1
|
Khakurel A, Pokrovskaya I, Aragon‐Ramirez WS, Lupashin VV. Acute GARP Depletion Disrupts Vesicle Transport, Leading to Severe Defects in Sorting, Secretion and O-Glycosylation. Traffic 2025; 26:e70003. [PMID: 40100055 PMCID: PMC11917462 DOI: 10.1111/tra.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
The GARP complex is an evolutionarily conserved protein complex proposed to tether endosome-derived vesicles at the trans-Golgi network. While complete depletion of the GARP leads to severe trafficking and glycosylation defects, the primary defects linked to GARP dysfunction remain unclear. In this study, we utilized the mAID degron strategy to achieve rapid degradation of VPS54 in human cells, acutely disrupting GARP function. This resulted in the partial mislocalization and degradation of a subset of Golgi-resident proteins, including TGN46, ATP7A, TMEM87A, CPD, C1GALT1 and GS15. Enzyme recycling defects led to O-glycosylation abnormalities. Additionally, while fibronectin and cathepsin D secretion were altered, mannose-6-phosphate receptors were largely unaffected. Partial displacement of COPI, AP1 and GGA coats caused a significant accumulation of vesicle-like structures and large vacuoles. Electron microscopy detection of GARP-dependent vesicles and identifying specific cargo proteins provide direct experimental evidence of GARP's role as a vesicular tether. We conclude that the primary defects of GARP dysfunction involve vesicular coat mislocalization, accumulation of GARP-dependent vesicles, degradation and mislocalization of specific Golgi proteins and O-glycosylation defects.
Collapse
Affiliation(s)
- Amrita Khakurel
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Walter S. Aragon‐Ramirez
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
2
|
Khakurel A, Pokrovskaya I, Lupashin1 VV. Acute GARP depletion disrupts vesicle transport, leading to severe defects in sorting, secretion, and O-glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617053. [PMID: 39416116 PMCID: PMC11482758 DOI: 10.1101/2024.10.07.617053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The GARP complex is an evolutionarily conserved protein complex proposed to tether endosome-derived vesicles at the trans-Golgi network. While prolonged depletion of GARP leads to severe trafficking and glycosylation defects, the primary defects linked to GARP dysfunction remain unclear. In this study, we utilized the mAID degron strategy to achieve rapid degradation of VPS54 in human cells, acutely disrupting GARP function. This resulted in the partial mislocalization and degradation of a subset of Golgi-resident proteins, including TGN46, ATP7A, TMEM87A, CPD, C1GALT1, and GS15. Enzyme recycling defects led to the early onset of O-glycosylation abnormalities. Additionally, while the secretion of fibronectin and cathepsin D was altered, mannose-6-phosphate receptors were largely unaffected. Partial displacement of COPI, AP1, and GGA coats caused a significant accumulation of vesicle-like structures and large vacuoles. Electron microscopy detection of GARP-dependent vesicles, along with the identification of specific cargo proteins, provides direct experimental evidence of GARP's role as a vesicular tether. We conclude that the primary defects of GARP dysfunction involve vesicular coat mislocalization, accumulation of GARP-dependent vesicles, degradation and mislocalization of specific Golgi proteins, and O-glycosylation defects.
Collapse
Affiliation(s)
- Amrita Khakurel
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Irina Pokrovskaya
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Vladimir V. Lupashin1
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| |
Collapse
|
3
|
DAmico KA, Stanton AE, Shirkey JD, Travis SM, Jeffrey PD, Hughson FM. Structure of a membrane tethering complex incorporating multiple SNAREs. Nat Struct Mol Biol 2024; 31:246-254. [PMID: 38196032 PMCID: PMC10923073 DOI: 10.1038/s41594-023-01164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/26/2023] [Indexed: 01/11/2024]
Abstract
Most membrane fusion reactions in eukaryotic cells are mediated by multisubunit tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here we present a cryo-electron microscopy structure of the simplest known MTC, the 255-kDa Dsl1 complex of Saccharomyces cerevisiae, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.
