1
|
Zhou P, Zhang Y, Li K, Ye H, Mei L, Shang S. Computational analysis and protein engineering of artificial PDZ domain/self-binding peptide fusion biomacromolecular system with molecular switch functionality. Int J Biol Macromol 2025; 308:142432. [PMID: 40132705 DOI: 10.1016/j.ijbiomac.2025.142432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Self-binding peptides (SBPs) are peptide-dependent intramolecular interactions described by our group, which conceptualize the short peptide segment within a monomeric protein as able to perform biological function by its dynamic and reversible binding to a cognate domain partner in the same monomer. Previously, we offered evidences that the SBPs represent a new biomolecular dynamic phenomenon that works across folding and binding, and also proposed the SBPs as potential drug targets for pharmacological intervention. Here, we attempted to model and design artificial protein systems containing SBP with molecular switch functionality by using computational peptidology strategies and protein engineering methods. In the procedure, the free decapeptide ligands were fused to the C-terminal tail of human CAL PDZ domain through a flexible polypeptide linker, thus resulting in a number of PDZ/SBP fusion biomacromolecular systems. The intramolecular binding event of SBP to PDZ was observed in the fusion systems as well as between the free decapeptide and PDZ. We carefully examined linker effects on the intramolecular binding event and systematically optimized the length and composition of linker to improve binding. Computational analysis suggested dynamics, but not thermodynamics, primarily responsible for the binding of SBP to PDZ. The linker plays an important role, as it restrains the SBP within a small local spatial region nearby the binding site of PDZ. The term effective concentration (EC) was defined to characterize the high local concentration of SBP at a small region due to the linker restriction, which improves the binding probability of SBP to PDZ from a dynamics point of view. The CAL PDZ/SBP(iCAL36-K-6) fusion protein system with poly(G)8 linker can work as designed well, where the SBP(iCAL36-K-6) dynamically binds to/unbinds from PDZ in a regulatable manner by externally controlling its C-terminal deamidation/amidation, thus exhibiting a typical molecular switch functionality.
Collapse
Affiliation(s)
- Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China.
| | - Yunyi Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Kexin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Haiyang Ye
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Li Mei
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China.
| | - Shuyong Shang
- Institute of Ecological Environment Protection, Chengdu Normal University, Chengdu 611130, China
| |
Collapse
|
2
|
Bracaglia L, Oliveti S, Felli IC, Pierattelli R. Decoding Order and Disorder in Proteins by NMR Spectroscopy. J Am Chem Soc 2025; 147:13146-13157. [PMID: 40223218 PMCID: PMC12022988 DOI: 10.1021/jacs.4c14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Proteins often have a complex architecture, consisting of both globular ordered domains and intrinsically disordered regions (IDRs). These multidomain proteins pose challenges for traditional structural biology techniques. One major difficulty arises from the dynamic and flexible nature of IDRs, which lack a stable three-dimensional structure. Indeed, this feature further complicates the application of traditional structural biology techniques. Characterizing these systems is typically simplified by isolating individual domains, which can provide valuable insights into the structure and function of specific regions. However, this approach overlooks the interactions and regulatory mechanisms that occur between domains. To capture the full functional and structural complexity of multidomain proteins, it is crucial to study larger constructs. In this study, we focused on the CREB binding protein (CBP), a pivotal protein involved in numerous cellular processes. CBP is characterized by its modular structure, featuring alternating globular domains and IDRs. We specifically examined the TAZ4 construct, encompassing the TAZ2 globular domain and the ID4 flexible linker region. To characterize this multidomain system, we designed NMR experiments that take advantage of the dynamic differences between the two domains to obtain 2D and 3D spectra enabling the selection of the signals based on their nuclear relaxation properties. These experiments allowed the sequence-specific assignment of the TAZ4 construct to be extended revealing a crosstalk between the disordered region and the globular domain.
Collapse
Affiliation(s)
- Lorenzo Bracaglia
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Silvia Oliveti
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Isabella C. Felli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Roberta Pierattelli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Sesto
Fiorentino 50019, Italy
| |
Collapse
|
3
|
Navarro AM, Alonso M, Martínez-Pérez E, Lazar T, Gibson TJ, Iserte JA, Tompa P, Marino-Buslje C. Unveiling the Complexity of cis-Regulation Mechanisms in Kinases: A Comprehensive Analysis. Proteins 2025; 93:575-587. [PMID: 39366918 DOI: 10.1002/prot.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Protein cis-regulatory elements (CREs) are regions that modulate the activity of a protein through intramolecular interactions. Kinases, pivotal enzymes in numerous biological processes, often undergo regulatory control via inhibitory interactions in cis. This study delves into the mechanisms of cis regulation in kinases mediated by CREs, employing a combined structural and sequence analysis. To accomplish this, we curated an extensive dataset of kinases featuring annotated CREs, organized into homolog families through multiple sequence alignments. Key molecular attributes, including disorder and secondary structure content, active and ATP-binding sites, post-translational modifications, and disease-associated mutations, were systematically mapped onto all sequences. Additionally, we explored the potential for conformational changes between active and inactive states. Finally, we explored the presence of these kinases within membraneless organelles and elucidated their functional roles therein. CREs display a continuum of structures, ranging from short disordered stretches to fully folded domains. The adaptability demonstrated by CREs in achieving the common goal of kinase inhibition spans from direct autoinhibitory interaction with the active site within the kinase domain, to CREs binding to an alternative site, inducing allosteric regulation revealing distinct types of inhibitory mechanisms, which we exemplify by archetypical representative systems. While this study provides a systematic approach to comprehend kinase CREs, further experimental investigations are imperative to unravel the complexity within distinct kinase families. The insights gleaned from this research lay the foundation for future studies aiming to decipher the molecular basis of kinase dysregulation, and explore potential therapeutic interventions.
Collapse
Affiliation(s)
- Alvaro M Navarro
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Macarena Alonso
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | | | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Javier A Iserte
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
- Research Centre for Natural Sciences, Hungarian Research Network, Institute of Enzymology, Budapest, Hungary
| | | |
Collapse
|
4
|
Cho D, Lee HM, Kim JA, Song JG, Hwang SH, Lee B, Park J, Tran KM, Kim J, Vo PNL, Bae J, Pimt T, Lee K, Gsponer J, Kim HW, Na D. Autoinhibited Protein Database: a curated database of autoinhibitory domains and their autoinhibition mechanisms. Database (Oxford) 2024; 2024:baae085. [PMID: 39192607 PMCID: PMC11349611 DOI: 10.1093/database/baae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Autoinhibition, a crucial allosteric self-regulation mechanism in cell signaling, ensures signal propagation exclusively in the presence of specific molecular inputs. The heightened focus on autoinhibited proteins stems from their implication in human diseases, positioning them as potential causal factors or therapeutic targets. However, the absence of a comprehensive knowledgebase impedes a thorough understanding of their roles and applications in drug discovery. Addressing this gap, we introduce Autoinhibited Protein Database (AiPD), a curated database standardizing information on autoinhibited proteins. AiPD encompasses details on autoinhibitory domains (AIDs), their targets, regulatory mechanisms, experimental validation methods, and implications in diseases, including associated mutations and post-translational modifications. AiPD comprises 698 AIDs from 532 experimentally characterized autoinhibited proteins and 2695 AIDs from their 2096 homologs, which were retrieved from 864 published articles. AiPD also includes 42 520 AIDs of computationally predicted autoinhibited proteins. In addition, AiPD facilitates users in investigating potential AIDs within a query sequence through comparisons with documented autoinhibited proteins. As the inaugural autoinhibited protein repository, AiPD significantly aids researchers studying autoinhibition mechanisms and their alterations in human diseases. It is equally valuable for developing computational models, analyzing allosteric protein regulation, predicting new drug targets, and understanding intervention mechanisms AiPD serves as a valuable resource for diverse researchers, contributing to the understanding and manipulation of autoinhibition in cellular processes. Database URL: http://ssbio.cau.ac.kr/databases/AiPD.
