1
|
Suskiewicz MJ, Hajdusits B, Beveridge R, Heuck A, Vu LD, Kurzbauer R, Hauer K, Thoeny V, Rumpel K, Mechtler K, Meinhart A, Clausen T. Structure of McsB, a protein kinase for regulated arginine phosphorylation. Nat Chem Biol 2019; 15:510-518. [PMID: 30962626 DOI: 10.1038/s41589-019-0265-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Protein phosphorylation regulates key processes in all organisms. In Gram-positive bacteria, protein arginine phosphorylation plays a central role in protein quality control by regulating transcription factors and marking aberrant proteins for degradation. Here, we report structural, biochemical, and in vivo data of the responsible kinase, McsB, the founding member of an arginine-specific class of protein kinases. McsB differs in structure and mechanism from protein kinases that act on serine, threonine, and tyrosine residues and instead has a catalytic domain related to that of phosphagen kinases (PhKs), metabolic enzymes that phosphorylate small guanidino compounds. In McsB, the PhK-like phosphotransferase domain is structurally adapted to target protein substrates and is accompanied by a novel phosphoarginine (pArg)-binding domain that allosterically controls protein kinase activity. The identification of distinct pArg reader domains in this study points to a remarkably complex signaling system, thus challenging simplistic views of bacterial protein phosphorylation.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Bence Hajdusits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Rebecca Beveridge
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Heuck
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Lam Dai Vu
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,VIB/UGent, Ghent, Belgium
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Katja Hauer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria. .,Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
2
|
Davulcu O, Peng Y, Brüschweiler R, Skalicky JJ, Chapman MS. Elevated μs-ms timescale backbone dynamics in the transition state analog form of arginine kinase. J Struct Biol 2017; 200:258-266. [PMID: 28495594 DOI: 10.1016/j.jsb.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
Abstract
Arginine kinase catalyzes reversible phosphoryl transfer between arginine and ATP. Crystal structures of arginine kinase in an open, substrate-free form and closed, transition state analog (TSA) complex indicate that the enzyme undergoes substantial domain and loop rearrangements required for substrate binding, catalysis, and product release. Nuclear magnetic resonance (NMR) has shown that substrate-free arginine kinase is rigid on the ps-ns timescale (average S2=0.84±0.08) yet quite dynamic on the µs-ms timescale (35 residues with Rex, 12%), and that movements of the N-terminal domain and the loop comprising residues I182-G209 are rate-limiting on catalysis. Here, NMR of the TSA-bound enzyme shows similar rigidity on the ps-ns timescale (average S2=0.91±0.05) and substantially increased μs-ms timescale dynamics (77 residues; 22%). Many of the residues displaying μs-ms dynamics in NMR Carr-Purcell-Meiboom-Gill (CPMG) 15N backbone relaxation dispersion experiments of the TSA complex are also dynamic in substrate-free enzyme. However, the presence of additional dynamic residues in the TSA-bound form suggests that dynamics extend through much of the C-terminal domain, which indicates that in the closed form, a larger fraction of the protein takes part in conformational transitions to the excited state(s). Conformational exchange rate constants (kex) of the TSA complex are all approximately 2500s-1, higher than any observed in the substrate-free enzyme (800-1900s-1). Elevated μs-ms timescale protein dynamics in the TSA-bound enzyme is more consistent with recently postulated catalytic networks involving multiple interconnected states at each step of the reaction, rather than a classical single stabilized transition state.
