1
|
Aleksič S, Podbevšek P, Plavec J. Oxidative events in a double helix system promote the formation of kinetically trapped G-quadruplexes. Nucleic Acids Res 2025; 53:gkaf260. [PMID: 40183633 PMCID: PMC11969667 DOI: 10.1093/nar/gkaf260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Guanine-rich oligonucleotide sequences can adopt four-stranded G-quadruplex structures. These sequences are highly susceptible to oxidative damage due to the low redox potential of their constituent guanine nucleotides. Oxidative lesions of guanine residue exhibit perturbations in the position of hydrogen-bond donors and acceptors, which can impair the formation of G-quadruplexes. Here we studied the effect of guanine oxidation in model systems comprised of a G-rich as well as a complementary C-rich DNA strand to discern how oxidative damage can destabilize double-stranded DNA and promote G-quadruplex formation. Our data show that G-rich strands containing oxidative lesions can still adopt the G-quadruplex fold due to the presence of spare G-tracts, which rescue the damaged G-tracts via either full or partial replacement. However, most of the observed G-quadruplexes are kinetically trapped structures and the preferred equilibrium state of the two-stranded constructs is double-stranded DNA.
Collapse
Affiliation(s)
- Simon Aleksič
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Choudhary NK, Gupta S, Das G, Sahoo A, Harikrishna S, Sinha S, Gore KR. Selective Recognition of the Dimeric NG16 Parallel G-Quadruplex Structure Using Synthetic Turn-On Red Fluorescent Protein Chromophore. Biochemistry 2024; 63:2842-2854. [PMID: 39405565 DOI: 10.1021/acs.biochem.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Red fluorescent protein (RFP)-based fluorescent probes that can selectively interact with specific nucleic acids are of great importance for therapeutic and bioimaging applications. Herein, we have reported the synthesis of RFP chromophores for selective recognition of G-quadruplex nucleic acids in vitro and ex vivo. We identified DFHBI-DM as a fluorescent turn-on probe that binds to the dimeric NG16 parallel quadruplex with superior selectivity and sensitivity over various parallel, antiparallel, and hybrid topologies. The binding of DFHBI-DM to NG16 exhibited excellent photophysical properties, including high binding affinity, large Stokes shift, high photostability, and quantum yield. The MD simulation study supports the 1:1 binding stoichiometry. It confirms the planar conformation of DFHBI-DM, which makes strong binding interactions with a flat quartet of NG16 compared to other antiparallel and hybrid topologies. The cell imaging and MTT assays revealed that DFHBI-DM is a biocompatible and efficient fluorescent probe for intracellular imaging of NG16. Overall, these results demonstrated that DFHBI-DM could be an effective fluorescent G4-stabilizing agent for the dimeric NG16 parallel quadruplex, and it could be a promising candidate for further exploration of bioimaging and therapeutic applications.
Collapse
Affiliation(s)
- Nishant Kumar Choudhary
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Avijit Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Sanchez-Martin V. Opportunities and challenges with G-quadruplexes as promising targets for drug design. Expert Opin Drug Discov 2024; 19:1339-1353. [PMID: 39291583 DOI: 10.1080/17460441.2024.2404230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION G-quadruplexes (G4s) are secondary structures formed in guanine-rich regions of nucleic acids (both DNA and RNA). G4s are significantly enriched at regulatory genomic regions and are associated with important biological processes ranging from telomere homeostasis and genome instability to transcription and translation. Importantly, G4s are related to health and diseases such as cancer, neurological diseases, as well as infections with viruses and microbial pathogens. Increasing evidence suggests the potential of G4s for designing new diagnostic and therapeutic strategies although in vivo studies are still at early stages. AREAS COVERED This review provides an updated summary of the literature describing the impact of G4s in human diseases and different approaches based on G4 targeting in therapy. EXPERT OPINION Within the G4 field, most of the studies have been performed in vitro and in a descriptive manner. Therefore, detailed mechanistic understanding of G4s in the biological context remains to be deciphered. In clinics, the use of G4s as therapeutic targets has been hindered due to the low selectivity profile and poor drug-like properties of G4 ligands. Future research on G4s may overcome current methodological and interventional limitations and shed light on these unique structural elements in the pathogenesis and treatment of diseases.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), Seville, Spain
- Departament of Genetics, University of Seville, Seville, Spain
| |
Collapse
|
4
|
Norris SJ, Brangulis K. Meta-analysis of the Vmp-like sequences of Lyme disease Borrelia: evidence for the evolution of an elaborate antigenic variation system. Front Microbiol 2024; 15:1469411. [PMID: 39450289 PMCID: PMC11499132 DOI: 10.3389/fmicb.2024.1469411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
VMP-like sequence (vls) antigenic variation systems are present in every Lyme disease Borrelia strain with complete genome sequences. The linear plasmid-encoded vls system consists of a single expression site (vlsE) and contiguous array(s) of silent cassettes that have ~90% identity with the central cassette region of the cognate vlsE gene; antigenic variation occurs through random, segmental, and unidirectional recombination of vls silent cassette sequences into the vlsE expression site. Automated annotation programs do not accurately recognize vls silent cassette sequences, so these regions are not correctly annotated in most genomic sequences. In this study, the vls sequences were re-analyzed in the genomic sequences of 31 available Lyme disease Borrelia and one relapsing fever Borrelia organisms, and this information was utilized to systematically compare the vls systems in different species and strains. In general, the results confirm the conservation of the overall architecture of the vls system, such as the head-to-head arrangement of vlsE and a contiguous series of vlsS silent cassette sequences and presence of inverted repeat sequences between the two regions. However, the data also provide evidence for the divergence of the vls silent cassette arrays through point mutations, short indels, duplication events, and rearrangements. The probable occurrence of convergent evolution toward a vls system-like locus is exemplified by Borrelia turcica, a variable large protein (Vlp) expressing organism that is a member of the relapsing fever Borrelia group.
Collapse
Affiliation(s)
- Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kalvis Brangulis
- Department of Human Physiology and Biochemistry, Faculty of Medicine, Rīga Stradiņš University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
5
|
Ciaco S, Aronne R, Fiabane M, Mori M. The Rise of Bacterial G-Quadruplexes in Current Antimicrobial Discovery. ACS OMEGA 2024; 9:24163-24180. [PMID: 38882119 PMCID: PMC11170735 DOI: 10.1021/acsomega.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Antimicrobial resistance (AMR) is a silent critical issue that poses several challenges to health systems. While the discovery of novel antibiotics is currently stalled and prevalently focused on chemical variations of the scaffolds of available drugs, novel targets and innovative strategies are urgently needed to face this global threat. In this context, bacterial G-quadruplexes (G4s) are emerging as timely and profitable targets for the design and development of antimicrobial agents. Indeed, they are expressed in regulatory regions of bacterial genomes, and their modulation has been observed to provide antimicrobial effects with translational perspectives in the context of AMR. In this work, we review the current knowledge of bacterial G4s as well as their modulation by small molecules, including tools and techniques suitable for these investigations. Finally, we critically analyze the needs and future directions in the field, with a focus on the development of small molecules as bacterial G4s modulators endowed with remarkable drug-likeness.
Collapse
Affiliation(s)
- Stefano Ciaco
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Rossella Aronne
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Martina Fiabane
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Largy E, Ranz M, Gabelica V. A General Framework to Interpret Hydrogen-Deuterium Exchange Native Mass Spectrometry of G-Quadruplex DNA. J Am Chem Soc 2023; 145:26843-26857. [PMID: 38044563 DOI: 10.1021/jacs.3c09365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
G-quadruplexes (G4s) are secondary structures formed by guanine-rich oligonucleotides involved in various biological processes. However, characterizing G4s is challenging, because of their structural polymorphism. Here, we establish how hydrogen-deuterium exchange native mass spectrometry (HDX/MS) can help to characterize the G4 structures and dynamics in solution. We correlated the time range of G4 exchange to the number of guanines involved in the inner and outer tetrads. We also established relationships among exchange rates, numbers of tetrads and bound cations, and stability. The use of HDX/native MS allows for the determination of tetrads formed and assessment of G4 stability at a constant temperature. A key finding is that stable G4s exchange through local fluctuations (EX2 exchange), whereas less stable G4s also undergo exchange through partial or complete unfolding (EX1 exchange). Deconvolution of the bimodal isotope distributions resulting from EX1 exchange provides valuable insight into the kinetics of folding and unfolding processes and allows one to detect and characterize transiently unfolded intermediates, even if scarcely populated. HDX/native MS thus represents a powerful tool for a more comprehensive exploration of the folding landscapes of G4s.