Collapse
Affiliation(s)
- Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Ji Ah Kim
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Su-hee Hwang
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jinsil Park
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Kha Mong Tran
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jiwon Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Phuong Ngoc Lam Vo
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jooeun Bae
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Teerapat Pimt
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jörg Gsponer
- Center for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
5
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Tussia-Cohen D, Arrigoni F, Pozzoli U, De Gioia L, Hagai T, Sironi M. Evolution of Virus-like Features and Intrinsically Disordered Regions in Retrotransposon-derived Mammalian Genes. Mol Biol Evol 2024; 41:msae154. [PMID: 39101471 PMCID: PMC11299033 DOI: 10.1093/molbev/msae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Several mammalian genes have originated from the domestication of retrotransposons, selfish mobile elements related to retroviruses. Some of the proteins encoded by these genes have maintained virus-like features; including self-processing, capsid structure formation, and the generation of different isoforms through -1 programmed ribosomal frameshifting. Using quantitative approaches in molecular evolution and biophysical analyses, we studied 28 retrotransposon-derived genes, with a focus on the evolution of virus-like features. By analyzing the rate of synonymous substitutions, we show that the -1 programmed ribosomal frameshifting mechanism in three of these genes (PEG10, PNMA3, and PNMA5) is conserved across mammals and originates alternative proteins. These genes were targets of positive selection in primates, and one of the positively selected sites affects a B-cell epitope on the spike domain of the PNMA5 capsid, a finding reminiscent of observations in infectious viruses. More generally, we found that retrotransposon-derived proteins vary in their intrinsically disordered region content and this is directly associated with their evolutionary rates. Most positively selected sites in these proteins are located in intrinsically disordered regions and some of them impact protein posttranslational modifications, such as autocleavage and phosphorylation. Detailed analyses of the biophysical properties of intrinsically disordered regions showed that positive selection preferentially targeted regions with lower conformational entropy. Furthermore, positive selection introduces variation in binary sequence patterns across orthologues, as well as in chain compaction. Our results shed light on the evolutionary trajectories of a unique class of mammalian genes and suggest a novel approach to study how intrinsically disordered region biophysical characteristics are affected by evolution.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
6
|
Tang T, Sun J, Li C. The role of Phafin proteins in cell signaling pathways and diseases. Open Life Sci 2024; 19:20220896. [PMID: 38947768 PMCID: PMC11211877 DOI: 10.1515/biol-2022-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Membrane-associated proteins are important membrane readers that mediate and facilitate the signaling and trafficking pathways in eukaryotic membrane-bound compartments. The protein members in the Phafin family are membrane readers containing two phosphoinositide recognition domains: the Pleckstrin Homology domain and the FYVE (Fab1, YOTB, Vac1, and early endosome antigen 1) domain. Phafin proteins, categorized into two subfamilies, Phafin1 and Phafin2, associate with cellular membranes through interactions involving membrane-embedded phosphoinositides and phosphoinositide-binding domains. These membrane-associated Phafin proteins play pivotal roles by recruiting binding partners and forming complexes, which contribute significantly to apoptotic, autophagic, and macropinocytotic pathways. Elevated expression levels of Phafin1 and Phafin2 are observed in various cancers. A recent study highlights a significant increase in Phafin1 protein levels in the lungs of idiopathic pulmonary fibrosis patients compared to normal subjects, suggesting a crucial role for Phafin1 in the pathogenesis of pulmonary fibrosis. Additionally, phosphatidylinositol-3-phosphate-binding 2 (Pib2), a close relative of the Phafin1 protein, functions as an amino acid sensor activating the TOCR1 pathway in yeasts. This review focuses on delineating the involvement of Phafin proteins in cellular signaling and their implications in diseases and briefly discusses the latest research findings concerning Pib2.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jing Sun
- Department of Biostatistics and Epidemiology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
7
|
Holguin-Cruz JA, Bui JM, Jha A, Na D, Gsponer J. Widespread alteration of protein autoinhibition in human cancers. Cell Syst 2024; 15:246-263.e7. [PMID: 38366601 DOI: 10.1016/j.cels.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/20/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Autoinhibition is a prevalent allosteric regulatory mechanism in signaling proteins. Reduced autoinhibition underlies the tumorigenic effect of some known cancer drivers, but whether autoinhibition is altered generally in cancer remains elusive. Here, we demonstrate that cancer-associated missense mutations, in-frame insertions/deletions, and fusion breakpoints are enriched within inhibitory allosteric switches (IASs) across all cancer types. Selection for IASs that are recurrently mutated in cancers identifies established and unknown cancer drivers. Recurrent missense mutations in IASs of these drivers are associated with distinct, cancer-specific changes in molecular signaling. For the specific case of PPP3CA, the catalytic subunit of calcineurin, we provide insights into the molecular mechanisms of altered autoinhibition by cancer mutations using biomolecular simulations, and demonstrate that such mutations are associated with transcriptome changes consistent with increased calcineurin signaling. Our integrative study shows that autoinhibition-modulating genetic alterations are positively selected for by cancer cells.
Collapse
Affiliation(s)
- Jorge A Holguin-Cruz
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer M Bui
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ashwani Jha
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
8
|
Sieme D, Engelke M, Rezaei-Ghaleh N, Becker S, Wienands J, Griesinger C. Autoinhibition in the Signal Transducer CIN85 Modulates B Cell Activation. J Am Chem Soc 2024; 146:399-409. [PMID: 38111344 PMCID: PMC10786037 DOI: 10.1021/jacs.3c09586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Signal transduction by the ligated B cell antigen receptor (BCR) depends on the preorganization of its intracellular components, such as the effector proteins SLP65 and CIN85 within phase-separated condensates. These liquid-like condensates are based on the interaction between three Src homology 3 (SH3) domains and the corresponding proline-rich recognition motifs (PRM) in CIN85 and SLP65, respectively. However, detailed information on the protein conformation and how it impacts the capability of SLP65/CIN85 condensates to orchestrate BCR signal transduction is still lacking. This study identifies a hitherto unknown intramolecular SH3:PRM interaction between the C-terminal SH3 domain (SH3C) of CIN85 and an adjacent PRM. We used high-resolution nuclear magnetic resonance (NMR) experiments to study the flexible linker region containing the PRM and determined the extent of the interaction in multidomain constructs of the protein. Moreover, we observed that the phosphorylation of a serine residue located in the immediate vicinity of the PRM regulates this intramolecular interaction. This allows for a dynamic modulation of CIN85's valency toward SLP65. B cell culture experiments further revealed that the PRM/SH3C interaction is crucial for maintaining the physiological level of SLP65/CIN85 condensate formation, activation-induced membrane recruitment of CIN85, and subsequent mobilization of Ca2+. Our findings therefore suggest that the intramolecular interaction with the adjacent disordered linker is effective in modulating CIN85's valency both in vitro and in vivo. This therefore constitutes a powerful way for the modulation of SLP65/CIN85 condensate formation and subsequent B cell signaling processes within the cell.
Collapse
Affiliation(s)
- Daniel Sieme
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Engelke
- Institute
for Cellular and Molecular Immunology, Georg-August
University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Institute
of Physical Biology, Heinrich Heine University
Düsseldorf, Universitätsstraße
1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Stefan Becker
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jürgen Wienands
- Institute
for Cellular and Molecular Immunology, Georg-August
University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Christian Griesinger
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Fenton M, Gregory E, Daughdrill G. Protein disorder and autoinhibition: The role of multivalency and effective concentration. Curr Opin Struct Biol 2023; 83:102705. [PMID: 37778184 PMCID: PMC10841074 DOI: 10.1016/j.sbi.2023.102705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Regulation of protein binding through autoinhibition commonly occurs via interactions involving intrinsically disordered regions (IDRs). These intramolecular interactions can directly or allosterically inhibit intermolecular protein or DNA binding, regulate enzymatic activity, and control the assembly of large macromolecular complexes. Autoinhibitory interactions mediated by protein disorder are inherently transient, making their identification and characterization challenging. In this review, we explore the structural and functional diversity of disorder-mediated autoinhibition for a variety of biological mechanisms, with a focus on the role of multivalency and effective concentration. We also discuss the evolution of disordered motifs that participate in autoinhibition using examples where sequence conservation varies from high to low. In some cases, identifiable motifs that are essential for autoinhibition remain intact within a rapidly evolving sequence, over long evolutionary distances. Finally, we examine the potential of AlphaFold2 to predict autoinhibitory intramolecular interactions involving IDRs.
Collapse
Affiliation(s)
- Malissa Fenton
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Emily Gregory
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Gary Daughdrill
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
10
|
Choi S, Son SH, Kim MY, Na I, Uversky VN, Kim CG. Improved prediction of protein-protein interactions by a modified strategy using three conventional docking software in combination. Int J Biol Macromol 2023; 252:126526. [PMID: 37633550 DOI: 10.1016/j.ijbiomac.2023.126526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Proteins play a crucial role in many biological processes, where their interaction with other proteins are integral. Abnormal protein-protein interactions (PPIs) have been linked to various diseases including cancer, and thus targeting PPIs holds promise for drug development. However, experimental confirmation of the peculiarities of PPIs is challenging due to their dynamic and transient nature. As a complement to experimental technologies, multiple computational molecular docking (MD) methods have been developed to predict the structures of protein-protein complexes and their dynamics, still requiring further improvements in several issues. Here, we report an improved MD method, namely three-software docking (3SD), by employing three popular protein-peptide docking software (CABS-dock, HPEPDOCK, and HADDOCK) in combination to ensure constant quality for most targets. We validated our 3SD performance in known protein-peptide interactions (PpIs). We also enhanced MD performance in proteins having intrinsically disordered regions (IDRs) by applying the modified 3SD strategy, the three-software docking after removing random coiled IDR (3SD-RR), to the comparable crystal PpI structures. At the end, we applied 3SD-RR to the AlphaFold2-predicted receptors, yielding an efficient prediction of PpI pose with high relevance to the experimental data regardless of the presence of IDRs or the availability of receptor structures. Our study provides an improved solution to the challenges in studying PPIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery. SIGNIFICANCE STATEMENT: Protein-protein interactions (PPIs) are integral to life, and abnormal PPIs are associated with diseases such as cancer. Studying protein-peptide interactions (PpIs) is challenging due to their dynamic and transient nature. Here we developed improved docking methods (3SD and 3SD-RR) to predict the PpI poses, ensuring constant quality in most targets and also addressing issues like intrinsically disordered regions (IDRs) and artificial intelligence-predicted structures. Our study provides an improved solution to the challenges in studying PpIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery.