Collapse
Affiliation(s)
- Omar Davulcu
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Yu Peng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States; Department of Biological Chemistry and Pharmacology and Campus Chemical Instrument Center, The Ohio State University, OH 43210, United States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Michael S Chapman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, United States.
| |
Collapse
|
3
|
Peng Y, Hansen AL, Bruschweiler-Li L, Davulcu O, Skalicky JJ, Chapman MS, Brüschweiler R. The Michaelis Complex of Arginine Kinase Samples the Transition State at a Frequency That Matches the Catalytic Rate. J Am Chem Soc 2017; 139:4846-4853. [PMID: 28287709 DOI: 10.1021/jacs.7b00236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arginine kinase (AK), which is a member of the phosphagen kinase family, serves as a model system for studying the structural and dynamic determinants of biomolecular enzyme catalysis of all major states involved of the enzymatic cycle. These states are the apo state (substrate free), the Michaelis complex analogue AK:Arg:Mg·AMPPNP (MCA), a product complex analogue AK:pAIE:Mg·ADP (PCA), and the transition state analogue AK:Arg:Mg·ADP:NO3- (TSA). The conformational dynamics of these states have been studied by NMR relaxation dispersion measurements of the methyl groups of the Ile, Leu, and Val residues at two static magnetic fields. Although all states undergo significant amounts of μs-ms time scale dynamics, only the MCA samples a dominant excited state that resembles the TSA, as evidenced by the strong correlation between the relaxation dispersion derived chemical shift differences Δω and the equilibrium chemical shift differences Δδ of these states. The average lifetime of the MCA is 36 ms and the free energy difference to the TSA-like form is 8.5 kJ/mol. It is shown that the conformational energy landscape of the Michaelis complex analogue is shaped in a way that at room temperature it channels passage to the transition state, thereby determining the rate-limiting step of the phosphorylation reaction of arginine. Conversely, relaxation dispersion experiments of the TSA reveal that it samples the structures of the Michaelis complex analogue or the apo state as its dominant excited state. This reciprocal behavior shows that the free energy of the TSA, with all ligands bound, is lower by only about 8.9 kJ/mol than that of the Michaelis or apo complex conformations with the TSA ligands present.
Collapse
Affiliation(s)
| | | | | | - Omar Davulcu
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Michael S Chapman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | | |
Collapse
|
4
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
5
|
Godsey MH, Davulcu O, Nix JC, Skalicky JJ, Brüschweiler RP, Chapman MS. The Sampling of Conformational Dynamics in Ambient-Temperature Crystal Structures of Arginine Kinase. Structure 2016; 24:1658-1667. [PMID: 27594681 DOI: 10.1016/j.str.2016.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 01/26/2023]
Abstract
Arginine kinase provides a model for functional dynamics, studied through crystallography, enzymology, and nuclear magnetic resonance. Structures are now solved, at ambient temperature, for the transition state analog (TSA) complex. Analysis of quasi-rigid sub-domain displacements show that differences between the two TSA structures average about 5% of changes between substrate-free and TSA forms, and they are nearly co-linear. Small backbone hinge rotations map to sites that also flex on substrate binding. Anisotropic atomic displacement parameters (ADPs) are refined using rigid-body TLS constraints. Consistency between crystal forms shows that they reflect intrinsic molecular properties more than crystal lattice effects. In many regions, the favored directions of thermal/static displacement are appreciably correlated with movements on substrate binding. Correlation between ADPs and larger substrate-associated movements implies that the latter approximately follow paths of low-energy intrinsic motions.
Collapse
Affiliation(s)
- Michael H Godsey
- Department of Math/Science, Concordia University, Portland, OR 97211, USA
| | - Omar Davulcu
- Department Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jay C Nix
- Molecular Biology Consortium, Lawrence Berkeley Natl. Lab., Berkeley, CA 94720, USA
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 8412, USA
| | - Rafael P Brüschweiler
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Michael S Chapman
- Department Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
7
|
Gu Y, Hansen AL, Peng Y, Brüschweiler R. Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yina Gu
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center The Ohio State University 460 W. 12th Avenue Columbus OH 43210 USA
| | - Yu Peng
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
- Campus Chemical Instrument Center The Ohio State University 460 W. 12th Avenue Columbus OH 43210 USA
- Department of Biological Chemistry and Pharmacology The Ohio State University 1645 Neil Avenue Columbus OH 43210 USA
| |
Collapse
|
8
|
Gu Y, Hansen AL, Peng Y, Brüschweiler R. Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data. Angew Chem Int Ed Engl 2016; 55:3117-9. [PMID: 26821600 DOI: 10.1002/anie.201511711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/03/2023]
Abstract
Functional motions of (15)N-labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per protein. Recently, NMR chemical exchange saturation transfer (CEST) experiments have emerged to probe slow millisecond motions complementing R1ρ and CPMG-type experiments. CEST also simultaneously reports on site-specific R1 and R2 parameters. It is shown here how CEST-derived R1 and R2 relaxation parameters can be measured within a few hours at an accuracy comparable to traditional relaxation experiments. Using a "lean" version of the model-free approach S(2) order parameters can be determined that match those from the standard model-free approach applied to (15)N R1, R2 , and {(1)H}-(15)N NOE data. The new methodology, which is demonstrated for ubiquitin and arginine kinase (42 kDa), should serve as an effective screening tool of protein dynamics from picosecond-to-millisecond timescales.