Collapse
Affiliation(s)
- Eric Largy
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Matthieu Ranz
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
7
|
Jain N, Shankar U, Singh A, Sharma TK, Kumar A. G-quadruplex motifs in Neisseria gonorrhoeae as anti-gonococcal targets. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12646-6. [PMID: 37410137 DOI: 10.1007/s00253-023-12646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that causes gonorrhea and has shown a vast emergence of multidrug resistance in recent times. It is necessary to develop novel therapeutic strategies to combat this multidrug-resistant pathogen. The non-canonical stable secondary structures of nucleic acids, G-quadruplexes (GQs), are reported to regulate gene expressions in viruses, prokaryotes, and eukaryotes. Herein, we explored the whole genome of N. gonorrhoeae to mine evolutionary conserved GQ motifs. The Ng-GQs were highly enriched in the genes involved in various important biological and molecular processes of N. gonorrhoeae. Five of these GQ motifs were characterized using biophysical and biomolecular techniques. The GQ-specific ligand, BRACO-19, showed a high affinity towards these GQ motifs and stabilized them in both in vitro and in vivo conditions. The ligand showed potent anti-gonococcal activity and modulated the gene expression of the GQ-harboring genes. Strikingly, BRACO-19 also altered the biofilm formation in N. gonorrhoeae and its adhesion and invasion of the human cervical epithelial cells. In summary, the present study showed a significant role of GQ motifs in N. gonorrhoeae biology and put forward a step closer towards the search for therapeutic measures in combating the emerging antimicrobial resistance in the pathogen. KEY POINTS: •Neisseria gonorrhoeae genome is enriched in non-canonical nucleic acid structures-G-quadruplexes. •These G-quadruplexes might regulate bacterial growth, virulence, and pathogenesis. •G-quadruplex ligands inhibit biofilm formation, adhesion, and invasion of the gonococcus bacterium.
Collapse
Affiliation(s)
- Neha Jain
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore-IIT Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453 552, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore-IIT Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453 552, India
| | - Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore-IIT Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453 552, India
| | | | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore-IIT Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453 552, India.
| |
Collapse
|
8
|
He C, Peng J, Li Z, Yang Q, Zhang Y, Luo X, Liu Z, Feng G, Fang J. Engineering a Red Fluorescent Protein Chromophore for Visualization of RNA G-Quadruplexes. Biochemistry 2023. [PMID: 37376793 DOI: 10.1021/acs.biochem.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Synthetic red fluorescent protein (RFP) chromophores have emerged as valuable tools for biological imaging and therapeutic applications, but their application in the visualization of endogenous RNA G-quadruplexes (G4s) in living cells has been rarely reported so far. Here, by integrating the group of the excellent G4 dye ThT, we modulate RFP chromophores to create a novel fluorescent probe DEBIT with red emission. DEBIT selectively recognizes the G4 structure with the advantage of strong binding affinity, high selectivity, and excellent photostability. Using DEBIT as a fluorescent indicator, the real-time monitoring of RNA G4 in biological systems can be achieved. In summary, our work expands the application of synthetic RFP chromophores and provides an essential dye category to the classical G4 probes.
Collapse
Affiliation(s)
- Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiasheng Peng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Li
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xingyu Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zekai Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Neupane A, Chariker JH, Rouchka EC. Structural and Functional Classification of G-Quadruplex Families within the Human Genome. Genes (Basel) 2023; 14:genes14030645. [PMID: 36980918 PMCID: PMC10048163 DOI: 10.3390/genes14030645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
G-quadruplexes (G4s) are short secondary DNA structures located throughout genomic DNA and transcribed RNA. Although G4 structures have been shown to form in vivo, no current search tools that examine these structures based on previously identified G-quadruplexes and filter them based on similar sequence, structure, and thermodynamic properties are known to exist. We present a framework for clustering G-quadruplex sequences into families using the CD-HIT, MeShClust, and DNACLUST methods along with a combination of Starcode and BLAST. Utilizing this framework to filter and annotate clusters, 95 families of G-quadruplex sequences were identified within the human genome. Profiles for each family were created using hidden Markov models to allow for the identification of additional family members and generate homology probability scores. The thermodynamic folding energy properties, functional annotation of genes associated with the sequences, scores from different prediction algorithms, and transcription factor binding motifs within a family were used to annotate and compare the diversity within and across clusters. The resulting set of G-quadruplex families can be used to further understand how different regions of the genome are regulated by factors targeting specific structures common to members of a specific cluster.
Collapse
Affiliation(s)
- Aryan Neupane
- School of Graduate and Interdisciplinary Studies, University of Louisville, Louisville, KY 40292, USA
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
| | - Eric C. Rouchka
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
- Correspondence: ; Tel.: +1-(502)-852-3060
| |
Collapse
|
10
|
Cueny RR, McMillan SD, Keck JL. G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit Rev Biochem Mol Biol 2022; 57:539-561. [PMID: 36999585 PMCID: PMC10336854 DOI: 10.1080/10409238.2023.2181310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.
Collapse
Affiliation(s)
- Rachel R. Cueny
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Sarah D. McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
11
|
Shankar U, Mishra SK, Jain N, Tawani A, Yadav P, Kumar A. Ni +2 permease system of Helicobacter pylori contains highly conserved G-quadruplex motifs. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105298. [PMID: 35526824 DOI: 10.1016/j.meegid.2022.105298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The genome of a micro-organism contains all the information required for its survival inside its host cells. The guanine rich regions of the genome can form stable G-quadruplex structures that act as the regulators of gene expression. Herein, the completely sequenced genomes of Helicobacter pylori were explored for the identification and characterization of the conserved G-quadruplex motifs in this gastrointestinal pathogen. Initial in silico analysis revealed the presence of ~8241 GQ motifs in the H. pylori genome. Metal binding proteins of H. pylori are significantly enriched in the GQ motifs. Our study emphasizes the identification and characterization of four highly conserved G-quadruplex forming motifs (HPGQs) in the nickel transporter genes (nixA, niuB1, niuB2, and niuD) of the H. pylori. Nickel is a virulence determinant in H. pylori and is required as a co-factor for the urease and [NiFe] hydrogenase enzymes that are crucial for its survival in the stomach lining of humans. The presence of GQ motifs in these nickel transporter genes can affect their expression and may alter the functioning of Urease and [NiFe] hydrogenase. Similar to human and virus G-quadruplexes, targeting these conserved PGQs with bioactive molecules may represent a novel therapeutic avenue for combating infection of H. pylori. The identified HPGQs were characterized in-vitro by using CD spectroscopy, electrophoresis technique, and NMR spectroscopy at both acidic (4.5) and neutral pH (7.0). ITC revealed the specific interaction of these HPGQs with high affinity to the known G-quadruplex binding ligand, TMPyP4. The mTFP based reporter assay showed decrease in the gene expression of mTFP in the TMPyP4 treated cells as compared to the untreated and further affirmed the formation of stable G-quadruplex structures in the HPGQ motifs in vivo. This is the first report for characterizing G-quadruplex motifs in nickel transport-associated genes in the H. pylori bacterium.
Collapse
Affiliation(s)
- Uma Shankar
- Department of Biosciences and Biomedical Engineering Indore, Simrol, Indore, Madhya Pradesh 455235, India
| | - Subodh Kumar Mishra
- Department of Biosciences and Biomedical Engineering Indore, Simrol, Indore, Madhya Pradesh 455235, India
| | - Neha Jain
- Department of Biosciences and Biomedical Engineering Indore, Simrol, Indore, Madhya Pradesh 455235, India
| | - Arpita Tawani
- Department of Biosciences and Biomedical Engineering Indore, Simrol, Indore, Madhya Pradesh 455235, India
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering Indore, Simrol, Indore, Madhya Pradesh 455235, India.
| |
Collapse
|
12
|
Severov V, Tsvetkov V, Barinov N, Babenko V, Klinov D, Pozmogova G. Spontaneous DNA Synapsis by Forming Noncanonical Intermolecular Structures. Polymers (Basel) 2022; 14:polym14102118. [PMID: 35632001 PMCID: PMC9144187 DOI: 10.3390/polym14102118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement.