Collapse
Affiliation(s)
- Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Insung Na
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida; Tampa, FL 33612, USA.
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; CGK Biopharma Co. Ltd., 222 Wangshipri-ro, Sungdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
11
|
Kurgan L, Hu G, Wang K, Ghadermarzi S, Zhao B, Malhis N, Erdős G, Gsponer J, Uversky VN, Dosztányi Z. Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins. Nat Protoc 2023; 18:3157-3172. [PMID: 37740110 DOI: 10.1038/s41596-023-00876-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 09/24/2023]
Abstract
Intrinsic disorder is instrumental for a wide range of protein functions, and its analysis, using computational predictions from primary structures, complements secondary and tertiary structure-based approaches. In this Tutorial, we provide an overview and comparison of 23 publicly available computational tools with complementary parameters useful for intrinsic disorder prediction, partly relying on results from the Critical Assessment of protein Intrinsic Disorder prediction experiment. We consider factors such as accuracy, runtime, availability and the need for functional insights. The selected tools are available as web servers and downloadable programs, offer state-of-the-art predictions and can be used in a high-throughput manner. We provide examples and instructions for the selected tools to illustrate practical aspects related to the submission, collection and interpretation of predictions, as well as the timing and their limitations. We highlight two predictors for intrinsically disordered proteins, flDPnn as accurate and fast and IUPred as very fast and moderately accurate, while suggesting ANCHOR2 and MoRFchibi as two of the best-performing predictors for intrinsically disordered region binding. We link these tools to additional resources, including databases of predictions and web servers that integrate multiple predictive methods. Altogether, this Tutorial provides a hands-on guide to comparatively evaluating multiple predictors, submitting and collecting their own predictions, and reading and interpreting results. It is suitable for experimentalists and computational biologists interested in accurately and conveniently identifying intrinsic disorder, facilitating the functional characterization of the rapidly growing collections of protein sequences.
Collapse
Affiliation(s)
- Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gábor Erdős
- MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Zsuzsanna Dosztányi
- MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
12
|
Pei J, Cong Q. Computational analysis of regulatory regions in human protein kinases. Protein Sci 2023; 32:e4764. [PMID: 37632170 PMCID: PMC10503413 DOI: 10.1002/pro.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Eukaryotic proteins often feature modular domain structures comprising globular domains that are connected by linker regions and intrinsically disordered regions that may contain important functional motifs. The intramolecular interactions of globular domains and nonglobular regions can play critical roles in different aspects of protein function. However, studying these interactions and their regulatory roles can be challenging due to the flexibility of nonglobular regions, the long insertions separating interacting modules, and the transient nature of some interactions. Obtaining the experimental structures of multiple domains and functional regions is more difficult than determining the structures of individual globular domains. High-quality structural models generated by AlphaFold offer a unique opportunity to study intramolecular interactions in eukaryotic proteins. In this study, we systematically explored intramolecular interactions between human protein kinase domains (KDs) and potential regulatory regions, including globular domains, N- and C-terminal tails, long insertions, and distal nonglobular regions. Our analysis identified intramolecular interactions between human KDs and 35 different types of globular domains, exhibiting a variety of interaction modes that could contribute to orthosteric or allosteric regulation of kinase activity. We also identified prevalent interactions between human KDs and their flanking regions (N- and C-terminal tails). These interactions exhibit group-specific characteristics and can vary within each specific kinase group. Although long-range interactions between KDs and nonglobular regions are relatively rare, structural details of these interactions offer new insights into the regulation mechanisms of several kinases, such as HASPIN, MAPK7, MAPK15, and SIK1B.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
13
|
Tang T, Hasan M, Capelluto DGS. Phafins Are More Than Phosphoinositide-Binding Proteins. Int J Mol Sci 2023; 24:8096. [PMID: 37175801 PMCID: PMC10178739 DOI: 10.3390/ijms24098096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Phafins are PH (Pleckstrin Homology) and FYVE (Fab1, YOTB, Vac1, and EEA1) domain-containing proteins. The Phafin protein family is classified into two groups based on their sequence homology and functional similarity: Phafin1 and Phafin2. This protein family is unique because both the PH and FYVE domains bind to phosphatidylinositol 3-phosphate [PtdIns(3)P], a phosphoinositide primarily found in endosomal and lysosomal membranes. Phafin proteins act as PtdIns(3)P effectors in apoptosis, endocytic cargo trafficking, and autophagy. Additionally, Phafin2 is recruited to macropinocytic compartments through coincidence detection of PtdIns(3)P and PtdIns(4)P. Membrane-associated Phafins serve as adaptor proteins that recruit other binding partners. In addition to the phosphoinositide-binding domains, Phafin proteins present a poly aspartic acid motif that regulates membrane binding specificity. In this review, we summarize the involvement of Phafins in several cellular pathways and their potential physiological functions while highlighting the similarities and differences between Phafin1 and Phafin2. Besides, we discuss research perspectives for Phafins.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahmudul Hasan
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, Ma X, Sun X, Kawakami K, Ikuta T, Ding J, Yang Y, Zhang L, Peng S, Niu X, Li H, Guixà-González R, Jin C, Hildebrand PW, Chen C, Kobilka BK. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nat Commun 2023; 14:2005. [PMID: 37037825 PMCID: PMC10085991 DOI: 10.1038/s41467-023-37233-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The β2 adrenergic receptor's (β2AR) 71 amino acid CT is a substrate for GPCR kinases and binds β-arrestins to regulate signaling. Here we show that the β2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking β-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged β2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.
Collapse
Affiliation(s)
- Jie Heng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Guillermo Pérez-Hernández
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiawei Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiuyan Ma
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Yang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lujia Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, PSI, Switzerland
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peter W Hildebrand
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Physics and Biophysics, University Leipzig, 04107, Leipzig, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Handa T, Kundu D, Dubey VK. Perspectives on evolutionary and functional importance of intrinsically disordered proteins. Int J Biol Macromol 2022; 224:243-255. [DOI: 10.1016/j.ijbiomac.2022.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
16
|
Feichtner A, Kugler V, Schwaighofer S, Nuener T, Fleischmann J, Stefan E. Tracking mutation and drug-driven alterations of oncokinase conformations. MEMO 2022; 15:137-142. [PMID: 35677701 PMCID: PMC7612828 DOI: 10.1007/s12254-021-00790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Numerous kinases act as central nodes of cellular signaling networks. As such, many of these enzymes function as molecular switches for coordinating spatiotemporal signal transmission. Typically, it is the compartmentalized phosphorylation of protein substrates which relays the transient input signal to determine decisive physiological cell responses. Genomic alterations affect kinase abundance and/or their activities which contribute to the malignant transformation, progression, and metastasis of human cancers. Thus, major drug discovery efforts have been made to identify lead molecules targeting clinically relevant oncokinases. The concept of personalized medicine aims to apply the therapeutic agent with the highest efficacy towards a patient-specific mutation. Here, we discuss the implementation of a cell-based reporter system which may foster the decision-making process to identify the most promising lead-molecules. We present a modular kinase conformation (KinCon) biosensor platform for live-cell analyses of kinase activity states. This biosensor facilitates the recording of kinase activity conformations of the wild-type and the respective mutated kinase upon lead molecule exposure. We reflect proof-of-principle studies demonstrating how this technology has been extended to profile drug properties of the full-length kinases BRAF and MEK1 in intact cells. Further, we pinpoint how this technology may open new avenues for systematic and patient-tailored drug discovery efforts. Overall, this precision-medicineoriented biosensor concept aims to determine kinase inhibitor specificity and anticipate their drug efficacies.