Collapse
Affiliation(s)
- Kevin A DAmico
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Abigail E Stanton
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jaden D Shirkey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
4
|
Khakurel A, Lupashin VV. Role of GARP Vesicle Tethering Complex in Golgi Physiology. Int J Mol Sci 2023; 24:6069. [PMID: 37047041 PMCID: PMC10094427 DOI: 10.3390/ijms24076069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
The Golgi associated retrograde protein complex (GARP) is an evolutionarily conserved component of Golgi membrane trafficking machinery that belongs to the Complexes Associated with Tethering Containing Helical Rods (CATCHR) family. Like other multisubunit tethering complexes such as COG, Dsl1, and Exocyst, the GARP is believed to function by tethering and promoting fusion of the endosome-derived small trafficking intermediate. However, even twenty years after its discovery, the exact structure and the functions of GARP are still an enigma. Recent studies revealed novel roles for GARP in Golgi physiology and identified human patients with mutations in GARP subunits. In this review, we summarized our knowledge of the structure of the GARP complex, its protein partners, GARP functions related to Golgi physiology, as well as cellular defects associated with the dysfunction of GARP subunits.
Collapse
Affiliation(s)
| | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
DAmico KA, Stanton AE, Shirkey JD, Travis SM, Jeffrey PD, Hughson FM. Structure of a Membrane Tethering Complex Incorporating Multiple SNAREs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526244. [PMID: 36778436 PMCID: PMC9915479 DOI: 10.1101/2023.01.30.526244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most membrane fusion reactions in eukaryotic cells are mediated by membrane tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here, we present a cryo-EM structure of the simplest known MTC, the 255-kDa Dsl1 complex, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with remarkable and unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.
Collapse
Affiliation(s)
- Kevin A DAmico
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Abigail E Stanton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Jaden D Shirkey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
6
|
Bonet-Ponce L, Cookson MR. LRRK2 recruitment, activity, and function in organelles. FEBS J 2022; 289:6871-6890. [PMID: 34196120 PMCID: PMC8744135 DOI: 10.1111/febs.16099] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 06/30/2021] [Indexed: 01/13/2023]
Abstract
Protein coding mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD), and noncoding variations around the gene increase the risk of developing sporadic PD. It is generally accepted that pathogenic LRRK2 mutations increase LRRK2 kinase activity, resulting in a toxic hyperactive protein that is inferred to lead to the PD phenotype. LRRK2 has long been linked to different membrane trafficking events, but the specific role of LRRK2 in these events has been difficult to resolve. Recently, several papers have reported the activation and translocation of LRRK2 to cellular organelles under specific conditions, which suggests that LRRK2 may influence intracellular membrane trafficking. Here, we review what is known about the role of LRRK2 at various organelle compartments.
Collapse
Affiliation(s)
| | - Mark R. Cookson
- Correspondence: Mark R. Cookson, Ph.D., Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, 35 Convent Drive, Room 1A–116, Bethesda, MD, 20892–3707, USA. Phone: 301–451–3870,
| |
Collapse
|
7
|
Hanna MG, Suen PH, Wu Y, Reinisch KM, De Camilli P. SHIP164 is a chorein motif lipid transfer protein that controls endosome-Golgi membrane traffic. J Cell Biol 2022; 221:e202111018. [PMID: 35499567 PMCID: PMC9067936 DOI: 10.1083/jcb.202111018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 02/03/2023] Open
Abstract
Cellular membranes differ in protein and lipid composition as well as in the protein-lipid ratio. Thus, progression of membranous organelles along traffic routes requires mechanisms to control bilayer lipid chemistry and their abundance relative to proteins. The recent structural and functional characterization of VPS13-family proteins has suggested a mechanism through which lipids can be transferred in bulk from one membrane to another at membrane contact sites, and thus independently of vesicular traffic. Here, we show that SHIP164 (UHRF1BP1L) shares structural and lipid transfer properties with these proteins and is localized on a subpopulation of vesicle clusters in the early endocytic pathway whose membrane cargo includes the cation-independent mannose-6-phosphate receptor (MPR). Loss of SHIP164 disrupts retrograde traffic of these organelles to the Golgi complex. Our findings raise the possibility that bulk transfer of lipids to endocytic membranes may play a role in their traffic.