Collapse
Affiliation(s)
- Viacheslav Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Correspondence: (V.S.); (V.T.)
| | - Vladimir Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Institute of Biodesign and Complex System Modeling, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky prospect Str. 29, 119991 Moscow, Russia
- Correspondence: (V.S.); (V.T.)
| | - Nikolay Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Vladislav Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str.6, 117198 Moscow, Russia
| | - Galina Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| |
Collapse
|
13
|
Abstract
The noncanonical structures, G-quadruplexes (GQs), formed in the guanine-rich region of nucleic acids regulate various biological and molecular functions in prokaryotes and eukaryotes. Neisseria meningitidis is a commensal residing in a human's upper respiratory tract but occasionally becomes virulent, causing life-threatening septicemia and meningitis. The factors causing these changes in phenotypes are not fully understood. At the molecular level, regulatory components help in a clearer understanding of the pathogen's virulence and pathogenesis. Herein, genome analysis followed by biophysical assays and cell-based experiments revealed the presence of conserved GQ motifs in N. meningitidis. These GQs are linked to the essential genes involved in cell adhesion, pathogenesis, virulence, transport, DNA repair, and recombination. Primer extension stop assay, reporter assays, and quantitative real-time polymerase chain reaction (qRT-PCR) further affirmed the formation of stable GQs in vitro and in vivo. These results support the existence of evolutionarily conserved GQ motifs in N. meningitidis and uphold the usage of GQ-specific ligands as novel antimeningococcal therapeutics.
Collapse
|
14
|
Peng Y, Niu K, Yu G, Zheng M, Wei Q, Song Q, Feng Q. Identification of binding domains and key amino acids involved in the interaction between BmLARK and G4 structure in the BmPOUM2 promoter in Bombyx mori. INSECT SCIENCE 2021; 28:929-940. [PMID: 32496005 DOI: 10.1111/1744-7917.12831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/19/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
It has been found that the non-B form DNA structures, like G-quadruplex (G4) and i-motif, are involved in many important biological processes. Our previous study showed that the silkworm transcription factor BmLARK binds to the G4 structure in the promoter of the transcription factor BmPOUM2 and regulates its promoter activity. However, the binding mechanism between BmLARK and BmPOUM2 G4 structure remains unclear. In this study, binding domains and key amino acid residues involved in the interaction between BmLARK and BmPOUM2 G4 were studied. The electrophoretic mobility shift assay results indicated that the two RNA-recognition motifs (RRM) of BmLARK are simultaneously required for the binding with the G4 structure. Either RRM1 or RRM2 alone could not bind with the G4 structure. The zinc-finger motif was not involved in the binding. A series of mutant proteins with specific amino acid mutations were expressed and used to identify the key amino acid residues involving the interaction. The results indicated that β sheets, especially the β1 and β3 sheets, in the RRM domains of BmLARK played critical roles in the binding with the G4 structure. Several amino acid mutations of RRM1/2 in ribonucleoprotein domain 1 (RNP1) (motif in β3 strand) and RNP2 (motif in β1 strand) caused loss of binding ability, indicating that these amino acids are the key sites for the binding. All the results suggest that RRM domains, particularly their the RNP1 and RNP2 motifs, play important roles not only in RNA recognition, but also in the G4 structure binding.
Collapse
Affiliation(s)
- Yuling Peng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kangkang Niu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guoxing Yu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mingxi Zheng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qiulan Wei
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Mishra S, Kota S, Chaudhary R, Misra HS. Guanine quadruplexes and their roles in molecular processes. Crit Rev Biochem Mol Biol 2021; 56:482-499. [PMID: 34162300 DOI: 10.1080/10409238.2021.1926417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of guanine quadruplexes (G4) in fundamental biological processes like DNA replication, transcription, translation and telomere maintenance is recognized. G4 structure dynamics is regulated by G4 structure binding proteins and is thought to be crucial for the maintenance of genome integrity in both prokaryotic and eukaryotic cells. Growing research over the last decade has expanded the existing knowledge of the functional diversity of G4 (DNA and RNA) structures across the working models. The control of G4 structure dynamics using G4 binding drugs has been suggested as the putative targets in the control of cancer and bacterial pathogenesis. This review has brought forth the collections of recent information that indicate G4 (mostly G4 DNA) roles in microbial pathogenesis, DNA damaging stress response in bacteria and mammalian cells. Studies in mitochondrial gene function regulation by G4s have also been underscored. Finally, the interdependence of G4s and epigenetic modifications and their speculated medical implications through G4 interacting proteins has been discussed.
Collapse
Affiliation(s)
- Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - H S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
16
|
G-Quadruplex Structures in Bacteria: Biological Relevance and Potential as an Antimicrobial Target. J Bacteriol 2021; 203:e0057720. [PMID: 33649149 DOI: 10.1128/jb.00577-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA strands consisting of multiple runs of guanines can adopt a noncanonical, four-stranded DNA secondary structure known as G-quadruplex or G4 DNA. G4 DNA is thought to play an important role in transcriptional and translational regulation of genes, DNA replication, genome stability, and oncogene expression in eukaryotic genomes. In other organisms, including several bacterial pathogens and some plant species, the biological roles of G4 DNA and G4 RNA are starting to be explored. Recent investigations showed that G4 DNA and G4 RNA are generally conserved across plant species. In silico analyses of several bacterial genomes identified putative guanine-rich, G4 DNA-forming sequences in promoter regions. The sequences were particularly abundant in certain gene classes, suggesting that these highly diverse structures can be employed to regulate the expression of genes involved in secondary metabolite synthesis and signal transduction. Furthermore, in the pathogen Mycobacterium tuberculosis, the distribution of G4 motifs and their potential role in the regulation of gene transcription advocate for the use of G4 ligands to develop novel antitubercular therapies. In this review, we discuss the various roles of G4 structures in bacterial DNA and the application of G4 DNA as inhibitors or therapeutic agents to address bacterial pathogens.
Collapse
|
17
|
Ghosh A, Largy E, Gabelica V. DNA G-quadruplexes for native mass spectrometry in potassium: a database of validated structures in electrospray-compatible conditions. Nucleic Acids Res 2021; 49:2333-2345. [PMID: 33555347 PMCID: PMC7913678 DOI: 10.1093/nar/gkab039] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).
Collapse
Affiliation(s)
- Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| | - Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| |
Collapse
|
18
|
Ogloblina AM, Iaccarino N, Capasso D, Di Gaetano S, Garzarella EU, Dolinnaya NG, Yakubovskaya MG, Pagano B, Amato J, Randazzo A. Toward G-Quadruplex-Based Anticancer Agents: Biophysical and Biological Studies of Novel AS1411 Derivatives. Int J Mol Sci 2020; 21:E7781. [PMID: 33096752 PMCID: PMC7590035 DOI: 10.3390/ijms21207781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Certain G-quadruplex forming guanine-rich oligonucleotides (GROs), including AS1411, are endowed with cancer-selective antiproliferative activity. They are known to bind to nucleolin protein, resulting in the inhibition of nucleolin-mediated phenomena. However, multiple nucleolin-independent biological effects of GROs have also been reported, allowing them to be considered promising candidates for multi-targeted cancer therapy. Herein, with the aim of optimizing AS1411 structural features to find GROs with improved anticancer properties, we have studied a small library of AS1411 derivatives differing in the sequence length and base composition. The AS1411 derivatives were characterized by using circular dichroism and nuclear magnetic resonance spectroscopies and then investigated for their enzymatic resistance in serum and nuclear extract, as well as for their ability to bind nucleolin, inhibit topoisomerase I, and affect the viability of MCF-7 human breast adenocarcinoma cells. All derivatives showed higher thermal stability and inhibitory effect against topoisomerase I than AS1411. In addition, most of them showed an improved antiproliferative activity on MCF-7 cells compared to AS1411 despite a weaker binding to nucleolin. Our results support the hypothesis that the antiproliferative properties of GROs are due to multi-targeted effects.
Collapse
Affiliation(s)
- Anna M. Ogloblina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia; (A.M.O.); (M.G.Y.)