Collapse
Affiliation(s)
- Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Valentina Kugler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Selina Schwaighofer
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas Nuener
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Jakob Fleischmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Transient exposure of a buried phosphorylation site in an autoinhibited protein. Biophys J 2022; 121:91-101. [PMID: 34864046 PMCID: PMC8758417 DOI: 10.1016/j.bpj.2021.11.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Autoinhibition is a mechanism used to regulate protein function, often by making functional sites inaccessible through the interaction with a cis-acting inhibitory domain. Such autoinhibitory domains often display a substantial degree of structural disorder when unbound, and only become structured in the inhibited state. These conformational dynamics make it difficult to study the structural origin of regulation, including effects of regulatory post-translational modifications. Here, we study the autoinhibition of the Dbl Homology domain in the protein Vav1 by the so-called acidic inhibitory domain. We use molecular simulations to study the process by which a mostly unstructured inhibitory domain folds upon binding and how transient exposure of a key buried tyrosine residue makes it accessible for phosphorylation. We show that the inhibitory domain, which forms a helix in the bound and inhibited stated, samples helical structures already before binding and that binding occurs via a molten-globule-like intermediate state. Together, our results shed light on key interactions that enable the inhibitory domain to sample a finely tuned equilibrium between an inhibited and a kinase-accessible state.
Collapse
|
18
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
19
|
Nassar R, Dignon GL, Razban RM, Dill KA. The Protein Folding Problem: The Role of Theory. J Mol Biol 2021; 433:167126. [PMID: 34224747 PMCID: PMC8547331 DOI: 10.1016/j.jmb.2021.167126] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
The protein folding problem was first articulated as question of how order arose from disorder in proteins: How did the various native structures of proteins arise from interatomic driving forces encoded within their amino acid sequences, and how did they fold so fast? These matters have now been largely resolved by theory and statistical mechanics combined with experiments. There are general principles. Chain randomness is overcome by solvation-based codes. And in the needle-in-a-haystack metaphor, native states are found efficiently because protein haystacks (conformational ensembles) are funnel-shaped. Order-disorder theory has now grown to encompass a large swath of protein physical science across biology.
Collapse
Affiliation(s)
- Roy Nassar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Gregory L Dignon
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Rostam M Razban
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
20
|
Chen J, Kholina E, Szyk A, Fedorov VA, Kovalenko I, Gudimchuk N, Roll-Mecak A. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics. Dev Cell 2021; 56:2016-2028.e4. [PMID: 34022132 PMCID: PMC8476856 DOI: 10.1016/j.devcel.2021.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Microtubules are non-covalent polymers of αβ-tubulin dimers. Posttranslational processing of the intrinsically disordered C-terminal α-tubulin tail produces detyrosinated and Δ2-tubulin. Although these are widely employed as proxies for stable cellular microtubules, their effect (and of the α-tail) on microtubule dynamics remains uncharacterized. Using recombinant, engineered human tubulins, we now find that neither detyrosinated nor Δ2-tubulin affect microtubule dynamics, while the α-tubulin tail is an inhibitor of microtubule growth. Consistent with the latter, molecular dynamics simulations show the α-tubulin tail transiently occluding the longitudinal microtubule polymerization interface. The marked differential in vivo stabilities of the modified microtubule subpopulations, therefore, must result exclusively from selective effector recruitment. We find that tyrosination quantitatively tunes CLIP-170 density at the growing plus end and that CLIP170 and EB1 synergize to selectively upregulate the dynamicity of tyrosinated microtubules. Modification-dependent recruitment of regulators thereby results in microtubule subpopulations with distinct dynamics, a tenet of the tubulin code hypothesis.
Collapse
Affiliation(s)
- Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ekaterina Kholina
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Vladimir A Fedorov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kovalenko
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia; Astrakhan State University, Astrakhan 414056, Russia; Sechenov University, Moscow 119991, Russia
| | - Nikita Gudimchuk
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Morgan JL, Yeager A, Estelle AB, Gsponer J, Barbar E. Transient Tertiary Structures of Disordered Dynein Intermediate Chain Regulate its Interactions with Multiple Partners. J Mol Biol 2021; 433:167152. [PMID: 34273400 DOI: 10.1016/j.jmb.2021.167152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022]
Abstract
The N-terminal domain of dynein intermediate chain (N-IC) is central to the cytoplasmic dynein 'cargo attachment subcomplex' and regulation of motor activity. It is a prototypical intrinsically disordered protein (IDP), serving as a primarily disordered polybivalent molecular scaffold for numerous binding partners, including three dimeric dynein light chains and coiled coil domains of dynein partners dynactin p150Glued and NudE. At the very N-terminus, a 40 amino acid single alpha helix (SAH) forms the major binding site for both p150Glued and NudE, while a shorter nascent helix (H2) separated from SAH by a disordered linker, is necessary for tight binding to dynactin p150Glued but not to NudE. Here we demonstrate that transient tertiary interactions in this highly dynamic protein underlie the differences in its interactions with p150Glued and NudE. NMR paramagnetic relaxation enhancement experiments and restrained molecular dynamics simulations identify interactions between the two non-contiguous SAH and H2 helical regions, the extent of which correlates with the length and stability of H2, showing clearly that tertiary and secondary structure formation are coupled in IDPs. These interactions are significantly attenuated when N-IC is bound to NudE, suggesting that NudE binding shifts the conformational ensemble to one that is more extended and with less structure in H2. While the intrinsic disorder and flexibility in N-IC modulate its ability to serve as a binding platform for numerous partners, deviations of this protein from random-coil behavior provide a process for regulating these binding interactions and potentially the dynein motor.
Collapse
Affiliation(s)
- Jessica L Morgan
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Andrew Yeager
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aidan B Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
22
|
A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding. Proc Natl Acad Sci U S A 2021; 118:2021456118. [PMID: 33443163 DOI: 10.1073/pnas.2021456118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor-suppressor p53 is a critical regulator of the cellular response to DNA damage and is tightly regulated by posttranslational modifications. Thr55 in the AD2 interaction motif of the N-terminal transactivation domain functions as a phosphorylation-dependent regulatory switch that modulates p53 activity. Thr55 is constitutively phosphorylated, becomes dephosphorylated upon DNA damage, and is subsequently rephosphorylated to facilitate dissociation of p53 from promoters and inactivate p53-mediated transcription. Using NMR and fluorescence spectroscopy, we show that Thr55 phosphorylation inhibits DNA-binding by enhancing competitive interactions between the disordered AD2 motif and the structured DNA-binding domain (DBD). Nonphosphorylated p53 exhibits positive cooperativity in binding DNA as a tetramer. Upon phosphorylation of Thr55, cooperativity is abolished and p53 binds initially to cognate DNA sites as a dimer. As the concentration of phosphorylated p53 is further increased, a second dimer binds and causes p53 to dissociate from the DNA, resulting in a bell-shaped binding curve. This autoinhibition is driven by favorable interactions between the DNA-binding surface of the DBD and the multiple phosphorylated AD2 motifs within the tetramer. These interactions are augmented by additional phosphorylation of Ser46 and are fine-tuned by the proline-rich domain (PRD). Removal of the PRD strengthens the AD2-DBD interaction and leads to autoinhibition of DNA binding even in the absence of Thr55 phosphorylation. This study reveals the molecular mechanism by which the phosphorylation status of Thr55 modulates DNA binding and controls both activation and termination of p53-mediated transcriptional programs at different stages of the cellular DNA damage response.
Collapse
|
23
|
Chong S, Mir M. Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered Protein Regions. J Mol Biol 2020; 433:166724. [PMID: 33248138 DOI: 10.1016/j.jmb.2020.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
A substantial portion of the proteome consists of intrinsically disordered regions (IDRs) that do not fold into well-defined 3D structures yet perform numerous biological functions and are associated with a broad range of diseases. It has been a long-standing enigma how different IDRs successfully execute their specific functions. Further putting a spotlight on IDRs are recent discoveries of functionally relevant biomolecular assemblies, which in some cases form through liquid-liquid phase separation. At the molecular level, the formation of biomolecular assemblies is largely driven by weak, multivalent, but selective IDR-IDR interactions. Emerging experimental and computational studies suggest that the primary amino acid sequences of IDRs encode a variety of their interaction behaviors. In this review, we focus on findings and insights that connect sequence-derived features of IDRs to their conformations, propensities to form biomolecular assemblies, selectivity of interaction partners, functions in the context of physiology and disease, and regulation of function. We also discuss directions of future research to facilitate establishing a comprehensive sequence-function paradigm that will eventually allow prediction of selective interactions and specificity of function mediated by IDRs.
Collapse
Affiliation(s)
- Shasha Chong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States; The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, United States.