Collapse
Affiliation(s)
- Michael G. Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Patreece H. Suen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institue for Neuroscience, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
8
|
Wang S, Ma C. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. FEBS Open Bio 2022; 12:1939-1957. [PMID: 35278279 PMCID: PMC9623535 DOI: 10.1002/2211-5463.13394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter release by Ca2+ -triggered synaptic vesicle exocytosis is essential for information transmission in the nervous system. The soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to bring synaptic vesicles and the plasma membranes together and to catalyze membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle priming via orchestrating neuronal SNARE complex assembly. In this review, we summarize recent advances toward the functions and molecular mechanisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex assembly, and discuss the functional similarities and differences between Munc18-1 and Munc13-1 in neurons and their homologs in other intracellular membrane trafficking systems.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
SNARE proteins: zip codes in vesicle targeting? Biochem J 2022; 479:273-288. [PMID: 35119456 PMCID: PMC8883487 DOI: 10.1042/bcj20210719] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic.
Collapse
|
10
|
Travis SM, DAmico K, Yu IM, McMahon C, Hamid S, Ramirez-Arellano G, Jeffrey PD, Hughson FM. Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1. J Biol Chem 2020; 295:10125-10135. [PMID: 32409579 DOI: 10.1074/jbc.ra120.013654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/01/2020] [Indexed: 01/02/2023] Open
Abstract
Multisubunit-tethering complexes (MTCs) are large (250 to >750 kDa), conserved macromolecular machines that are essential for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in all eukaryotes. MTCs are thought to organize membrane trafficking by mediating the initial long-range interaction between a vesicle and its target membrane and promoting the formation of membrane-bridging SNARE complexes. Previously, we reported the structure of the yeast Dsl1 complex, the simplest known MTC, which is essential for coat protein I (COPI) mediated transport from the Golgi to the endoplasmic reticulum (ER). This structure suggests how the Dsl1 complex might tether a vesicle to its target membrane by binding at one end to the COPI coat and at the other to ER-associated SNAREs. Here, we used X-ray crystallography to investigate these Dsl1-SNARE interactions in greater detail. The Dsl1 complex comprises three subunits that together form a two-legged structure with a central hinge. We found that distal regions of each leg bind N-terminal Habc domains of the ER SNAREs Sec20 (a Qb-SNARE) and Use1 (a Qc-SNARE). The observed binding modes appear to anchor the Dsl1 complex to the ER target membrane while simultaneously ensuring that both SNAREs are in open conformations, with their SNARE motifs available for assembly. The proximity of the two SNARE motifs, and therefore their ability to enter the same SNARE complex, will depend on the relative orientation of the two Dsl1 legs. These results underscore the critical roles of SNARE N-terminal domains in mediating interactions with other elements of the vesicle docking and fusion machinery.
Collapse
Affiliation(s)
- Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Kevin DAmico
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - I-Mei Yu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Conor McMahon
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Safraz Hamid
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
11
|
Emperador-Melero J, Toonen RF, Verhage M. Vti Proteins: Beyond Endolysosomal Trafficking. Neuroscience 2019; 420:32-40. [DOI: 10.1016/j.neuroscience.2018.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
12
|
Cruz MD, Kim K. The inner workings of intracellular heterotypic and homotypic membrane fusion mechanisms. J Biosci 2019; 44:91. [PMID: 31502569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intracellular trafficking is a field that has been intensively studied for years and yet there remains much to be learned. Part of the reason that there is so much obscurity remaining in this field is due to all the pathways and the stages that define cellular trafficking. One of the major steps in cellular trafficking is fusion. Fusion is defined as the terminal step that occurs when a cargo-laden vesicle arrives at the proper destination. There are two types of fusion within a cell: homotypic and heterotypic fusion. Homotypic fusion occurs when the two membranes merging together are of the same type such as vacuole to vacuole fusion. Heterotypic fusion occurs when the two membranes at play are of different types such as when an endosomal membrane fuses with a Golgi membrane. In this review, we will focus on all the protein components - Rabs, Golgins, Multisubunit tethers, GTPases, protein phosphatases and SNAREs - that have been known to function in both of these types of fusion. We hope to develop a model of how all of these constituents function together to achieve membrane fusion. Membrane fusion is a biological process absolutely necessary for proper intracellular trafficking. Due to the degree of importance multiple proteins are required for it to be properly carried through. Whether we are talking about heterotypic or homotypic fusion, any defects in the fusion machinery can result in disease states such as Parkinson's and Alzheimer's disease. Although much research has significantly expanded our knowledge of fusion, there is still much more to be learned.