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Domenica Capasso
- Center for Life Sciences and Technologies (CESTEV), University of Naples Federico II, Via A. De Amicis 95, 80145 Naples, Italy;
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, 80134 Naples, Italy;
| | - Emanuele U. Garzarella
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Marianna G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia; (A.M.O.); (M.G.Y.)
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| |
Collapse
|
19
|
Paul T, Voter AF, Cueny RR, Gavrilov M, Ha T, Keck J, Myong S. E. coli Rep helicase and RecA recombinase unwind G4 DNA and are important for resistance to G4-stabilizing ligands. Nucleic Acids Res 2020; 48:6640-6653. [PMID: 32449930 PMCID: PMC7337899 DOI: 10.1093/nar/gkaa442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
G-quadruplex (G4) DNA structures can form physical barriers within the genome that must be unwound to ensure cellular genomic integrity. Here, we report unanticipated roles for the Escherichia coli Rep helicase and RecA recombinase in tolerating toxicity induced by G4-stabilizing ligands in vivo. We demonstrate that Rep and Rep-X (an enhanced version of Rep) display G4 unwinding activities in vitro that are significantly higher than the closely related UvrD helicase. G4 unwinding mediated by Rep involves repetitive cycles of G4 unfolding and refolding fueled by ATP hydrolysis. Rep-X and Rep also dislodge G4-stabilizing ligands, in agreement with our in vivo G4-ligand sensitivity result. We further demonstrate that RecA filaments disrupt G4 structures and remove G4 ligands in vitro, consistent with its role in countering cellular toxicity of G4-stabilizing ligands. Together, our study reveals novel genome caretaking functions for Rep and RecA in resolving deleterious G4 structures.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew F Voter
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Rachel R Cueny
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Momčilo Gavrilov
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
- Howard Hughes Medical Institute, Johns Hopkins University, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
20
|
Uchiyama M, Momotake A, Kobayashi N, Yamamoto Y. Specific Binding of an Anionic Phthalocyanine Derivative to G-Quadruplex DNAs. CHEM LETT 2020. [DOI: 10.1246/cl.200110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mami Uchiyama
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
21
|
Pavc D, Wang B, Spindler L, Drevenšek-Olenik I, Plavec J, Šket P. GC ends control topology of DNA G-quadruplexes and their cation-dependent assembly. Nucleic Acids Res 2020; 48:2749-2761. [PMID: 31996902 PMCID: PMC7049726 DOI: 10.1093/nar/gkaa058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
GCn and GCnCG, where n = (G2AG4AG2), fold into well-defined, dimeric G-quadruplexes with unprecedented folding topologies in the presence of Na+ ions as revealed by nuclear magnetic resonance spectroscopy. Both G-quadruplexes exhibit unique combination of structural elements among which are two G-quartets, A(GGGG)A hexad and GCGC-quartet. Detailed structural characterization uncovered the crucial role of 5'-GC ends in formation of GCn and GCnCG G-quadruplexes. Folding in the presence of 15NH4+ and K+ ions leads to 3'-3' stacking of terminal G-quartets of GCn G-quadruplexes, while 3'-GC overhangs in GCnCG prevent dimerization. Results of the present study expand repertoire of possible G-quadruplex structures. This knowledge will be useful in DNA sequence design for nanotechnological applications that may require specific folding topology and multimerization properties.
Collapse
Affiliation(s)
- Daša Pavc
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Lea Spindler
- University of Maribor, Faculty of Mechanical Engineering, 2000 Maribor, Slovenia
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Irena Drevenšek-Olenik
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
- EN-FIST Center of Excellence, 1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Prister LL, Yin S, Cahoon LA, Seifert HS. Altering the Neisseria gonorrhoeae pilE Guanine Quadruplex Loop Bases Affects Pilin Antigenic Variation. Biochemistry 2020; 59:1104-1112. [PMID: 32078293 DOI: 10.1021/acs.biochem.9b01038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neisseria gonorrhoeae possesses a programmed recombination system that allows the bacteria to alter the major subunit of the type IV pilus, pilin or PilE. An alternate DNA structure known as a guanine quadruplex (G4) is required for pilin antigenic variation (pilin Av). The G-C base pairs within the G4 motif are required for pilin Av, but simple mutation of the loop bases does not affect pilin Av. We show that more substantial changes to the loops, in both size and nucleotide composition, with the core guanines unchanged, decrease or abrogate pilin Av. We investigated why these loop changes might influence the efficiency of pilin Av. RecA is a recombinase required for pilin Av that can bind the pilE G4 in vitro. RecA binds different G4 structures with altered loops with varied affinities. However, changes in RecA binding affinities to the loop mutants do not absolutely correlate with the pilin Av phenotypes. Interestingly, the yeast RecA ortholog, Rad51, also binds the pilE G4 structure with a higher affinity than it binds single-stranded DNA, suggesting that RecA G4 binding is conserved in eukaryotic orthologs. The thermal stability the pilE G4 structure and its loop mutants showed that the parental G4 structure had the highest melting temperature, and the melting temperature of the loop mutants correlated with pilin Av phenotype. These results suggest that the folding kinetics and stability of G4 structures are important for the efficiency of pilin Av.
Collapse
Affiliation(s)
- Lauren L Prister
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Shaohui Yin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Laty A Cahoon
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
23
|
Largy E, Gabelica V. Native Hydrogen/Deuterium Exchange Mass Spectrometry of Structured DNA Oligonucleotides. Anal Chem 2020; 92:4402-4410. [PMID: 32039580 DOI: 10.1021/acs.analchem.9b05298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although solution hydrogen-deuterium exchange mass spectrometry (HDX/MS) is well-established for the analysis of the structure and dynamics of proteins, it is currently not exploited for nucleic acids. Here we used DNA G-quadruplex structures as model systems to demonstrate that DNA oligonucleotides are amenable to in-solution HDX/MS in native conditions. In trimethylammonium acetate solutions and in soft source conditions, the protonated phosphate groups are fully back-exchanged in the source, while the exchanged nucleobases remain labeled without detectable back-exchange. As a result, the exchange rates depend strongly on the secondary structure (hydrogen bonding status) of the oligonucleotides, but neither on their charge state nor on the presence of nonspecific adducts. We show that native mass spectrometry methods can measure these exchange rates on the second to the day time scale with high precision. Such combination of HDX with native MS opens promising avenues for the analysis of the structural and biophysical properties of oligonucleotides and their complexes.
Collapse
Affiliation(s)
- Eric Largy
- University of Bordeaux, INSERM and CNRS, Laboratoires Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, Laboratoires Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| |
Collapse
|
24
|
Liu F, Yang M, Song W, Luo X, Tang R, Duan Z, Kang W, Xie S, Liu Q, Lei C, Huang Y, Nie Z, Yao S. Target-activated transcription for the amplified sensing of protease biomarkers. Chem Sci 2020; 11:2993-2998. [PMID: 34122801 PMCID: PMC8157538 DOI: 10.1039/c9sc04692e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/09/2020] [Indexed: 12/21/2022] Open
Abstract
Signal amplification is an effective way to achieve sensitive analysis of biomarkers, exhibiting great promise in biomedical research and clinical diagnosis. Inspired by the transcription process, here we present a versatile strategy that enables effective amplification of proteolysis into nucleic acid signal outputs in a homogeneous system. In this strategy, a protease-activatable T7 RNA polymerase is engineered as the signal amplifier and achieves 3 orders of magnitude amplification in signal gain. The versatility of this strategy has been demonstrated by the development of sensitive and selective assays for protease biomarkers, such as matrix metalloproteinase-2 (MMP-2) and thrombin, with sub-picomole sensitivity, which is 4.3 × 103-fold lower than that of the standard peptide-based method. Moreover, the proposed assay has been further applied in the detection of MMP-2 secreted by cancer cells, as well as in the assessment of MMP-2 levels in osteosarcoma tissue samples, providing a general approach for the monitoring of protease biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Min Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Wenlu Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Zhixi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Qingqing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
25
|
Chasing Particularities of Guanine- and Cytosine-Rich DNA Strands. Molecules 2020; 25:molecules25030434. [PMID: 31972988 PMCID: PMC7037129 DOI: 10.3390/molecules25030434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
By substitution of natural nucleotides by their abasic analogs (i.e., 1',2'-dideoxyribose phosphate residue) at critically chosen positions within 27-bp DNA constructs originating from the first intron of N-myc gene, we hindered hybridization within the guanine- and cytosine-rich central region and followed formation of non-canonical structures. The impeded hybridization between the complementary strands leads to time-dependent structural transformations of guanine-rich strand that are herein characterized with the use of solution-state NMR, CD spectroscopy, and native polyacrylamide gel electrophoresis. Moreover, the DNA structural changes involve transformation of intra- into inter-molecular G-quadruplex structures that are thermodynamically favored. Intriguingly, the transition occurs in the presence of complementary cytosine-rich strands highlighting the inability of Watson-Crick base-pairing to preclude the transformation between G-quadruplex structures that occurs via intertwining mechanism and corroborates a role of G-quadruplex structures in DNA recombination processes.