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
24
|
Mutation-oriented profiling of autoinhibitory kinase conformations predicts RAF inhibitor efficacies. Proc Natl Acad Sci U S A 2020; 117:31105-31113. [PMID: 33229534 PMCID: PMC7733820 DOI: 10.1073/pnas.2012150117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kinase-targeted therapies have the potential to improve the survival of patients with cancer. However, the cancer-specific spectrum of kinase alterations exhibits distinct functional properties and requires mutation-oriented drug treatments. Besides post-translational modifications and diverse intermolecular interactions of kinases, it is the distinct disease mutation which reshapes full-length kinase conformations, affecting their activity. Oncokinase mutation profiles differ between cancer types, as it was shown for BRAF in melanoma and non-small-cell lung cancers. Here, we present the target-oriented application of a kinase conformation (KinCon) reporter platform for live-cell measurements of autoinhibitory kinase activity states. The bioluminescence-based KinCon biosensor allows the tracking of conformation dynamics of full-length kinases in intact cells and real time. We show that the most frequent BRAF cancer mutations affect kinase conformations and thus the engagement and efficacy of V600E-specific BRAF inhibitors (BRAFi). We illustrate that the patient mutation harboring KinCon reporters display differences in the effectiveness of the three clinically approved BRAFi vemurafenib, encorafenib, and dabrafenib and the preclinical paradox breaker PLX8394. We confirmed KinCon-based drug efficacy predictions for BRAF mutations other than V600E in proliferation assays using patient-derived lung cancer cell lines and by analyzing downstream kinase signaling. The systematic implementation of such conformation reporters will allow to accelerate the decision process for the mutation-oriented RAF-kinase cancer therapy. Moreover, we illustrate that the presented kinase reporter concept can be extended to other kinases which harbor patient mutations. Overall, KinCon profiling provides additional mechanistic insights into full-length kinase functions by reporting protein-protein interaction (PPI)-dependent, mutation-specific, and drug-driven changes of kinase activity conformations.
Collapse
|
25
|
Vázquez-Martínez JA, Gómez-Lim MA, Morales-Ríos E, Gonzalez-y-Merchand JA, Ortiz-Navarrete V. Short Disordered Epitope of CRTAM Ig-Like V Domain as a Potential Target for Blocking Antibodies. Int J Mol Sci 2020; 21:ijms21228798. [PMID: 33233764 PMCID: PMC7699905 DOI: 10.3390/ijms21228798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Class-I Restricted T Cell-Associated Molecule (CRTAM) is a protein that is expressed after T cell activation. The interaction of CRTAM with its ligand, nectin-like 2 (Necl2), is required for the efficient production of IL-17, IL-22, and IFNγ by murine CD4 T cells, and it plays a role in optimal CD8 T and NK cell cytotoxicity. CRTAM promotes the pro-inflammatory cytokine profile; therefore, it may take part in the immunopathology of autoimmune diseases such as diabetes type 1 or colitis. Thus, antibodies that block the interaction between CRTAM and Necl2 would be useful for controlling the production of these inflammatory cytokines. In this work, using bioinformatics predictions, we identified three short disordered epitopes (sDE1-3) that are located in the Ig-like domains of murine CRTAM and are conserved in mammalian species. We performed a structural analysis by molecular dynamics simulations of sDE1 (QHPALKSSKY, Ig-like V), sDE2 (QRNGEKSVVK, Ig-like C1), and sDE3 (CSTERSKKPPPQI, Ig-like C1). sDE1, which is located within a loop of the contact interface of the heterotypic interaction with Nectl2, undergoes an order–disorder transition. On the contrary, even though sDE2 and sDE3 are flexible and also located within loops, they do not undergo order–disorder transitions. We evaluated the immunogenicity of sDE1 and sDE3 through the expression of these epitopes in chimeric L1 virus-like particles. We confirmed that sDE1 induces polyclonal antibodies that recognize the native folding of CRTAM expressed in activated murine CD4 T cells. In contrast, sDE3 induces polyclonal antibodies that recognize the recombinant protein hCRTAM-Fc, but not the native CRTAM. Thus, in this study, an exposed disordered epitope in the Ig-like V domain of CRTAM was identified as a potential site for therapeutic antibodies.
Collapse
Affiliation(s)
- Julio Angel Vázquez-Martínez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de Mexico, Mexico; (J.A.V.-M.); (J.A.G.-y.-M.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico
- Departamento de Ingeniería Genética, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821 Irapuato, Guanajuato, Mexico;
| | - Miguel Angel Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821 Irapuato, Guanajuato, Mexico;
| | - Edgar Morales-Ríos
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico;
| | - Jorge Alberto Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de Mexico, Mexico; (J.A.V.-M.); (J.A.G.-y.-M.)
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 07360 Ciudad de Mexico, Mexico
- Correspondence:
| |
Collapse
|
26
|
Parico GCG, Partch CL. The tail of cryptochromes: an intrinsically disordered cog within the mammalian circadian clock. Cell Commun Signal 2020; 18:182. [PMID: 33198762 PMCID: PMC7667820 DOI: 10.1186/s12964-020-00665-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cryptochrome (CRY) proteins play an essential role in regulating mammalian circadian rhythms. CRY is composed of a structured N-terminal domain known as the photolyase homology region (PHR), which is tethered to an intrinsically disordered C-terminal tail. The PHR domain is a critical hub for binding other circadian clock components such as CLOCK, BMAL1, PERIOD, or the ubiquitin ligases FBXL3 and FBXL21. While the isolated PHR domain is necessary and sufficient to generate circadian rhythms, removing or modifying the cryptochrome tails modulates the amplitude and/or periodicity of circadian rhythms, suggesting that they play important regulatory roles in the molecular circadian clock. In this commentary, we will discuss how recent studies of these intrinsically disordered tails are helping to establish a general and evolutionarily conserved model for CRY function, where the function of PHR domains is modulated by reversible interactions with their intrinsically disordered tails. Video abstract
Collapse
Affiliation(s)
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, UC Santa Cruz, Santa Cruz, USA. .,Center for Circadian Biology, UC San Diego, La Jolla, USA.
| |
Collapse
|
27
|
Parico GCG, Perez I, Fribourgh JL, Hernandez BN, Lee HW, Partch CL. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Proc Natl Acad Sci U S A 2020; 117:27971-27979. [PMID: 33106415 PMCID: PMC7668087 DOI: 10.1073/pnas.1920653117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythms are generated by interlocked transcription-translation feedback loops that establish cell-autonomous biological timing of ∼24 h. Mutations in core clock genes that alter their stability or affinity for one another lead to changes in circadian period. The human CRY1Δ11 mutant lengthens circadian period to cause delayed sleep phase disorder (DSPD), characterized by a very late onset of sleep. CRY1 is a repressor that binds to the transcription factor CLOCK:BMAL1 to inhibit its activity and close the core feedback loop. We previously showed how the PHR (photolyase homology region) domain of CRY1 interacts with distinct sites on CLOCK and BMAL1 to sequester the transactivation domain from coactivators. However, the Δ11 variant alters an intrinsically disordered tail in CRY1 downstream of the PHR. We show here that the CRY1 tail, and in particular the region encoded by exon 11, modulates the affinity of the PHR domain for CLOCK:BMAL1. The PHR-binding epitope in exon 11 is necessary and sufficient to disrupt the interaction between CRY1 and the subunit CLOCK. Moreover, PHR-tail interactions are conserved in the paralog CRY2 and reduced when either CRY is bound to the circadian corepressor PERIOD2. Discovery of this autoregulatory role for the mammalian CRY1 tail and conservation of PHR-tail interactions in both mammalian cryptochromes highlights functional conservation with plant and insect cryptochromes, which also utilize PHR-tail interactions to reversibly control their activity.
Collapse
Affiliation(s)
- Gian Carlo G Parico
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Ivette Perez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Britney N Hernandez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064;
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
28
|
Sulakhe D, D'Souza M, Wang S, Balasubramanian S, Athri P, Xie B, Canzar S, Agam G, Gilliam TC, Maltsev N. Exploring the functional impact of alternative splicing on human protein isoforms using available annotation sources. Brief Bioinform 2020; 20:1754-1768. [PMID: 29931155 DOI: 10.1093/bib/bby047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the emphasis of scientific inquiry has shifted from whole-genome analyses to an understanding of cellular responses specific to tissue, developmental stage or environmental conditions. One of the central mechanisms underlying the diversity and adaptability of the contextual responses is alternative splicing (AS). It enables a single gene to encode multiple isoforms with distinct biological functions. However, to date, the functions of the vast majority of differentially spliced protein isoforms are not known. Integration of genomic, proteomic, functional, phenotypic and contextual information is essential for supporting isoform-based modeling and analysis. Such integrative proteogenomics approaches promise to provide insights into the functions of the alternatively spliced protein isoforms and provide high-confidence hypotheses to be validated experimentally. This manuscript provides a survey of the public databases supporting isoform-based biology. It also presents an overview of the potential global impact of AS on the human canonical gene functions, molecular interactions and cellular pathways.