Collapse
|
13
|
Mannella V, Quilici G, Nigro EA, Lampis M, Minici C, Degano M, Boletta A, Musco G. The N-Terminal Domain of NPHP1 Folds into a Monomeric Left-Handed Antiparallel Three-Stranded Coiled Coil with Anti-apoptotic Function. ACS Chem Biol 2019; 14:1845-1854. [PMID: 31345020 DOI: 10.1021/acschembio.9b00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the NPHP1 gene, coding for human nephrocystin-1 (NPHP1), cause the autosomal recessive disease nephronophthisis, the most common cause of end-stage renal disease in children and adolescents. The function and structure of NPHP1 are still poorly characterized. NPHP1 presents a modular structure well in keeping with its role as an adaptor protein: it harbors an SH3 domain flanked by two glutamic acid-rich regions and a conserved C-terminal nephrocystin homology domain (NHD). Similar to other NPHP protein family members, its N-terminus contains a putative coiled-coil domain (NPHP1CC) that is supposed to play an important role in NPHP1 self-association and/or protein-protein interactions. Structural studies proving its structure and its oligomerization state are still lacking. Here we demonstrate that NPHP1CC is monomeric in solution and unexpectedly folds into an autonomous domain forming a three-stranded antiparallel coiled coil suitable for protein-protein interactions. Notably, we found that the NPHP1CC shares remarkable structural similarities with the three-stranded coiled coil of the BAG domain protein family, which is known to mediate the anti-apoptotic function of these proteins, suggesting a possible similar role for NPHP1CC. In agreement with this hypothesis, we show that in the context of the full-length protein the NPHP1CC is fundamental to regulate resistance to apoptotic stimuli.
Collapse
Affiliation(s)
- Valeria Mannella
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Elisa Agnese Nigro
- Molecular Basis of PKD Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Matteo Lampis
- Molecular Basis of PKD Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Claudia Minici
- Biocrystallography Unit, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Massimo Degano
- Biocrystallography Unit, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Alessandra Boletta
- Molecular Basis of PKD Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
14
|
Delgado Cruz M, Kim K. The inner workings of intracellular heterotypic and homotypic membrane fusion mechanisms. J Biosci 2019. [DOI: 10.1007/s12038-019-9913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Koike S, Jahn R. SNAREs define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors. Nat Commun 2019; 10:1608. [PMID: 30962439 PMCID: PMC6453939 DOI: 10.1038/s41467-019-09617-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Membrane traffic operates by vesicles that bud from precursor organelles and are transported to their target compartment where they dock and fuse. Targeting requires tethering factors recruited by small GTPases and phosphoinositides whereas fusion is carried out by SNARE proteins. Here we report that vesicles containing the Q-SNAREs syntaxin 13 (Stx13) and syntaxin 6 (Stx6) together are targeted to a different endosomal compartment than vesicles containing only Stx6 using injection of artificial vesicles. Targeting by Stx6 requires Vps51, a component of the GARP/EARP tethering complexes. In contrast, targeting by both Stx6 and Stx13 is governed by Vps13B identified here as tethering factor functioning in transport from early endosomes to recycling endosomes. Vps13B specifically binds to Stx13/Stx6 as well as to Rab14, Rab6, and PtdIns(3)P. We conclude that SNAREs use a combinatorial code for recruiting tethering factors, revealing a key function in targeting that is independent of SNARE pairing during fusion. Intracellular vesicle targeting is mediated by Rab GTPases that cooperate with phosphatidylinositides and SNARE proteins, which then facilitate membrane fusion. Here, the authors microinject artificial vesicles into HeLa cells and find that SNAREs play a more prominent role in targeting specificity of trafficking vesicles than previously known.