Collapse
|
26
|
Voter AF, Callaghan MM, Tippana R, Myong S, Dillard JP, Keck JL. Antigenic Variation in Neisseria gonorrhoeae Occurs Independently of RecQ-Mediated Unwinding of the pilE G Quadruplex. J Bacteriol 2020; 202:e00607-19. [PMID: 31740492 PMCID: PMC6964745 DOI: 10.1128/jb.00607-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/07/2019] [Indexed: 11/20/2022] Open
Abstract
The obligate human pathogen Neisseria gonorrhoeae alters its cell surface antigens to evade the immune system in a process known as antigenic variation (AV). During pilin AV, portions of the expressed pilin gene (pilE) are replaced with segments of silent pilin genes (pilS) through homologous recombination. The pilE-pilS exchange is initiated by formation of a parallel guanine quadruplex (G4) structure near the pilE gene, which recruits the homologous recombination machinery. The RecQ helicase, which has been proposed to aid AV by unwinding the pilE G4 structure, is an important component of this machinery. However, RecQ also promotes homologous recombination through G4-independent duplex DNA unwinding, leaving the relative importance of its G4 unwinding activity unclear. Previous investigations revealed a guanine-specific pocket (GSP) on the surface of RecQ that is required for G4, but not duplex, DNA unwinding. To determine whether RecQ-mediated G4 resolution is required for AV, N. gonorrhoeae strains that encode a RecQ GSP variant that cannot unwind G4 DNA were created. In contrast to the hypothesis that G4 unwinding by RecQ is important for AV, the RecQ GSP variant N. gonorrhoeae strains had normal AV levels. Analysis of a purified RecQ GSP variant confirmed that it retained duplex DNA unwinding activity but had lost its ability to unwind antiparallel G4 DNA. Interestingly, neither the GSP-deficient RecQ variant nor the wild-type RecQ could unwind the parallel pilE G4 nor the prototypical c-myc G4. Based on these results, we conclude that N. gonorrhoeae AV occurs independently of RecQ-mediated pilE G4 resolution.IMPORTANCE The pathogenic bacteria Neisseria gonorrhoeae avoids clearance by the immune system through antigenic variation (AV), the process by which immunogenic surface features of the bacteria are exchanged for novel variants. RecQ helicase is critical in AV and its role has been proposed to stem from its ability to unwind a DNA secondary structure known as a guanine quadruplex (G4) that is central to AV. In this work, we demonstrate that the role of RecQ in AV is independent of its ability to resolve G4s and that RecQ is incapable of unwinding the G4 in question. We propose a new model of RecQ's role in AV where the G4 might recruit or orient RecQ to facilitate homologous recombination.
Collapse
Affiliation(s)
- Andrew F Voter
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Melanie M Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ramreddy Tippana
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Hu B, Zhou R, Li Z, Ouyang S, Li Z, Hu W, Wang L, Jiao B. Study of the binding mechanism of aptamer to palytoxin by docking and molecular simulation. Sci Rep 2019; 9:15494. [PMID: 31664144 PMCID: PMC6820544 DOI: 10.1038/s41598-019-52066-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
This paper provides a feasible model for molecular structure analysis and interaction mechanism of aptamer and micromolecule. In this study, modeling and dynamic simulation of ssDNA aptamer (P-18S2) and target (Palytoxin, PTX) were performed separately. Then, the complex structure between DNA and PTX was predicted, and docking results showed that PTX could combine steadily at the groove’s top of DNA model by strong hydrogen-bonds and electrostatic interaction. Thus, we truncated and optimized P-18S2 by simulating. At the same time, we also confirmed the reliability of simulation results by experiments. With the experimental and computational results, the study provided a more reasonable interpretation for the high affinity and specific binding of P-18S2 and PTX, which laid the foundation for further optimization and development of aptamers in molecular diagnostics and therapeutic applications.
Collapse
Affiliation(s)
- Bo Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Rong Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhengang Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Shengqun Ouyang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China
| | - Zhen Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China
| | - Wei Hu
- Chengdu FenDi Technology Co., Ltd, Chengdu, 610041, China
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China. .,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
28
|
Why do G-quadruplexes dimerize through the 5'-ends? Driving forces for G4 DNA dimerization examined in atomic detail. PLoS Comput Biol 2019; 15:e1007383. [PMID: 31539370 PMCID: PMC6774569 DOI: 10.1371/journal.pcbi.1007383] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/02/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022] Open
Abstract
G-quadruplexes (G4) are secondary structures formed by guanine-rich nucleic acid sequences and shown to exist in living cells where they participate in regulation of gene expression and chromosome maintenance. G-quadruplexes with solvent-exposed guanine tetrads show the tendency to associate together through cofacial stacking, which may be important for packaging of G4-forming sequences and allows for the design of higher-order G4 DNA structures. To understand the molecular driving forces for G4 association, here, we study the binding interaction between two parallel-stranded G-quadruplexes using all-atom molecular dynamics simulations. The predicted dimerization free energies show that direct binding through the 5’-G-tetrads is the most preferred of all possible end-to-end stacking orientations, consistently with all available experimental data. Decomposition of dimerization enthalpies in combination with simulations at varying ionic strength further indicate that the observed orientational preferences arise from a fine balance between the electrostatic repulsion of the sugar-phosphate backbones and favorable counterion binding at the dimeric interface. We also demonstrate how these molecular-scale findings can be used to devise means of controlling G4 dimerization equilibrium, e.g., by altering salt concentration and using G4-targeted ligands. Native DNA usually folds to form the canonical double helix, however, under certain conditions, it can also fold into other secondary structures. Some of the most interesting ones are G-quadruplexes (G4)—compact DNA structures in which guanines assemble into multilayered tetrads, and whose formation has been reported at the ends of linear chromosomes (telomeres) and at different regulatory regions of the genome. Although structural and basic energetic properties, as well as some biological functions of G-quadruplexes are quite well understood, not much is known about their propensity to form agregated structures. A very high density of G-quadruplexes at telomeres along with their large exposed planar surfaces indeed favor G4 aggregation through end-to-end stacking, which might be important for the protection of telomeres and DNA packaging. In this research, using computer simulations, we provide insight into molecular origins of stability of the higher-order G-quadruplexes and explain in structural and energetic terms a strong preference for one particular end-to-end stacking orientation. Based on the recognized aggregation driving forces, we also suggest methods for controling the aggregation preferences openining up new opportunities for designing oligomeric G-quadruplexes.
Collapse
|
29
|
Kolesnikova S, Curtis EA. Structure and Function of Multimeric G-Quadruplexes. Molecules 2019; 24:molecules24173074. [PMID: 31450559 PMCID: PMC6749722 DOI: 10.3390/molecules24173074] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes are noncanonical nucleic acid structures formed from stacked guanine tetrads. They are frequently used as building blocks and functional elements in fields such as synthetic biology and also thought to play widespread biological roles. G-quadruplexes are often studied as monomers, but can also form a variety of higher-order structures. This increases the structural and functional diversity of G-quadruplexes, and recent evidence suggests that it could also be biologically important. In this review, we describe the types of multimeric topologies adopted by G-quadruplexes and highlight what is known about their sequence requirements. We also summarize the limited information available about potential biological roles of multimeric G-quadruplexes and suggest new approaches that could facilitate future studies of these structures.