Collapse
Affiliation(s)
- Yina Gu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Yu Peng
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. .,Campus Chemical Instrument Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH, 43210, USA. .,Department of Biological Chemistry and Pharmacology, The Ohio State University, 1645 Neil Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Ding J, Yang C, Niu X, Hu Y, Jin C. HdeB chaperone activity is coupled to its intrinsic dynamic properties. Sci Rep 2015; 5:16856. [PMID: 26593705 PMCID: PMC4655364 DOI: 10.1038/srep16856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Enteric bacteria encounter extreme acidity when passing through hosts' stomach. Since the bacterial periplasmic space quickly equilibrates with outer environment, an efficient acid resistance mechanism is essential in preventing irreversible protein denaturation/aggregation and maintaining bacteria viability. HdeB, along with its homolog HdeA, was identified as a periplasmic acid-resistant chaperone. Both proteins exist as homodimers and share similar monomeric structures under neutral pH, while showing different dimeric packing interfaces. Previous investigations show that HdeA functions through an acid-induced dimer-to-monomer transition and partial unfolding at low pH (pH 2-3), resulting in exposure of hydrophobic surfaces that bind substrate proteins. In contrast, HdeB appears to have a much higher optimal activation pH (pH 4-5), under which condition the protein maintains a well-folded dimer and the mechanism for its chaperone activity remains elusive. Herein, we present an NMR study of HdeB to investigate its dynamic properties. Our results reveal that HdeB undergoes significant micro- to milli-second timescale conformational exchanges at neutral to near-neutral pH, under the later condition it exhibits optimal activity. The current study indicates that HdeB activation is coupled to its intrinsic dynamics instead of structural changes, and therefore its functional mechanism is apparently different from HdeA.
Collapse
Affiliation(s)
- Jienv Ding
- College of Life Sciences, Peking University, Beijing 100871, China.,Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Chengfeng Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Yunfei Hu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Changwen Jin
- College of Life Sciences, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Chapman BK, Davulcu O, Skalicky JJ, Brüschweiler RP, Chapman MS. Parsimony in Protein Conformational Change. Structure 2015; 23:1190-8. [PMID: 26095029 DOI: 10.1016/j.str.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/13/2015] [Accepted: 05/03/2015] [Indexed: 01/25/2023]
Abstract
Protein conformational change is analyzed by finding the minimalist backbone torsion angle rotations that superpose crystal structures within experimental error. Of several approaches for enforcing parsimony during flexible least-squares superposition, an ℓ(1)-norm restraint provided greatest consistency with independent indications of flexibility from nuclear magnetic resonance relaxation dispersion and chemical shift perturbation in arginine kinase and four previously studied systems. Crystallographic cross-validation shows that the dihedral parameterization describes conformational change more accurately than rigid-group approaches. The rotations that superpose the principal elements of structure constitute a small fraction of the raw (φ, ψ) differences that also reflect local conformation and experimental error. Substantial long-range displacements can be mediated by modest dihedral rotations, accommodated even within α helices and β sheets without disruption of hydrogen bonding at the hinges. Consistency between ligand-associated and intrinsic motions (in the unliganded state) implies that induced changes tend to follow low-barrier paths between conformational sub-states that are in intrinsic dynamic equilibrium.