Collapse
Affiliation(s)
- Seiichi Koike
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany.
| |
Collapse
|
16
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
17
|
Makaraci P, Kim K. trans-Golgi network-bound cargo traffic. Eur J Cell Biol 2018; 97:137-149. [PMID: 29398202 DOI: 10.1016/j.ejcb.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Cargo following the retrograde trafficking are sorted at endosomes to be targeted the trans-Golgi network (TGN), a central receiving organelle. Though molecular requirements and their interaction networks have been somewhat established, the complete understanding of the intricate nature of their action mechanisms in every step of the retrograde traffic pathway remains unachieved. This review focuses on elucidating known functions of key regulators, including scission factors at the endosome and tethering/fusion mediators at the receiving dock, TGN, as well as a diverse range of cargo.
Collapse
Affiliation(s)
- Pelin Makaraci
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA.
| |
Collapse
|
18
|
Saimani U, Kim K. Traffic from the endosome towards trans-Golgi network. Eur J Cell Biol 2017; 96:198-205. [PMID: 28256269 DOI: 10.1016/j.ejcb.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022] Open
Abstract
Retrograde passage of a transport carrier entails cargo sorting at the endosome, generation of a cargo-laden carrier and its movement along cytoskeletal tracks towards trans-Golgi network (TGN), tethering at the TGN, and fusion with the Golgi membrane. Significant advances have been made in understanding this traffic system, revealing molecular requirements in each step and the functional connection between them as well as biomedical implication of the dysregulation of those important traffic factors. This review focuses on describing up-to-date action mechanisms for retrograde transport from the endosomal system to the TGN.
Collapse
Affiliation(s)
- Uma Saimani
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States.
| |
Collapse
|
19
|
Jimenez-Ruiz E, Morlon-Guyot J, Daher W, Meissner M. Vacuolar protein sorting mechanisms in apicomplexan parasites. Mol Biochem Parasitol 2016; 209:18-25. [PMID: 26844642 PMCID: PMC5154328 DOI: 10.1016/j.molbiopara.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/14/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
The phylum Apicomplexa comprises more than 5000 species including pathogens of clinical and economical importance. These obligate intracellular parasites possess a highly complex endomembrane system to build amongst others three morphologically distinct secretory organelles: rhoptries, micronemes and dense granules. Proteins released by these organelles are essential for invasion and hijacking of the host cell. Due to the complexity of the internal organization of these parasites, a wide panoply of trafficking factors was expected to be required for the correct sorting of proteins towards the various organelles. However, Toxoplasma gondii and other apicomplexan parasites contain only a core set of these factors and several of the vacuolar protein sorting (VPS) homologues found in most eukaryotes have been lost in this phylum. In this review, we will summarise our current knowledge about the role of trafficking complexes in T. gondii, highlighting recent studies focused on complexes formed by VPS proteins. We also present a novel, hypothetical model, suggesting the recycling of parasite membrane and micronemal proteins.
Collapse
|
20
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Schindler C, Chen Y, Pu J, Guo X, Bonifacino JS. EARP is a multisubunit tethering complex involved in endocytic recycling. Nat Cell Biol 2015; 17:639-50. [PMID: 25799061 PMCID: PMC4417048 DOI: 10.1038/ncb3129] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/29/2015] [Indexed: 12/13/2022]
Abstract
Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named Endosome-Associated Recycling Protein (EARP) that is structurally related to the previously described Golgi-Associated Retrograde Protein (GARP) complex. Both complexes share the Ang2, Vps52 and Vps53 subunits, but EARP comprises an uncharacterized protein, Syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target-SNARE Syntaxin 6 and various cognate SNAREs. Depletion of Syndetin or Syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling.