Collapse
Affiliation(s)
- Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Mark D'Souza
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA
| | - Sheng Wang
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA
| | - Sandhya Balasubramanian
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Genentech, Inc. 1 DNA Way, Mail Stop: 35-6J, South San Francisco, CA, USA
| | - Prashanth Athri
- Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, Kasavanahalli, Carmelaram P.O., Bengaluru, Karnataka, India
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Stefan Canzar
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gady Agam
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - T Conrad Gilliam
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| |
Collapse
|
29
|
Dissecting the Functional Contributions of the Intrinsically Disordered C-terminal Tail of Bacillus subtilis FtsZ. J Mol Biol 2020; 432:3205-3221. [PMID: 32198113 DOI: 10.1016/j.jmb.2020.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 01/12/2023]
Abstract
FtsZ is a bacterial GTPase that is central to the spatial and temporal control of cell division. It is a filament-forming enzyme that encompasses a well-folded core domain and a disordered C-terminal tail (CTT). The CTT is essential for ensuring proper assembly of the cytokinetic ring, and its deletion leads to mis-localization of FtsZ, aberrant assembly, and cell death. In this work, we dissect the contributions of modules within the disordered CTT to assembly and enzymatic activity of Bacillus subtilis FtsZ (Bs-FtsZ). The CTT features a hypervariable C-terminal linker (CTL) and a conserved C-terminal peptide (CTP). Our in vitro studies show that the CTL weakens the driving forces for forming single-stranded active polymers and suppresses lateral associations of these polymers, whereas the CTP promotes the formation of alternative assemblies. Accordingly, in full-length Bs-FtsZ, the CTL acts as a spacer that spatially separates the CTP sticker from the core, thus ensuring filament formation through core-driven polymerization and lateral associations through CTP-mediated interactions. We also find that the CTL weakens GTP binding while enhancing the catalytic rate, whereas the CTP has opposite effects. The joint contributions of the CTL and CTP make Bs-FtsZ, an enzyme that is only half as efficient as a truncated version that lacks the CTT. Overall, our data suggest that the CTT acts as an auto-regulator of Bs-FtsZ assembly and as an auto-inhibitor of enzymatic activity. Based on our results, we propose hypotheses regarding the hypervariability of CTLs and compare FtsZs to other bacterial proteins with tethered IDRs.
Collapse
|
30
|
Yang J, Gao M, Xiong J, Su Z, Huang Y. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci 2019; 28:1952-1965. [PMID: 31441158 PMCID: PMC6798136 DOI: 10.1002/pro.3718] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
The sequence-structure-function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well-defined three-dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Meng Gao
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Junwen Xiong
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Zhengding Su
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Yongqi Huang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| |
Collapse
|
31
|
Arbesú M, Pons M. Integrating disorder in globular multidomain proteins: Fuzzy sensors and the role of SH3 domains. Arch Biochem Biophys 2019; 677:108161. [PMID: 31678340 DOI: 10.1016/j.abb.2019.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins represent about one third of eukaryotic proteins. An additional third correspond to proteins containing folded domains as well as large intrinsically disordered regions (IDR). While IDRs may represent functionally autonomous domains, in some instances it has become clear that they provide a new layer of regulation for the activity displayed by the folded domains. The sensitivity of the conformational ensembles defining the properties of IDR to small changes in the cellular environment and the capacity to modulate this response through post-translational modifications makes IDR ideal sensors enabling continuous, integrative responses to complex cellular inputs. Folded domains (FD), on the other hand, are ideal effectors, e.g. by catalyzing enzymatic reactions or participating in binary on/off switches. In this perspective review we discuss the possible role of intramolecular fuzzy complexes to integrate the very different dynamic scales of IDR and FD, inspired on the recent observations of such dynamic complexes in Src family kinases, and we explore the possible general role of the SH3 domains connecting IDRs and FD.
Collapse
Affiliation(s)
- Miguel Arbesú
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
32
|
Shoshan-Barmatz V, Pittala S, Mizrachi D. VDAC1 and the TSPO: Expression, Interactions, and Associated Functions in Health and Disease States. Int J Mol Sci 2019; 20:ijms20133348. [PMID: 31288390 PMCID: PMC6651789 DOI: 10.3390/ijms20133348] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO), located at the outer mitochondrial membrane (OMM), serves multiple functions and contributes to numerous processes, including cholesterol import, mitochondrial metabolism, apoptosis, cell proliferation, Ca2+ signaling, oxidative stress, and inflammation. TSPO forms a complex with the voltage-dependent anion channel (VDAC), a protein that mediates the flux of ions, including Ca2+, nucleotides, and metabolites across the OMM, controls metabolism and apoptosis and interacts with many proteins. This review focuses on the two OMM proteins TSPO and VDAC1, addressing their structural interaction and associated functions. TSPO appears to be involved in the generation of reactive oxygen species, proposed to represent the link between TSPO activation and VDAC, thus playing a role in apoptotic cell death. In addition, expression of the two proteins in healthy brains and diseased states is considered, as is the relationship between TSPO and VDAC1 expression. Both proteins are over-expressed in in brains from Alzheimer’s disease patients. Finally, TSPO expression levels were proposed as a biomarker of some neuropathological settings, while TSPO-interacting ligands have been considered as a potential basis for drug development.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Srinivas Pittala
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
33
|
Davey NE. The functional importance of structure in unstructured protein regions. Curr Opin Struct Biol 2019; 56:155-163. [DOI: 10.1016/j.sbi.2019.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
|
34
|
Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding. Proc Natl Acad Sci U S A 2019; 116:8859-8868. [PMID: 30988205 DOI: 10.1073/pnas.1903077116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The p53 tumor suppressor is a sequence-specific DNA binding protein that activates gene transcription to regulate cell survival and proliferation. Dynamic control of p53 degradation and DNA binding in response to stress signals are critical for tumor suppression. The p53 N terminus (NT) contains two transactivation domains (TAD1 and TAD2), a proline-rich region (PRR), and multiple phosphorylation sites. Previous work revealed the p53 NT reduced DNA binding in vitro. Here, we show that TAD2 and the PRR inhibit DNA binding by directly interacting with the sequence-specific DNA binding domain (DBD). NMR spectroscopy revealed that TAD2 and the PRR interact with the DBD at or near the DNA binding surface, possibly acting as a nucleic acid mimetic to competitively block DNA binding. In vitro and in vivo DNA binding analyses showed that the NT reduced p53 DNA binding affinity but improved the ability of p53 to distinguish between specific and nonspecific sequences. MDMX inhibits p53 binding to specific target promoters but stimulates binding to nonspecific chromatin sites. The results suggest that the p53 NT regulates the affinity and specificity of DNA binding by the DBD. The p53 NT-interacting proteins and posttranslational modifications may regulate DNA binding, partly by modulating the NT-DBD interaction.
Collapse
|
35
|
Dagliyan O, Hahn KM. Controlling protein conformation with light. Curr Opin Struct Biol 2019; 57:17-22. [PMID: 30849716 DOI: 10.1016/j.sbi.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.
Collapse
Affiliation(s)
- Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, United States.
| | - Klaus M Hahn
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
36
|
Abstract
Intrinsically disordered proteins and regions are involved in a wide range of cellular functions, and they often facilitate protein-protein interactions. Molecular recognition features (MoRFs) are segments of intrinsically disordered regions that bind to partner proteins, where binding is concomitant with a transition to a structured conformation. MoRFs facilitate translation, transport, signaling, and regulatory processes and are found across all domains of life. A popular computational tool, MoRFpred, accurately predicts MoRFs in protein sequences. MoRFpred is implemented as a user-friendly web server that is freely available at http://biomine.cs.vcu.edu/servers/MoRFpred/ . We describe this predictor, explain how to run the web server, and show how to interpret the results it generates. We also demonstrate the utility of this web server based on two case studies, focusing on the relevance of evolutionary conservation of MoRF regions.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow Region, Russia.
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
37
|
Bitard‐Feildel T, Lamiable A, Mornon J, Callebaut I. Order in Disorder as Observed by the "Hydrophobic Cluster Analysis" of Protein Sequences. Proteomics 2018; 18:e1800054. [PMID: 30299594 PMCID: PMC7168002 DOI: 10.1002/pmic.201800054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Hydrophobic cluster analysis (HCA) is an original approach for protein sequence analysis, which provides access to the foldable repertoire of the protein universe, including yet unannotated protein segments ("dark proteome"). Foldable segments correspond to ordered regions, as well as to intrinsically disordered regions (IDRs) undergoing disorder to order transitions. In this review, how HCA can be used to give insight into this last category of foldable segments is illustrated, with examples matching known 3D structures. After reviewing the HCA principles, examples of short foldable segments are given, which often contain short linear motifs, typically matching hydrophobic clusters. These segments become ordered upon contact with partners, with secondary structure preferences generally corresponding to those observed in the 3D structures within the complexes. Such small foldable segments are sometimes larger than the segments of known 3D structures, including flanking hydrophobic clusters that may be critical for interaction specificity or regulation, as well as intervening sequences allowing fuzziness. Cases of larger conditionally disordered domains are also presented, with lower density in hydrophobic clusters than well-folded globular domains or with exposed hydrophobic patches, which are stabilized by interaction with partners.