Collapse
Affiliation(s)
- Brynmor K Chapman
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, School of Medicine L-224, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Omar Davulcu
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, School of Medicine L-224, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Rafael P Brüschweiler
- Department of Chemistry & Biochemistry, The Ohio State University, Newman and Wolfrom Laboratory, 100 West 18th Avenue, Columbus, OH 43210-1173, USA
| | - Michael S Chapman
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, School of Medicine L-224, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| |
Collapse
|
11
|
Rivas-Pardo JA, Alegre-Cebollada J, Ramírez-Sarmiento CA, Fernandez JM, Guixé V. Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization. ACS NANO 2015; 9:3996-4005. [PMID: 25840594 PMCID: PMC4467879 DOI: 10.1021/nn507480v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Enzyme-substrate binding is a dynamic process intimately coupled to protein structural changes, which in turn changes the unfolding energy landscape. By the use of single-molecule force spectroscopy (SMFS), we characterize the open-to-closed conformational transition experienced by the hyperthermophilic adenine diphosphate (ADP)-dependent glucokinase from Thermococcus litoralis triggered by the sequential binding of substrates. In the absence of substrates, the mechanical unfolding of TlGK shows an intermediate 1, which is stabilized in the presence of Mg·ADP(-), the first substrate to bind to the enzyme. However, in the presence of this substrate, an additional unfolding event is observed, intermediate 1*. Finally, in the presence of both substrates, the unfolding force of intermediates 1 and 1* increases as a consequence of the domain closure. These results show that SMFS can be used as a powerful experimental tool to investigate binding mechanisms of different enzymes with more than one ligand, expanding the repertoire of protocols traditionally used in enzymology.
Collapse
Affiliation(s)
- Jaime Andrés Rivas-Pardo
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Jorge Alegre-Cebollada
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
| | - César A. Ramírez-Sarmiento
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Julio M. Fernandez
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| |
Collapse
|
12
|
Merceron R, Awama AM, Montserret R, Marcillat O, Gouet P. The substrate-free and -bound crystal structures of the duplicated taurocyamine kinase from the human parasite Schistosoma mansoni. J Biol Chem 2015; 290:12951-63. [PMID: 25837252 DOI: 10.1074/jbc.m114.628909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 01/01/2023] Open
Abstract
The taurocyamine kinase from the blood fluke Schistosoma mansoni (SmTK) belongs to the phosphagen kinase (PK) family and catalyzes the reversible Mg(2+)-dependent transfer of a phosphoryl group between ATP and taurocyamine. SmTK is derived from gene duplication, as are all known trematode TKs. Our crystallographic study of SmTK reveals the first atomic structure of both a TK and a PK with a bilobal structure. The two unliganded lobes present a canonical open conformation and interact via their respective C- and N-terminal domains at a helix-mediated interface. This spatial arrangement differs from that observed in true dimeric PKs, in which both N-terminal domains make contact. Our structures of SmTK complexed with taurocyamine or l-arginine compounds explain the mechanism by which an arginine residue of the phosphagen specificity loop is crucial for substrate specificity. An SmTK crystal was soaked with the dead end transition state analog (TSA) components taurocyamine-NO3 (2-)-MgADP. One SmTK monomer was observed with two bound TSAs and an asymmetric conformation, with the first lobe semiclosed and the second closed. However, isothermal titration calorimetry and enzyme kinetics experiments showed that the two lobes function independently. A small angle x-ray scattering model of SmTK-TSA in solution with two closed active sites was generated.