Collapse
Affiliation(s)
- Sofia Kolesnikova
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Edward A Curtis
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic.
| |
Collapse
|
30
|
Guanine Quadruplex DNA Regulates Gamma Radiation Response of Genome Functions in the Radioresistant Bacterium Deinococcus radiodurans. J Bacteriol 2019; 201:JB.00154-19. [PMID: 31235513 DOI: 10.1128/jb.00154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radiodurans IMPORTANCE Deinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.
Collapse
|
31
|
Maizels N, Davis L. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res 2019; 46:6962-6973. [PMID: 29986051 PMCID: PMC6101574 DOI: 10.1093/nar/gky588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Discontinuities in only a single strand of the DNA duplex occur frequently, as a result of DNA damage or as intermediates in essential nuclear processes and DNA repair. Nicks are the simplest of these lesions: they carry clean ends bearing 3′-hydroxyl groups that can undergo ligation or prime new DNA synthesis. In contrast, single-strand breaks also interrupt only one DNA strand, but they carry damaged ends that require clean-up before subsequent steps in repair. Despite their apparent simplicity, nicks can have significant consequences for genome stability. The availability of enzymes that can introduce a nick almost anywhere in a large genome now makes it possible to systematically analyze repair of nicks. Recent experiments demonstrate that nicks can initiate recombination via pathways distinct from those active at double-strand breaks (DSBs). Recombination at targeted DNA nicks can be very efficient, and because nicks are intrinsically less mutagenic than DSBs, nick-initiated gene correction is useful for genome engineering and gene therapy. This review revisits some physiological examples of recombination at nicks, and outlines experiments that have demonstrated that nicks initiate homology-directed repair by distinctive pathways, emphasizing research that has contributed to our current mechanistic understanding of recombination at nicks in mammalian cells.
Collapse
Affiliation(s)
- Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Luther Davis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
32
|
A Double-Strand Break Does Not Promote Neisseria gonorrhoeae Pilin Antigenic Variation. J Bacteriol 2019; 201:JB.00256-19. [PMID: 30988037 DOI: 10.1128/jb.00256-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/20/2022] Open
Abstract
The major subunit of the type IV pilus (T4p) of Neisseria gonorrhoeae undergoes antigenic variation (AV) dependent on a guanine quadruplex (G4) DNA structure located upstream of the pilin gene. Since the presence of G4 DNA induces genome instability in both eukaryotic and prokaryotic chromosomes, we tested whether a double-strand break (DSB) at the site of the pilE G4 sequence could substitute for G4-directed pilin AV. The G4 motif was replaced by an I-SceI cut site, and the cut site was also introduced to locations near the origin of replication and the terminus. Expression of the I-SceI endonuclease from an irrelevant chromosomal site confirmed that the endonuclease functions to induce double-strand breaks at all three locations. No antigenic variants were detected when the G4 was replaced with the I-SceI cut site, but there was a growth defect from having a DSB in the chromosome, and suppressor mutations that were mainly deletions of the cut site and/or the entire pilE gene accumulated. Thus, the pilE G4 does not act to promote pilin AV by generating a DSB but requires either a different type of break, a nick, or more complex interactions with other factors to stimulate this programmed recombination system.IMPORTANCE Neisseria gonorrhoeae, the causative agent of gonorrhea, possesses a DNA recombination system to change one of its surface-exposed antigens. This recombination system, known as antigenic variation, uses an alternate DNA structure to initiate variation. The guanine quadruplex DNA structure is known to cause nicks or breaks in DNA; however, much remains unknown about how this structure functions in cells. We show that inducing a break by different means does not allow antigenic variation, indicating that the DNA structure may have a more complicated role.
Collapse
|
33
|
Bulged and Canonical G-Quadruplex Conformations Determine NDPK Binding Specificity. Molecules 2019; 24:molecules24101988. [PMID: 31126138 PMCID: PMC6572678 DOI: 10.3390/molecules24101988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/17/2022] Open
Abstract
Guanine-rich DNA strands can adopt tertiary structures known as G-quadruplexes (G4s) that form when Hoogsteen base-paired guanines assemble as planar stacks, stabilized by a central cation like K+. In this study, we investigated the conformational heterogeneity of a G-rich sequence from the 5′ untranslated region of the Zea mayshexokinase4 gene. This sequence adopted an extensively polymorphic G-quadruplex, including non-canonical bulged G-quadruplex folds that co-existed in solution. The nature of this polymorphism depended, in part, on the incorporation of different sets of adjacent guanines into a quadruplex core, which permitted the formation of the different conformations. Additionally, we showed that the maize homolog of the human nucleoside diphosphate kinase (NDPK) NM23-H2 protein—ZmNDPK1—specifically recognizes and promotes formation of a subset of these conformations. Heteromorphic G-quadruplexes play a role in microorganisms’ ability to evade the host immune system, so we also discuss how the underlying properties that determine heterogeneity of this sequence could apply to microorganism G4s.
Collapse
|
34
|
Mishra SK, Jain N, Shankar U, Tawani A, Sharma TK, Kumar A. Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae. Sci Rep 2019; 9:1791. [PMID: 30741996 PMCID: PMC6370756 DOI: 10.1038/s41598-018-38400-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022] Open
Abstract
Several G-quadruplex forming motifs have been reported to be highly conserved in the regulatory regions of the genome of different organisms and influence various biological processes like DNA replication, recombination and gene expression. Here, we report the highly conserved and three potentially G-quadruplex forming motifs (SP-PGQs) in the essential genes (hsdS, recD, and pmrA) of the Streptococcus pneumoniae genome. These genes were previously observed to play a vital role in providing the virulence to the bacteria, by participating in the host-pathogen interaction, drug-efflux system and recombination- repair system. However, the presence and importance of highly conserved G-quadruplex motifs in these genes have not been previously recognized. We employed the CD spectroscopy, NMR spectroscopy, and electrophoretic mobility shift assay to confirm the adaptation of the G-quadruplex structure by the SP-PGQs. Further, ITC and CD melting analysis revealed the energetically favorable and thermodynamically stable interaction between a candidate G4 binding small molecule TMPyP4 and SP-PGQs. Next, TFP reporter based assay confirmed the regulatory role of SP-PGQs in the expression of PGQ harboring genes. All these experiments together characterized the SP-PGQs as a promising drug target site for combating the Streptococcus pneumoniae infection.
Collapse
Affiliation(s)
- Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Arpita Tawani
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Tarun Kumar Sharma
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
35
|
Saranathan N, Vivekanandan P. G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol 2019; 27:148-163. [PMID: 30224157 PMCID: PMC7127049 DOI: 10.1016/j.tim.2018.08.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures formed by guanine-rich DNA and RNA sequences. In this review we aim to provide an overview of the biological roles of G4s in microbial genomes with emphasis on recent discoveries. G4s are enriched and conserved in the regulatory regions of microbes, including bacteria, fungi, and viruses. Importantly, G4s in hepatitis B virus (HBV) and hepatitis C virus (HCV) genomes modulate genes crucial for virus replication. Recent studies on Epstein-Barr virus (EBV) shed light on the role of G4s within the microbial transcripts as cis-acting regulatory signals that modulate translation and facilitate immune evasion. Furthermore, G4s in microbial genomes have been linked to radioresistance, antigenic variation, recombination, and latency. G4s in microbial genomes represent novel therapeutic targets for antimicrobial therapy.
Collapse
Affiliation(s)
- Nandhini Saranathan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
36
|
Bian WX, Xie Y, Wang XN, Xu GH, Fu BS, Li S, Long G, Zhou X, Zhang XL. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res 2019; 47:56-68. [PMID: 30462330 PMCID: PMC6326805 DOI: 10.1093/nar/gky1177] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of human chronic liver disease and hepatocellular carcinoma. G-quadruplex (G4) is an important four-stranded secondary structure of nucleic acids. Recently, we discovered that the core gene of HCV contains a G4 RNA structure; however, the interaction between the HCV core RNA G4 and host cellular proteins, and the roles of the HCV core RNA G4 in HCV infection and pathogenesis remain elusive. Here, we identified a cellular protein, nucleolin (NCL), which bound and stabilized the HCV core RNA G4 structure. We demonstrated the direct interaction and colocalization between NCL and wild-type core RNA G4 at both in vitro and in cell physiological conditions of the alive virus; however no significant interaction was found between NCL and G4-modified core RNA. NCL is also associated with HCV particles. HCV infection induced NCL mRNA and protein expression, while NCL suppressed wild-type viral replication and expression, but not G4-modified virus. Silencing of NCL greatly enhanced viral RNA replication. Our findings provide new insights that NCL may act as a host factor for anti-viral innate immunity, and binding of cellular NCL with the viral core RNA G4 structure is involved in suppressing HCV replication.