Collapse
Affiliation(s)
- Christina Schindler
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yu Chen
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jing Pu
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaoli Guo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Enrich C, Rentero C, Hierro A, Grewal T. Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J Cell Sci 2015; 128:1071-81. [PMID: 25653390 DOI: 10.1242/jcs.164459] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell surface delivery of extracellular matrix (ECM) and integrins is fundamental for cell migration in wound healing and during cancer cell metastasis. This process is not only driven by several soluble NSF attachment protein (SNAP) receptor (SNARE) proteins, which are key players in vesicle transport at the cell surface and intracellular compartments, but is also tightly modulated by cholesterol. Cholesterol-sensitive SNAREs at the cell surface are relatively well characterized, but it is less well understood how altered cholesterol levels in intracellular compartments impact on SNARE localization and function. Recent insights from structural biology, protein chemistry and cell microscopy have suggested that a subset of the SNAREs engaged in exocytic and retrograde pathways dynamically 'sense' cholesterol levels in the Golgi and endosomal membranes. Hence, the transport routes that modulate cellular cholesterol distribution appear to trigger not only a change in the location and functioning of SNAREs at the cell surface but also in endomembranes. In this Commentary, we will discuss how disrupted cholesterol transport through the Golgi and endosomal compartments ultimately controls SNARE-mediated delivery of ECM and integrins to the cell surface and, consequently, cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Facultat de Medicina, Universitat de Barcelona, 08036-Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cellular, Immunologia i Neurociències, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Facultat de Medicina, Universitat de Barcelona, 08036-Barcelona, Spain
| | - Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Analysis on the interaction domain of VirG and apyrase by pull-down assay. Molecules 2014; 19:18090-101. [PMID: 25379645 PMCID: PMC6271496 DOI: 10.3390/molecules191118090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 01/19/2023] Open
Abstract
VirG is outer membrane protein of Shigella and affects the spread of Shigella. Recently it has been reported that apyrase influences the location of VirG, although the underlying mechanism remains poorly understood. The site of interaction between apyrase and VirG is the focus of our research. First we constructed recombinant plasmid pHIS-phoN2 and pS-(v1-1102, v53-758, v759-1102, v53-319, v320-507, v507-758) by denaturation-renaturation, the phoN2:kan mutant of Shigella flexneri 5a M90T by a modified version of the lambda red recombination protocol originally described by Datsenko and Wanner and the complemented strain M90TΔphoN2/pET24a(PhisphoN2). Second, the recombinant plasmid pHIS-phoN2 and the pS-(v1-1102, v53-758, v759-1102, v53-319, v320-507, v507-758) were transformed into E. coli BL21 (DE3) and induced to express the fusion proteins. Third, the fusion proteins were purified and the interaction of VirG and apyrase was identified by pull-down. Fourth, VirG was divided and the interaction site of apyrase and VirG was determined. Finally, how apyrase affects the function of VirG was analyzed by immunofluorescence. Accordingly, the results provided the data supporting the fact that apyrase combines with the α-domain of VirG to influence the function of VirG.
Collapse
|
24
|
Brunet S, Sacher M. Are all multisubunit tethering complexes bona fide tethers? Traffic 2014; 15:1282-7. [PMID: 25048641 DOI: 10.1111/tra.12200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 01/15/2023]
Abstract
Since the late 1990s, a number of multisubunit tethering complexes (MTCs) have been described that function in membrane trafficking events: TRAPP I, TRAPP II, TRAPP III, COG, HOPS, CORVET, Dsl1, GARP and exocyst. On the basis of structural and sequence similarities, they have been categorized as complexes associated with tethering containing helical rods (CATCHR) (Dsl1, COG, GARP and exocyst) or non-CATCHR (TRAPP I, II and III, HOPS and CORVET) complexes (Yu IM, Hughson FM. Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 2010;26:137-156). Both acronyms (CATCHR and MTC) imply these complexes tether opposing membranes to facilitate fusion. The main question we will address is: have these complexes been formally demonstrated to function as tethers? If the answer is no, then is it premature or even correct to refer to them as tethers? In this commentary, we will argue that the vast majority of MTCs have not been demonstrated to act as a tether. We propose that a distinction between the terms tether and tethering factor be considered to address this issue.
Collapse
Affiliation(s)
- Stephanie Brunet
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|