Collapse
Affiliation(s)
- Romain Merceron
- From the Institut de Biologie et Chimie des Protéines, BMSSI-IBCP, UMR 5086 CNRS Université Lyon 1, 7, Passage du Vercors, 69367 Lyon Cedex 07, France and
| | - Ayman M Awama
- the Institut de Chimie et Biochimie Moléculaire et Supramoléculaire, UMR 5246 CNRS Université Lyon 1, 69622 Villeurbanne, France
| | - Roland Montserret
- From the Institut de Biologie et Chimie des Protéines, BMSSI-IBCP, UMR 5086 CNRS Université Lyon 1, 7, Passage du Vercors, 69367 Lyon Cedex 07, France and
| | - Olivier Marcillat
- the Institut de Chimie et Biochimie Moléculaire et Supramoléculaire, UMR 5246 CNRS Université Lyon 1, 69622 Villeurbanne, France
| | - Patrice Gouet
- From the Institut de Biologie et Chimie des Protéines, BMSSI-IBCP, UMR 5086 CNRS Université Lyon 1, 7, Passage du Vercors, 69367 Lyon Cedex 07, France and
| |
Collapse
|
13
|
Abstract
![]()
Biological activities of enzymes, including
regulation or coordination of mechanistic stages preceding or following
the chemical step, may depend upon kinetic or equilibrium changes
in protein conformations. Exchange of more open or flexible conformational
states with more closed or constrained states can influence inhibition,
allosteric regulation, substrate recognition, formation of the Michaelis
complex, side reactions, and product release. NMR spectroscopy has
long been applied to the study of conformational dynamic processes
in enzymes because these phenomena can be characterized over multiple
time scales with atomic site resolution. Laboratory-frame spin-relaxation
measurements, sensitive to reorientational motions on picosecond–nanosecond
time scales, and rotating-frame relaxation-dispersion measurements,
sensitive to chemical exchange processes on microsecond–millisecond
time scales, provide information on both conformational distributions
and kinetics. This Account reviews NMR spin relaxation studies of
the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational
flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations
of the bacterial ribonuclease H enzymes show that the handle region,
one of three loop regions that interact with substrates, interconverts
between two conformations. Comparison of these conformations with
the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed
state is inhibitory to binding. The large population of the closed
conformation in T. thermophilus ribonuclease H contributes
to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized
a conformational transition in AlkB between an open state, in which
the side chains of methionine residues in the active site are disordered,
and a closed state, in which these residues are ordered. The open
state is highly populated in the AlkB/Zn(II) complex, and the closed
state is highly populated in the AlkB/Zn(II)/2OG/substrate complex,
in which 2OG is the 2-oxoglutarate cosubstrate and the substrate is
a methylated DNA oligonucleotide. The equilibrium is shifted to approximately
equal populations of the two conformations in the AlkB/Zn(II)/2OG
complex. The conformational shift induced by 2OG ensures that 2OG
binds to AlkB/Zn(II) prior to the substrate. In addition, the opening
rate of the closed conformation limits premature release of substrate,
preventing generation of toxic side products by reaction with water.
Closure of active site loop 6 in triosephosphate isomerase is critical
for forming the Michaelis complex, but reopening of the loop after
the reaction is (partially) rate limiting. NMR spin relaxation and
MD simulations of triosephosphate isomerase in complex with glycerol
3-phosphate demonstrate that closure of loop 6 is a highly correlated
rigid-body motion. The MD simulations also indicate that motions of
Gly173 in the most flexible region of loop 6 contribute to opening
of the active site loop for product release. Considered together,
these three enzyme systems illustrate the power of NMR spin relaxation
investigations in providing global insights into the role of conformational
dynamic processes in the mechanisms of enzymes from initial activation
to final product release.
Collapse
Affiliation(s)
- Arthur G. Palmer
- Department of Biochemistry and
Molecular Biophysics, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| |
Collapse
|
14
|
Davulcu O, Niu X, Brüschweiler-Li L, Brüschweiler R, Skalicky JJ, Chapman MS. Backbone resonance assignments of the 42 kDa enzyme arginine kinase in the transition state analogue form. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:335-338. [PMID: 23893440 PMCID: PMC3906217 DOI: 10.1007/s12104-013-9512-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/21/2013] [Indexed: 06/02/2023]
Abstract
Nearly complete backbone resonance assignments for the 357 residue, 42 kDa enzyme arginine kinase in a transition state analogue (TSA) complex are presented. The TSA is a quaternary complex of arginine kinase, MgADP, arginine, and nitrate. About 93% (320 of 344) of the non-proline backbone amides were assigned using an enzyme enriched with (2)H, (13)C, and (15)N in combination with three enzyme samples prepared with a single (15)N-labeled amino acid (K, L, and R). The amide assignments will provide the foundation for investigating the dynamics of arginine kinase when in a TSA complex.