Collapse
Affiliation(s)
- Tristan Bitard‐Feildel
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
- Laboratoire de Biologie Computationnelle et Quantitative (LCQB)Institute of Biology Paris‐Seine (IBPS)Centre national de la recherche scientifique (CNRS)Sorbonne Université75005ParisFrance
| | - Alexis Lamiable
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| | - Jean‐Paul Mornon
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| | - Isabelle Callebaut
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| |
Collapse
|
38
|
Mapping the domain of interaction of PVBV VPg with NIa-Pro: Role of N-terminal disordered region of VPg in the modulation of structure and function. Virology 2018; 524:18-31. [PMID: 30138835 DOI: 10.1016/j.virol.2018.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 01/26/2023]
Abstract
VPg-Pro is involved in polyprotein processing, therefore its regulation is important for a successful potyviral infection. We report here that the N-terminal disordered region of VPg forms the domain of interaction with NIa-Pro. This region is also demonstrated to be responsible for modulating the protease activity of VPg-Pro, both in cis and trans. The disordered nature of VPg is elicited by the N-terminal 22 residues as removal of these residues (∆N22 VPg) brought about gross structural and conformational changes in the protein. Interestingly, ∆N22 VPg gained ATPase activity which suggested the presence of autoinhibitory motif within the N-terminal region of VPg. The autoinhibition gets relieved upon interaction of VPg with NIa-Pro or removal of the inhibitory motif. Thus, the N-terminal 22 residues of VPg qualify as molecular recognition feature (MoRF), regulating both protease and ATPase activity of VPg-Pro as well as forming the domain of interaction with other viral/host proteins.
Collapse
|
39
|
Zhou J, Zhao S, Dunker AK. Intrinsically Disordered Proteins Link Alternative Splicing and Post-translational Modifications to Complex Cell Signaling and Regulation. J Mol Biol 2018; 430:2342-2359. [DOI: 10.1016/j.jmb.2018.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 10/24/2022]
|
40
|
Willis SD, Stieg DC, Ong KL, Shah R, Strich AK, Grose JH, Cooper KF. Snf1 cooperates with the CWI MAPK pathway to mediate the degradation of Med13 following oxidative stress. MICROBIAL CELL 2018; 5:357-370. [PMID: 30175106 PMCID: PMC6116281 DOI: 10.15698/mic2018.08.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second SCFGrr1 responsive degron in Med13. Deletion of Snf1 resulted in nuclear retention of cyclin C and failure to induce mitochondrial fragmentation. This degron was able to confer oxidative-stress-induced destruction when fused to a heterologous protein in a Snf1 dependent manner. Although snf1∆ mutants failed to destroy Med13, deleting the degron did not prevent destruction. These results indicate that the control of Med13 degradation following H2O2 stress is complex, being controlled simultaneously by CWI and MAPK pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - Kai Li Ong
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ravina Shah
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028. USA
| | - Alexandra K Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Shawnee High School, Medford, New Jersey 08055, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
41
|
Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. Proc Natl Acad Sci U S A 2018; 115:E1991-E2000. [PMID: 29444861 DOI: 10.1073/pnas.1715247115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Electron microscope studies have shown that the switched-off state of myosin II in muscle involves intramolecular interaction between the two heads of myosin and between one head and the tail. The interaction, seen in both myosin filaments and isolated molecules, inhibits activity by blocking actin-binding and ATPase sites on myosin. This interacting-heads motif is highly conserved, occurring in invertebrates and vertebrates, in striated, smooth, and nonmuscle myosin IIs, and in myosins regulated by both Ca2+ binding and regulatory light-chain phosphorylation. Our goal was to determine how early this motif arose by studying the structure of inhibited myosin II molecules from primitive animals and from earlier, unicellular species that predate animals. Myosin II from Cnidaria (sea anemones, jellyfish), the most primitive animals with muscles, and Porifera (sponges), the most primitive of all animals (lacking muscle tissue) showed the same interacting-heads structure as myosins from higher animals, confirming the early origin of the motif. The social amoeba Dictyostelium discoideum showed a similar, but modified, version of the motif, while the amoeba Acanthamoeba castellanii and fission yeast (Schizosaccharomyces pombe) showed no head-head interaction, consistent with the different sequences and regulatory mechanisms of these myosins compared with animal myosin IIs. Our results suggest that head-head/head-tail interactions have been conserved, with slight modifications, as a mechanism for regulating myosin II activity from the emergence of the first animals and before. The early origins of these interactions highlight their importance in generating the inhibited (relaxed) state of myosin in muscle and nonmuscle cells.
Collapse
|
42
|
Shi D, Svetlov D, Abagyan R, Artsimovitch I. Flipping states: a few key residues decide the winning conformation of the only universally conserved transcription factor. Nucleic Acids Res 2017; 45:8835-8843. [PMID: 28605514 PMCID: PMC5587751 DOI: 10.1093/nar/gkx523] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/05/2017] [Indexed: 01/20/2023] Open
Abstract
Transcription factors from the NusG family bind to the elongating RNA polymerase to enable synthesis of long RNAs in all domains of life. In bacteria, NusG frequently co-exists with specialized paralogs that regulate expression of a small set of targets, many of which encode virulence factors. Escherichia coli RfaH is the exemplar of this regulatory mechanism. In contrast to NusG, which freely binds to RNA polymerase, RfaH exists in a structurally distinct autoinhibitory state in which the RNA polymerase-binding site is buried at the interface between two RfaH domains. Binding to an ops DNA sequence triggers structural transformation wherein the domains dissociate and RfaH refolds into a NusG-like structure. Formation of the autoinhibitory state, and thus sequence-specific recruitment, represents the decisive step in the evolutionary history of the RfaH subfamily. We used computational and experimental approaches to identify the residues that confer the unique regulatory properties of RfaH. Our analysis highlighted highly conserved Ile and Phe residues at the RfaH interdomain interface. Replacement of these residues with equally conserved Glu and Val counterpart residues in NusG destabilized interactions between the RfaH domains and allowed sequence-independent recruitment to RNA polymerase, suggesting a plausible pathway for diversification of NusG paralogs.
Collapse
Affiliation(s)
- Da Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, CA 92093, USA
| | - Dmitri Svetlov
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA.,The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, CA 92093, USA
| | - Irina Artsimovitch
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
43
|
Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 2017; 6:27049. [PMID: 28826489 PMCID: PMC5606850 DOI: 10.7554/elife.27049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
The RNA chaperone Hfq is an Sm protein that facilitates base pairing between bacterial small RNAs (sRNAs) and mRNAs involved in stress response and pathogenesis. Hfq possesses an intrinsically disordered C-terminal domain (CTD) that may tune the function of the Sm domain in different organisms. In Escherichia coli, the Hfq CTD increases kinetic competition between sRNAs and recycles Hfq from the sRNA-mRNA duplex. Here, de novo Rosetta modeling and competitive binding experiments show that the acidic tip of the E. coli Hfq CTD transiently binds the basic Sm core residues necessary for RNA annealing. The CTD tip competes against non-specific RNA binding, facilitates dsRNA release, and prevents indiscriminate DNA aggregation, suggesting that this acidic peptide mimics nucleic acid to auto-regulate RNA binding to the Sm ring. The mechanism of CTD auto-inhibition predicts the chaperone function of Hfq in bacterial genera and illuminates how Sm proteins may evolve new functions.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, United States
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
44
|
Currie SL, Lau DKW, Doane JJ, Whitby FG, Okon M, McIntosh LP, Graves BJ. Structured and disordered regions cooperatively mediate DNA-binding autoinhibition of ETS factors ETV1, ETV4 and ETV5. Nucleic Acids Res 2017; 45:2223-2241. [PMID: 28161714 PMCID: PMC5389675 DOI: 10.1093/nar/gkx068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
Autoinhibition enables spatial and temporal regulation of cellular processes by coupling protein activity to surrounding conditions, often via protein partnerships or signaling pathways. We report the molecular basis of DNA-binding autoinhibition of ETS transcription factors ETV1, ETV4 and ETV5, which are often overexpressed in prostate cancer. Inhibitory elements that cooperate to repress DNA binding were identified in regions N- and C-terminal of the ETS domain. Crystal structures of these three factors revealed an α-helix in the C-terminal inhibitory domain that packs against the ETS domain and perturbs the conformation of its DNA-recognition helix. Nuclear magnetic resonance spectroscopy demonstrated that the N-terminal inhibitory domain (NID) is intrinsically disordered, yet utilizes transient intramolecular interactions with the DNA-recognition helix of the ETS domain to mediate autoinhibition. Acetylation of selected lysines within the NID activates DNA binding. This investigation revealed a distinctive mechanism for DNA-binding autoinhibition in the ETV1/4/5 subfamily involving a network of intramolecular interactions not present in other ETS factors. These distinguishing inhibitory elements provide a platform through which cellular triggers, such as protein–protein interactions or post-translational modifications, may specifically regulate the function of these oncogenic proteins.
