interactions between pre-amyloid oligomers prevent the homotypic interactions that would lead to mature amyloid fibrils.
Collapse
Affiliation(s)
- Tyler J Perlenfein
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Jacob D Mehlhoff
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
46
|
van der Kant R, Karow-Zwick AR, Van Durme J, Blech M, Gallardo R, Seeliger D, Aßfalg K, Baatsen P, Compernolle G, Gils A, Studts JM, Schulz P, Garidel P, Schymkowitz J, Rousseau F. Prediction and Reduction of the Aggregation of Monoclonal Antibodies. J Mol Biol 2017; 429:1244-1261. [PMID: 28322916 PMCID: PMC5397608 DOI: 10.1016/j.jmb.2017.03.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022]
Abstract
Protein aggregation remains a major area of focus in the production of monoclonal antibodies. Improving the intrinsic properties of antibodies can improve manufacturability, attrition rates, safety, formulation, titers, immunogenicity, and solubility. Here, we explore the potential of predicting and reducing the aggregation propensity of monoclonal antibodies, based on the identification of aggregation-prone regions and their contribution to the thermodynamic stability of the protein. Although aggregation-prone regions are thought to occur in the antigen binding region to drive hydrophobic binding with antigen, we were able to rationally design variants that display a marked decrease in aggregation propensity while retaining antigen binding through the introduction of artificial aggregation gatekeeper residues. The reduction in aggregation propensity was accompanied by an increase in expression titer, showing that reducing protein aggregation is beneficial throughout the development process. The data presented show that this approach can significantly reduce liabilities in novel therapeutic antibodies and proteins, leading to a more efficient path to clinical studies.
Collapse
Affiliation(s)
- Rob van der Kant
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium
| | - Anne R Karow-Zwick
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Joost Van Durme
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Rodrigo Gallardo
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium
| | - Daniel Seeliger
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Kerstin Aßfalg
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Pieter Baatsen
- EM-platform VIB Bio Imaging Core, VIB-KU Leuven, Herestraat 49, B-3000 Leuven
| | - Griet Compernolle
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Herestraat 49, PO 820, B-3000 Leuven, Belgium
| | - Ann Gils
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Herestraat 49, PO 820, B-3000 Leuven, Belgium
| | - Joey M Studts
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Patrick Schulz
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Joost Schymkowitz
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium.
| | - Frederic Rousseau
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium.
| |
Collapse
|
47
|
Yamanaka M, Hoshizumi M, Nagao S, Nakayama R, Shibata N, Higuchi Y, Hirota S. Formation and carbon monoxide-dependent dissociation of Allochromatium vinosum cytochrome c' oligomers using domain-swapped dimers. Protein Sci 2017; 26:464-474. [PMID: 27883268 PMCID: PMC5326568 DOI: 10.1002/pro.3090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c' from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four-helix bundle structure containing a covalently bound five-coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer-monomer transition according to the absence and presence of CO. Herein, domain-swapped dimeric AVCP was constructed and utilized to form a tetramer and high-order oligomers. The X-ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain-swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain-swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit-subunit interactions at the interfaces of the domain-swapped dimer and monomer subunits in the tetramer were also similar to the subunit-subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain-swapped dimer and two monomers upon CO binding. Without monomers, the domain-swapped dimers formed tetramers, hexamers, and higher-order oligomers in the absence of CO, whereas the oligomers dissociated to domain-swapped dimers in the presence of CO, demonstrating that the domain-swapped dimer maintains the CO-induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer-monomer transition protein.
Collapse
Affiliation(s)
- Masaru Yamanaka
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Makoto Hoshizumi
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Satoshi Nagao
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Ryoko Nakayama
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Naoki Shibata
- Department of Life ScienceGraduate School of Life Science, University of Hyogo3‐2‐1 Koto, Kamigori‐cho, Ako‐gunHyogo678‐1297Japan
- RIKEN SPring‐8 Center1‐1‐1 Koto, Sayo‐cho, Sayo‐gunHyogo679‐5148Japan
| | - Yoshiki Higuchi
- Department of Life ScienceGraduate School of Life Science, University of Hyogo3‐2‐1 Koto, Kamigori‐cho, Ako‐gunHyogo678‐1297Japan
- RIKEN SPring‐8 Center1‐1‐1 Koto, Sayo‐cho, Sayo‐gunHyogo679‐5148Japan
| | - Shun Hirota
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| |
Collapse
|
48
|
Effect of methionine80 heme coordination on domain swapping of cytochrome c. J Biol Inorg Chem 2017; 22:705-712. [DOI: 10.1007/s00775-017-1446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
49
|
Abstract
Amyloids are highly ordered protein aggregates that are associated with both disease (including PrP prion, Alzheimer's, and Parkinson's) and biological function. The amyloid structure is composed of the cross-β-sheet entity, which is an almost indefinitely repeating two-layered intermolecular β-sheet motif. The three-dimensional (3D) structure is unique among protein folds because it folds only upon intermolecular contacts (for a folding to occur, only short sequences of amino acid residues are required), and the structure repeats itself at the atomic level (i.e., every 4.7 Å). As a consequence of this structure, among others, it can grow by recruiting corresponding amyloid peptide/protein and thus has the capacity to be an infectious protein (i.e., a prion). Furthermore, its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Because of these and other properties, the activities of amyloids are manifold and include peptide storage, template assistance, loss of function, gain of function, generation of toxicity, membrane binding, infectivity, and more. This review summarizes the structural nature of the cross-β-sheet motif on the basis of a few high-resolution structural studies of amyloids in the context of potential biological activities.
Collapse
Affiliation(s)
- Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
50
|
Understanding the Effect of Disease-Related Mutations on Human Prion Protein Structure: Insights From NMR Spectroscopy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:83-103. [DOI: 10.1016/bs.pmbts.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|