Collapse
Affiliation(s)
- Omar Davulcu
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, 97239-3098, USA
| | - Xiaogang Niu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Lei Brüschweiler-Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Jack J. Skalicky
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, 84112-5650, USA
| | - Michael S. Chapman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, 97239-3098, USA
| |
Collapse
|
15
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
16
|
Clark SA, Davulcu O, Chapman MS. Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs. Biochem Biophys Res Commun 2012; 427:212-7. [PMID: 22995310 DOI: 10.1016/j.bbrc.2012.09.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/09/2012] [Indexed: 11/29/2022]
Abstract
Arginine kinase catalyzes the reversible transfer of a phosphoryl group between ATP and l-arginine and is a monomeric homolog of the human enzyme creatine kinase. Arginine and creatine kinases belongs to the phosphagen kinase family of enzymes, which consists of eight known members, each of which is specific for its own phosphagen. Here, the source of phosphagen specificity in arginine kinase is investigated through the use of phosphagen analogs. Crystal structures have been determined for Limulus polyphemus arginine kinase with one of four arginine analogs bound in a transition state analog complex: l-ornithine, l-citrulline, imino-l-ornithine, and d-arginine. In all complexes, the enzyme achieves a closed conformation very similar to that of the cognate transition state analog complex, but differences are observed in the configurations of bound ligands. Arginine kinase exhibits no detectable activity towards ornithine, citrulline, or imino-l-ornithine, and only trace activity towards d-arginine. The crystal structures presented here demonstrate that phosphagen specificity is derived neither from a lock-and-key mechanism nor a modulation of induced-fit conformational changes, but potentially from subtle distortions in bound substrate configurations.
Collapse
Affiliation(s)
- Shawn A Clark
- Institute of Molecular Biophysics, Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
17
|
Rivière G, Hologne M, Marcillat O, Lancelin JM. Dynamical properties of the loop 320s of substrate-free and substrate-bound muscle creatine kinase by NMR: evidence for independent subunits. FEBS J 2012; 279:2863-75. [PMID: 22715856 DOI: 10.1111/j.1742-4658.2012.08667.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Muscle creatine kinase (MCK; EC2.7.3.2) is a 86 kDa homodimer that belongs to the family of guanidino kinases. MCK has been intensively studied for several decades, but it is still not known why it is a dimer because this quaternary structure does not translate into obvious structural or functional advantages over the homologous monomeric arginine kinase. In particular, it remains to be demonstrated whether MCK subunits are independent. Here, we describe NMR chemical-shift perturbation and relaxation experiments designed to study the active site 320s flexible loop of this enzyme. The analysis was performed with the enzyme in its ligand-free and MgADP-complexed forms, as well as with the transition-state analogue abortive complex (MCK-Mg-ADP-creatine-nitrate ion). Our data indicate that each subunit can bind substrates independently.
Collapse
Affiliation(s)
- Gwladys Rivière
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | |
Collapse
|
18
|
Ji CG, Zhang JZH. Understanding the molecular mechanism of enzyme dynamics of ribonuclease A through protonation/deprotonation of HIS48. J Am Chem Soc 2011; 133:17727-37. [PMID: 21942333 DOI: 10.1021/ja206212a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulation is carried out to investigate the enzyme dynamics of RNase A with the HIS48 in three different states (HIP48 (protonated), HID48 (deprotonated), and H48A mutant). Insights derived from the current theoretical study, combined with the available experimental observations, enabled us to provide a microscopic picture for the efficient enzyme dynamics. Specifically, in the "closed" state or HIP48, the N-terminal hinge loop is intact and the enzyme remains in a relatively stable conformation which is preferred for catalytic reaction. Deprotonation of HIS48 induces the denaturing of this hinge-loop into a 3(10)-helix, causing it to break the original interaction network around the loop-1 and drive the partial unfolding of the N-terminal. The enhanced dynamic motion of the N-terminal helix facilitates the release of the catalytic product (the rate limiting step) and speeds up the overall catalytic process. The current study established that HIS49 acts as a modulator for the transformation of conformational states through the perturbing of hydrogen bond networks across loop-1, the N-terminal helix, and other residues nearby. Our study suggests that HIS48 may also serve to transport loop-1's kinetic energy to the reaction center.