Collapse
Affiliation(s)
- Simon L Currie
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA
| | - Desmond K W Lau
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Jedediah J Doane
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA
| | - Frank G Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Barbara J Graves
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
45
|
The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 2017; 44:1185-1200. [PMID: 27911701 PMCID: PMC5095923 DOI: 10.1042/bst20160172] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
Abstract
In the 1960s, Christian Anfinsen postulated that the unique three-dimensional structure of a protein is determined by its amino acid sequence. This work laid the foundation for the sequence–structure–function paradigm, which states that the sequence of a protein determines its structure, and structure determines function. However, a class of polypeptide segments called intrinsically disordered regions does not conform to this postulate. In this review, I will first describe established and emerging ideas about how disordered regions contribute to protein function. I will then discuss molecular principles by which regulatory mechanisms, such as alternative splicing and asymmetric localization of transcripts that encode disordered regions, can increase the functional versatility of proteins. Finally, I will discuss how disordered regions contribute to human disease and the emergence of cellular complexity during organismal evolution.
Collapse
|
46
|
Weems A, McMurray M. The step-wise pathway of septin hetero-octamer assembly in budding yeast. eLife 2017; 6. [PMID: 28541184 PMCID: PMC5461111 DOI: 10.7554/elife.23689] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/24/2017] [Indexed: 01/22/2023] Open
Abstract
Septin proteins bind guanine nucleotides and form rod-shaped hetero-oligomers. Cells choose from a variety of available septins to assemble distinct hetero-oligomers, but the underlying mechanism was unknown. Using a new in vivo assay, we find that a stepwise assembly pathway produces the two species of budding yeast septin hetero-octamers: Cdc11/Shs1–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Rapid GTP hydrolysis by monomeric Cdc10 drives assembly of the core Cdc10 homodimer. The extended Cdc3 N terminus autoinhibits Cdc3 association with Cdc10 homodimers until prior Cdc3–Cdc12 interaction. Slow hydrolysis by monomeric Cdc12 and specific affinity of Cdc11 for transient Cdc12•GTP drive assembly of distinct trimers, Cdc11–Cdc12–Cdc3 or Shs1–Cdc12–Cdc3. Decreasing the cytosolic GTP:GDP ratio increases the incorporation of Shs1 vs Cdc11, which alters the curvature of filamentous septin rings. Our findings explain how GTP hydrolysis controls septin assembly, and uncover mechanisms by which cells construct defined septin complexes. DOI:http://dx.doi.org/10.7554/eLife.23689.001
Collapse
Affiliation(s)
- Andrew Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
47
|
Wierød L, Cameron J, Strøm TB, Leren TP. Studies of the autoinhibitory segment comprising residues 31-60 of the prodomain of PCSK9: Possible implications for the mechanism underlying gain-of-function mutations. Mol Genet Metab Rep 2016; 9:86-93. [PMID: 27896130 PMCID: PMC5121147 DOI: 10.1016/j.ymgmr.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) at the cell surface and is internalized as a complex with the LDLR. In the acidic milieu of the sorting endosome, PCSK9 remains bound to the LDLR and prevents the LDLR from folding over itself to adopt a closed conformation. As a consequence, the LDLR fails to recycle back to the cell membrane. Even though it is the catalytic domain of PCSK9 that interacts with the LDLR at the cell surface, the structurally disordered segment consisting of residues 31–60 and which is rich in acidic residues, has a negative effect both on autocatalytic cleavage and on the activity of PCSK9 towards the LDLR. Thus, this unstructured segment represents an autoinhibitory domain of PCSK9. One may speculate that post-translational modifications within residues 31–60 may affect the inhibitory activity of this segment, and represent a mechanism for fine-tuning the activity of PCSK9 towards the LDLR. Our data indicate that the inhibitory effect of this unstructured segment results from an interaction with basic residues of the catalytic domain of PCSK9. Mutations in the catalytic domain which involve charged residues, could therefore be gain-of-function mutations by affecting the positioning of this segment.
Collapse
Affiliation(s)
- Lene Wierød
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jamie Cameron
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
48
|
Charon J, Theil S, Nicaise V, Michon T. Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation. MOLECULAR BIOSYSTEMS 2016; 12:634-52. [PMID: 26699268 DOI: 10.1039/c5mb00677e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Within proteins, intrinsically disordered regions (IDRs) are devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. Although ubiquitous in all domains of life, the intrinsic disorder content is highly variable in viral genomes. Over the years, functional annotations of disordered regions at the scale of the whole proteome have been conducted for several animal viruses. But to date, similar studies applied to plant viruses are still missing. Based on disorder prediction tools combined with annotation programs and evolutionary studies, we analyzed the intrinsic disorder content in Potyvirus, using a 10-species dataset representative of this genus diversity. In this paper, we revealed that: (i) the Potyvirus proteome displays high disorder content, (ii) disorder is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs, (iii) IDRs evolve faster than ordered regions, and (iv) IDRs may be associated with major biological functions required for the Potyvirus cycle. Notably, the proteins P1, Coat protein (CP) and Viral genome-linked protein (VPg) display a high content of conserved disorder, enriched in specific motifs mimicking eukaryotic functional modules and suggesting strategies of host machinery hijacking. In these three proteins, IDRs are particularly conserved despite their high amino acid polymorphism, indicating a link to adaptive processes. Through this comprehensive study, we further investigate the biological relevance of intrinsic disorder in Potyvirus biology and we propose a functional annotation of potyviral proteome IDRs.
Collapse
Affiliation(s)
- Justine Charon
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Sébastien Theil
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Valérie Nicaise
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Thierry Michon
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| |
Collapse
|
49
|
Borges JC, Seraphim TV, Dores-Silva PR, Barbosa LRS. A review of multi-domain and flexible molecular chaperones studies by small-angle X-ray scattering. Biophys Rev 2016; 8:107-120. [PMID: 28510050 PMCID: PMC5425780 DOI: 10.1007/s12551-016-0194-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
Intrinsic flexibility is closely related to protein function, and a plethora of important regulatory proteins have been found to be flexible, multi-domain or even intrinsically disordered. On the one hand, understanding such systems depends on how these proteins behave in solution. On the other, small-angle X-ray scattering (SAXS) is a technique that fulfills the requirements to study protein structure and dynamics relatively quickly with few experimental limitations. Molecular chaperones from Hsp70 and Hsp90 families are multi-domain proteins containing flexible and/or disordered regions that play central roles in cellular proteostasis. Here, we review the structure and function of these proteins by SAXS. Our general approach includes the use of SAXS data to determine size and shape parameters, as well as protein shape reconstruction and their validation by using accessory biophysical tools. Some remarkable examples are presented that exemplify the potential of the SAXS technique. Protein structure can be determined in solution even at limiting protein concentrations (for example, human mortalin, a mitochondrial Hsp70 chaperone). The protein organization, flexibility and function (for example, the J-protein co-chaperones), oligomeric status, domain organization, and flexibility (for the Hsp90 chaperone and the Hip and Hep1 co-chaperones) may also be determined. Lastly, the shape, structural conservation, and protein dynamics (for the Hsp90 chaperone and both p23 and Aha1 co-chaperones) may be studied by SAXS. We believe this review will enhance the application of the SAXS technique to the study of the molecular chaperones.
Collapse
Affiliation(s)
- Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| | - Thiago V Seraphim
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | |
Collapse
|
50
|
Malhis N, Jacobson M, Gsponer J. MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences. Nucleic Acids Res 2016; 44:W488-93. [PMID: 27174932 PMCID: PMC4987941 DOI: 10.1093/nar/gkw409] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
Molecular recognition features, MoRFs, are short segments within longer disordered protein regions that bind to globular protein domains in a process known as disorder-to-order transition. MoRFs have been found to play a significant role in signaling and regulatory processes in cells. High-confidence computational identification of MoRFs remains an important challenge. In this work, we introduce MoRFchibi SYSTEM that contains three MoRF predictors: MoRFCHiBi, a basic predictor best suited as a component in other applications, MoRFCHiBi_ Light, ideal for high-throughput predictions and MoRFCHiBi_ Web, slower than the other two but best for high accuracy predictions. Results show that MoRFchibi SYSTEM provides more than double the precision of other predictors. MoRFchibi SYSTEM is available in three different forms: as HTML web server, RESTful web server and downloadable software at: http://www.chibi.ubc.ca/faculty/joerg-gsponer/gsponer-lab/software/morf_chibi/.
Collapse
Affiliation(s)
- Nawar Malhis
- Michael Smith Laboratories-Centre for High-Throughput Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew Jacobson
- Michael Smith Laboratories-Centre for High-Throughput Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories-Centre for High-Throughput Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|