Collapse
Affiliation(s)
- Wen-Xiu Bian
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Yan Xie
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Xiao-Ning Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Hua Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan 430072, China
| | - Shu Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan 430072, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| |
Collapse
|
37
|
A guanine-flipping and sequestration mechanism for G-quadruplex unwinding by RecQ helicases. Nat Commun 2018; 9:4201. [PMID: 30305632 PMCID: PMC6180126 DOI: 10.1038/s41467-018-06751-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/18/2018] [Indexed: 01/23/2023] Open
Abstract
Homeostatic regulation of G-quadruplexes (G4s), four-stranded structures that can form in guanine-rich nucleic acids, requires G4 unwinding helicases. The mechanisms that mediate G4 unwinding remain unknown. We report the structure of a bacterial RecQ DNA helicase bound to resolved G4 DNA. Unexpectedly, a guanine base from the unwound G4 is sequestered within a guanine-specific binding pocket. Disruption of the pocket in RecQ blocks G4 unwinding, but not G4 binding or duplex DNA unwinding, indicating its essential role in structure-specific G4 resolution. A novel guanine-flipping and sequestration model that may be applicable to other G4-resolving helicases emerges from these studies.
Collapse
|
38
|
Yamamoto Y, Araki H, Shinomiya R, Hayasaka K, Nakayama Y, Ochi K, Shibata T, Momotake A, Ohyama T, Hagihara M, Hemmi H. Structures and Catalytic Activities of Complexes between Heme and All Parallel-Stranded Monomeric G-Quadruplex DNAs. Biochemistry 2018; 57:5938-5948. [PMID: 30234971 DOI: 10.1021/acs.biochem.8b00792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heme in its ferrous and ferric states [heme(Fe2+) and heme(Fe3+), respectively] binds selectively to the 3'-terminal G-quartet of all parallel-stranded monomeric G-quadruplex DNAs formed from inosine(I)-containing sequences, i.e., d(TAGGGTGGGTTGGGTGIG) DNA(18mer) and d(TAGGGTGGGTTGGGTGIGA) DNA(18mer/A), through a π-π stacking interaction between the porphyrin moiety of the heme and the G-quartet, to form 1:1 complexes [heme-DNA(18mer) and heme-DNA(18mer/A) complexes, respectively]. These complexes exhibited enhanced peroxidase activities, compared with that of heme(Fe3+) alone, and the activity of the heme(Fe3+)-DNA(18mer/A) complex was greater than that of the heme(Fe3+)-DNA(18mer) one, indicating that the 3'-terminal A of the DNA sequence acts as an acid-base catalyst that promotes the catalytic reaction. In the complexes, a water molecule (H2O) at the interface between the heme and G-quartet is coordinated to the heme Fe atom as an axial ligand and possibly acts as an electron-donating ligand that promotes heterolytic peroxide bond cleavage of hydrogen peroxide bound to the heme Fe atom, trans to the H2O, for the generation of an active species. The intermolecular nuclear Overhauser effects observed among heme, DNA, and Fe-bound H2O indicated that the H2O rotates about the H2O-Fe coordination bond with respect to both the heme and DNA in the complex. Thus, the H2O in the complex is unique in terms of not only its electronic properties but also its dynamic ones. These findings provide novel insights into the design of heme-deoxyribozymes and -ribozymes.
Collapse
Affiliation(s)
- Yasuhiko Yamamoto
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan.,Tsukuba Research Center for Energy Materials Science (TREMS) , University of Tsukuba , Tsukuba 305-8571 , Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba , Tsukuba 305-8577 , Japan
| | - Haruka Araki
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Ryosuke Shinomiya
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Kosuke Hayasaka
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Yusaku Nakayama
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Kentaro Ochi
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Tomokazu Shibata
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Atsuya Momotake
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Takako Ohyama
- NMR Division, RIKEN SPring-8 Center , RIKEN , Suehiro-cho , Tsurumi-ku, Yokohama 230-0045 , Japan
| | - Masaki Hagihara
- Graduate School of Science and Technology , Hirosaki University , Hirosaki 036-8561 , Japan
| | - Hikaru Hemmi
- Food Research Institute , NARO , Tsukuba 305-8642 , Japan
| |
Collapse
|
39
|
Varizhuk AM, Protopopova AD, Tsvetkov VB, Barinov NA, Podgorsky VV, Tankevich MV, Vlasenok MA, Severov VV, Smirnov IP, Dubrovin EV, Klinov DV, Pozmogova GE. Polymorphism of G4 associates: from stacks to wires via interlocks. Nucleic Acids Res 2018; 46:8978-8992. [PMID: 30107602 PMCID: PMC6158749 DOI: 10.1093/nar/gky729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023] Open
Abstract
We examined the assembly of DNA G-quadruplexes (G4s) into higher-order structures using atomic force microscopy, optical and electrophoretic methods, NMR spectroscopy and molecular modeling. Our results suggest that parallel blunt-ended G4s with single-nucleotide or modified loops may form different types of multimers, ranging from stacks of intramolecular structures and/or interlocked dimers and trimers to wires. Decreasing the annealing rate and increasing salt or oligonucleotide concentrations shifted the equilibrium from intramolecular G4s to higher-order structures. Control antiparallel and hybrid G4s demonstrated no polymorphism or aggregation in our experiments. The modification that mimics abasic sites (1',2'-dideoxyribose residues) in loops enhanced the oligomerization/multimerization of both the 2-tetrad and 3-tetrad G4 motifs. Our results shed light on the rules that govern G4 rearrangements. Gaining control over G4 folding enables the harnessing of the full potential of such structures for guided assembly of supramolecular DNA structures for nanotechnology.
Collapse
Affiliation(s)
- Anna M Varizhuk
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Anna D Protopopova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vladimir B Tsvetkov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Nikolay A Barinov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Victor V Podgorsky
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Maria V Tankevich
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Maria A Vlasenok
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vyacheslav V Severov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Igor P Smirnov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Evgeniy V Dubrovin
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Dmitry V Klinov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Galina E Pozmogova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| |
Collapse
|
40
|
Abstract
Advances in understanding mechanisms of nucleic acids have revolutionized molecular biology and medicine, but understanding of nontraditional nucleic acid conformations is less developed. The guanine quadruplex (G4) alternative DNA structure was first described in the 1960s, but the existence of G4 structures (G4-S) and their participation in myriads of biological functions are still underappreciated. Despite many tools to study G4s and many examples of roles for G4s in eukaryotic molecular processes and issues with uncontrolled G4-S formation, there is relatively little knowledge about the roles of G4-S in viral or prokaryotic systems. This review summarizes the state of the art with regard to G4-S in eukaryotes and their potential roles in human disease before discussing the evidence that G4-S have equivalent importance in affecting viral and bacterial life.
Collapse
Affiliation(s)
- H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
41
|
Tan W, Yi L, Zhu Z, Zhang L, Zhou J, Yuan G. Hsa-miR-1587 G-quadruplex formation and dimerization induced by NH 4+, molecular crowding environment and jatrorrhizine derivatives. Talanta 2017; 179:337-343. [PMID: 29310241 DOI: 10.1016/j.talanta.2017.11.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/23/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022]
Abstract
A guanine-rich human mature microRNA, miR-1587, was discovered to form stable intramolecular G-quadruplexes in the presence of K+, Na+ and low concentration of NH4+ (25mM) by electrospray ionization mass spectrometry (ESI-MS) combined with circular dichroism (CD) spectroscopy. Furthermore, under high concentration of NH4+ (100mM) or molecular crowding environments, miR-1587 formed a dimeric G-quadruplex through 3'-to-3' stacking of two monomeric G-quadruplex subunits with one ammonium ion sandwiched between the interfaces. Specifically, two synthesized jatrorrhizine derivatives with terminal amine groups could also induce the dimerization of miR-1587 G-quadruplex and formed 1:1 and 2:1 complexes with the dimeric G-quadruplex. In contrast, jatrorrhizine could bind with the dimeric miR-1587 G-quadruplex, but could not induce dimerization of miR-1587 G-quadruplex. These results provide a new strategy to regulate the functions of miR-1587 through induction of G-quadruplex formation and dimerization.