Collapse
Affiliation(s)
- Chang G Ji
- State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China.
| | | |
Collapse
|
19
|
Abstract
Arginine kinase catalyzes the reversible transfer of a phosphoryl group between ATP and arginine. It is the arthropod homologue of creatine kinase, buffering cellular ATP levels. Crystal structures of arginine kinase, in substrate-free and substrate-bound forms, have revealed large conformational changes associated with the catalytic cycle. Recent nuclear magnetic resonance identified movements of the N-terminal domain and a loop comprising residues I182--G209 with conformational exchange rates in the substrate-free enzyme similar to the turnover rate. Here, to understand whether these motions might be rate-limiting, we determined activation barriers for both the intrinsic dynamics and enzyme turnover using measurements over a temperature range of 15-30 °C. (15)N transverse relaxation dispersion yields activation barriers of 46 ± 8 and 34 ± 12 kJ/mol for the N-terminal domain and I182--G209 loop, respectively. An activation barrier of 34 ± 13 kJ/mol was obtained for enzyme turnover from steady-state kinetics. The similarity between the activation barriers is indeed consistent with turnover being limited by backbone conformational dynamics and pinpoints the locations of potentially rate-limiting motions.
Collapse
Affiliation(s)
- Omar Davulcu
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, 97239-3098, USA
| | - Jack J. Skalicky
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, 84112-5650, USA
| | - Michael S. Chapman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, 97239-3098, USA
| |
Collapse
|
20
|
Bush DJ, Kirillova O, Clark SA, Davulcu O, Fabiola F, Xie Q, Somasundaram T, Ellington WR, Chapman MS. The structure of lombricine kinase: implications for phosphagen kinase conformational changes. J Biol Chem 2011; 286:9338-50. [PMID: 21212263 PMCID: PMC3058953 DOI: 10.1074/jbc.m110.202796] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/03/2011] [Indexed: 11/06/2022] Open
Abstract
Lombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free. The two structures are similar to each other and more similar to the substrate-free forms of homologs than to the substrate-bound forms of the other phosphagen kinases. Active site specificity loop 309-317, which is disordered in substrate-free structures of homologs and is known from the NMR of arginine kinase to be inherently dynamic, is resolved in both lombricine kinase structures, providing an improved basis for understanding the loop dynamics. Phosphagen kinases undergo a segmented closing on substrate binding, but the lombricine kinase ADP complex is in the open form more typical of substrate-free homologs. Through a comparison with prior complexes of intermediate structure, a correlation was revealed between the overall enzyme conformation and the substrate interactions of His(178). Comparative modeling provides a rationale for the more relaxed specificity of these kinases, of which the natural substrates are among the largest of the phosphagen substrates.
Collapse
Affiliation(s)
- D. Jeffrey Bush
- From the Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Olga Kirillova
- the Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239-3098, and
| | - Shawn A. Clark
- From the Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Omar Davulcu
- the Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239-3098, and
| | | | - Qing Xie
- the Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239-3098, and
| | | | - W. Ross Ellington
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Michael S. Chapman
- the Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239-3098, and
| |
Collapse
|
21
|
Niu X, Brüschweiler-Li L, Davulcu O, Skalicky JJ, Brüschweiler R, Chapman MS. Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility. J Mol Biol 2011; 405:479-96. [PMID: 21075117 PMCID: PMC3017626 DOI: 10.1016/j.jmb.2010.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/21/2010] [Accepted: 11/01/2010] [Indexed: 11/15/2022]
Abstract
The phosphagen kinase family, including creatine and arginine kinases (AKs), catalyzes the reversible transfer of a "high-energy" phosphate between ATP and a phosphoguanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of AK structures were interpreted as a plastic deformation. Here, the structure of Limulus substrate-free AK is refined against high-resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa) and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.7 Å transition-state analog complex shows large substrate-induced domain motions that can be broken down into movements of smaller quasi-rigid bodies. The solution-state structure of substrate-free AK is most consistent with an equilibrium of substrate-free and substrate-bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, "substrate-induced" motions are along modes that are intrinsically flexible in the substrate-free enzyme and likely involve some degree of conformational selection.
Collapse
Affiliation(s)
- Xiaogang Niu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306
| | - Lei Brüschweiler-Li
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306
| | - Omar Davulcu
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239-3098
| | - Jack J. Skalicky
- Dept. Biochemistry; Univ. Utah School of Medicine, Salt Lake City, UT 8412-5650
| | - Rafael Brüschweiler
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306
| | - Michael S. Chapman
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239-3098
| |
Collapse
|
22
|
Ma B, Nussinov R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr Opin Chem Biol 2010; 14:652-9. [PMID: 20822947 PMCID: PMC6407632 DOI: 10.1016/j.cbpa.2010.08.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 12/13/2022]
Abstract
Recent data increasingly reveal that conformational dynamics are indispensable to enzyme function throughout the catalytic cycle, in substrate recruiting, chemical transformation, and product release. Conformational transitions may involve conformational selection and induced fit, which can be viewed as a special case in the catalytic network. NMR, X-ray crystallography, single-molecule FRET, and simulations clearly demonstrate that the free enzyme dynamics already encompass all the conformations necessary for substrate binding, preorganization, transition-state stabilization, and product release. Conformational selection and substate population shift at each step of the catalytic turnover can accommodate enzyme specificity and efficiency. Within such a framework, entropy can have a larger role in conformational dynamics than in direct energy transfer in dynamically promoted catalysis.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
23
|
Larion M, Salinas RK, Bruschweiler-Li L, Brüschweiler R, Miller BG. Direct evidence of conformational heterogeneity in human pancreatic glucokinase from high-resolution nuclear magnetic resonance. Biochemistry 2010; 49:7969-71. [PMID: 20735087 PMCID: PMC3023983 DOI: 10.1021/bi101098f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-resolution nuclear magnetic resonance is used to investigate the conformational dynamics of human glucokinase, a 52 kDa monomeric enzyme that displays kinetic cooperativity. (1)H-(15)N transverse relaxation optimized spectra of uniformly labeled glucokinase, recorded in the absence and presence of glucose, reveal significant cross-peak overlap and heterogeneous peak intensities that persist over a range of temperatures. (15)N-specific labeling of isoleucines and tryptophans, reporting on backbone and side chain dynamics, respectively, demonstrates that both unliganded and glucose-bound enzymes sample multiple conformations, although glucose stabilizes certain conformations. These results provide the first direct evidence of glucokinase conformational heterogeneity and hence shed light on the molecular basis of cooperativity.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | | | | | |
Collapse
|
24
|
Kuntothom T, Raab M, Tvaroška I, Fort S, Pengthaisong S, Cañada J, Calle L, Jiménez-Barbero J, Ketudat Cairns JR, Hrmova M. Binding of β-d-Glucosides and β-d-Mannosides by Rice and Barley β-d-Glycosidases with Distinct Substrate Specificities. Biochemistry 2010; 49:8779-93. [DOI: 10.1021/bi101112c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teerachai Kuntothom
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Michal Raab
- Department of Structure and Function of Saccharides, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Igor Tvaroška
- Department of Structure and Function of Saccharides, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Sebastien Fort
- Centre de Recherches sur les Macromolecules Vegetales, Grenoble, France
| | - Salila Pengthaisong
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Javier Cañada
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Luis Calle
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - James R. Ketudat Cairns
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond, Australia
| |
Collapse
|