Collapse
Affiliation(s)
- Wei Tan
- College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Long Yi
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Engineering, Beijing 100029, China
| | - Zhentao Zhu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Engineering, Beijing 100029, China
| | - Lulu Zhang
- College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Jiang Zhou
- College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China.
| | - Gu Yuan
- College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China.
| |
Collapse
|
42
|
Feng G, Luo C, Yi H, Yuan L, Lin B, Luo X, Hu X, Wang H, Lei C, Nie Z, Yao S. DNA mimics of red fluorescent proteins (RFP) based on G-quadruplex-confined synthetic RFP chromophores. Nucleic Acids Res 2017; 45:10380-10392. [PMID: 28981852 PMCID: PMC5737560 DOI: 10.1093/nar/gkx803] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/26/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Red fluorescent proteins (RFPs) have emerged as valuable biological markers for biomolecule imaging in living systems. Developing artificial fluorogenic systems that mimic RFPs remains an unmet challenge. Here, we describe the design and synthesis of six new chromophores analogous to the chromophores in RFPs. We demonstrate, for the first time, that encapsulating RFP chromophore analogues in canonical DNA G-quadruplexes (G4) can activate bright fluorescence spanning red and far-red spectral regions (Em = 583-668 nm) that nearly match the entire RFP palette. Theoretical calculations and molecular dynamics simulations reveal that DNA G4 greatly restricts radiationless deactivation of chromophores induced by a twisted intramolecular charge transfer (TICT). These DNA mimics of RFP exhibit attractive photophysical properties comparable or superior to natural RFPs, including high quantum yield, large Stokes shifts, excellent anti-photobleaching properties, and two-photon fluorescence. Moreover, these RFP chromophore analogues are a novel and distinctive type of topology-selective G4 probe specific to parallel G4 conformation. The DNA mimics of RFP have been further exploited for imaging of target proteins. Using cancer-specific cell membrane biomarkers as targets, long-term real-time monitoring in single live cell and two-photon fluorescence imaging in tissue sections have been achieved without the need for genetic coding.
Collapse
Affiliation(s)
- Guangfu Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Chao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Haibo Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Bin Lin
- Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine laboratory, Hunan University, Changsha 410082, PR China
| | - Honghui Wang
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
43
|
Perrone R, Lavezzo E, Riello E, Manganelli R, Palù G, Toppo S, Provvedi R, Richter SN. Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci Rep 2017; 7:5743. [PMID: 28720801 PMCID: PMC5515968 DOI: 10.1038/s41598-017-05867-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/02/2017] [Indexed: 12/04/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), one of the top 10 causes of death worldwide in 2015. The recent emergence of strains resistant to all current drugs urges the development of compounds with new mechanisms of action. G-quadruplexes are nucleic acids secondary structures that may form in G-rich regions to epigenetically regulate cellular functions. Here we implemented a computational tool to scan the presence of putative G-quadruplex forming sequences in the genome of Mycobacterium tuberculosis and analyse their association to transcription start sites. We found that the most stable G-quadruplexes were in the promoter region of genes belonging to definite functional categories. Actual G-quadruplex folding of four selected sequences was assessed by biophysical and biomolecular techniques: all molecules formed stable G-quadruplexes, which were further stabilized by two G-quadruplex ligands. These compounds inhibited Mycobacterium tuberculosis growth with minimal inhibitory concentrations in the low micromolar range. These data support formation of Mycobacterium tuberculosis G-quadruplexes in vivo and their potential regulation of gene transcription, and prompt the use of G4 ligands to develop original antitubercular agents.
Collapse
Affiliation(s)
- Rosalba Perrone
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Erika Riello
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy.
| | - Roberta Provvedi
- Department of Biology, University of Padua, via Ugo Bassi 58/b, 35121, Padua, Italy.
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy.
| |
Collapse
|
44
|
Devlin R, Marques CA, McCulloch R. Does DNA replication direct locus-specific recombination during host immune evasion by antigenic variation in the African trypanosome? Curr Genet 2017; 63:441-449. [PMID: 27822899 PMCID: PMC5422504 DOI: 10.1007/s00294-016-0662-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
All pathogens must survive host immune attack and, amongst the survival strategies that have evolved, antigenic variation is a particularly widespread reaction to thwart adaptive immunity. Though the reactions that underlie antigenic variation are highly varied, recombination by gene conversion is a widespread approach to immune survival in bacterial and eukaryotic pathogens. In the African trypanosome, antigenic variation involves gene conversion-catalysed movement of a huge number of variant surface glycoprotein (VSG) genes into a few telomeric sites for VSG expression, amongst which only a single site is actively transcribed at one time. Genetic evidence indicates VSG gene conversion has co-opted the general genome maintenance reaction of homologous recombination, aligning the reaction strategy with targeted rearrangements found in many organisms. What is less clear is how gene conversion might be initiated within the locality of the VSG expression sites. Here, we discuss three emerging models for VSG switching initiation and ask how these compare with processes for adaptive genome change found in other organisms.
Collapse
Affiliation(s)
- Rebecca Devlin
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
45
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
46
|
Lomidze L, Kelley S, Gogichaishvili S, Metreveli N, Musier-Forsyth K, Kankia B. Sr(2+) induces unusually stable d(GGGTGGGTGGGTGGG) quadruplex dimers. Biopolymers 2017; 105:811-8. [PMID: 27416320 DOI: 10.1002/bip.22916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 02/03/2023]
Abstract
Guanine-rich sequences are able to form quadruplexes consisting of G-quartet structural units. Quadruplexes play an important role in the regulation of gene expression and have therapeutic and biotechnological potential. The HIV-1 integrase inhibitor, (GGGT)4 , and its variants demonstrate unusually high thermal stability. This property has been exploited in the use of quadruplex formation to drive various endergonic reactions of nucleic acids such as isothermal DNA amplification. Quadruplex stability is mainly determined by cations, which specifically bind into the inner core of the structure. In the present work, we report a systematic study of a variant of the HIV-1 integrase inhibitor, GGGTGGGTGGGTGGG (G3T), in the presence of alkali and alkaline-earth cations. We show that Sr(2+) -G3T is characterized by the highest thermal stability and that quadruplex formation requires only one Sr(2+) ion that binds with low micromolar affinity. These concentrations are sufficient to drive robust isothermal quadruplex priming DNA amplification reaction. The Sr(2+) -quadruplexes are also able to form unusually stable dimers through end-to-end stacking. The multimerization can be induced by a combination of quadruplex forming cations (i.e., K(+) or Sr(2+) ) and non-specific Mg(2+) .
Collapse
Affiliation(s)
- Levan Lomidze
- Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia
| | - Sean Kelley
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Shota Gogichaishvili
- Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia
| | - Nunu Metreveli
- Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Besik Kankia
- Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia.,Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
47
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
48
|
Nelissen FHT, Tessari M, Wijmenga SS, Heus HA. Stable isotope labeling methods for DNA. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:89-108. [PMID: 27573183 DOI: 10.1016/j.pnmrs.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis.
Collapse
Affiliation(s)
- Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Sybren S Wijmenga
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
49
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
50
|
Abstract
The genus Neisseria contains two pathogenic species of prominant public health concern: Neisseria gonorrhoeae and Neisseria meningitidis. These pathogens display a notable ability to undergo frequent programmed recombination events. The recombination-mediated pathways of transformation and pilin antigenic variation in the Neisseria are well-studied systems that are critical for pathogenesis. Here we will detail the conserved and unique aspects of transformation and antigenic variation in the Neisseria. Transformation will be followed from initial DNA binding through recombination into the genome with consideration to the factors necessary at each step. Additional focus is paid to the unique type IV secretion system that mediates donation of transforming DNA in the pathogenic Neisseria. The pilin antigenic variation system uses programmed recombinations to alter a major surface determinant, which allows immune avoidance and promotes infection. We discuss the trans- and cis- acting factors which facilitate pilin antigenic variation and present the current understanding of the mechanisms involved in the process.
Collapse
|