1
|
Baranda Pellejero L, Nijenhuis MAD, Ricci F, Gothelf KV. Protein-Templated Reactions Using DNA-Antibody Conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2200971. [PMID: 35344264 DOI: 10.1002/smll.202200971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
DNA-templated chemical reactions have found wide applications in drug discovery, programmed multistep synthesis, nucleic acid detection, and targeted drug delivery. The control of these reactions has, however, been limited to nucleic acid hybridization as a means to direct the proximity between reactants. In this work a system capable of translating protein-protein binding events into a DNA-templated reaction which leads to the covalent formation of a product is introduced. Protein-templated reactions by employing two DNA-antibody conjugates that are both able to recognize the same target protein and to colocalize a pair of reactant DNA strands able to undergo a click reaction are achieved. Two individual systems, each responsive to human serum albumin (HSA) and human IgG, are engineered and it is demonstrated that, while no reaction occurs in the absence of proteins, both protein-templated reactions can occur simultaneously in the same solution without any inter-system crosstalk.
Collapse
Affiliation(s)
- Lorena Baranda Pellejero
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Minke A D Nijenhuis
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
2
|
Hamilton GL, Saikia N, Basak S, Welcome FS, Wu F, Kubiak J, Zhang C, Hao Y, Seidel CAM, Ding F, Sanabria H, Bowen ME. Fuzzy supertertiary interactions within PSD-95 enable ligand binding. eLife 2022; 11:e77242. [PMID: 36069777 PMCID: PMC9581536 DOI: 10.7554/elife.77242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The scaffold protein PSD-95 links postsynaptic receptors to sites of presynaptic neurotransmitter release. Flexible linkers between folded domains in PSD-95 enable a dynamic supertertiary structure. Interdomain interactions within the PSG supramodule, formed by PDZ3, SH3, and Guanylate Kinase domains, regulate PSD-95 activity. Here we combined discrete molecular dynamics and single molecule Förster resonance energy transfer (FRET) to characterize the PSG supramodule, with time resolution spanning picoseconds to seconds. We used a FRET network to measure distances in full-length PSD-95 and model the conformational ensemble. We found that PDZ3 samples two conformational basins, which we confirmed with disulfide mapping. To understand effects on activity, we measured binding of the synaptic adhesion protein neuroligin. We found that PSD-95 bound neuroligin well at physiological pH while truncated PDZ3 bound poorly. Our hybrid structural models reveal how the supertertiary context of PDZ3 enables recognition of this critical synaptic ligand.
Collapse
Affiliation(s)
- George L Hamilton
- Department of Physics and Astronomy, Clemson UniversityClemsonUnited States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson UniversityClemsonUnited States
| | - Sujit Basak
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Franceine S Welcome
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Fang Wu
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Jakub Kubiak
- Molecular Physical Chemistry, Heinrich Heine UniversityDüsseldorfGermany
| | - Changcheng Zhang
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Yan Hao
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Claus AM Seidel
- Molecular Physical Chemistry, Heinrich Heine UniversityDüsseldorfGermany
| | - Feng Ding
- Department of Physics and Astronomy, Clemson UniversityClemsonUnited States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson UniversityClemsonUnited States
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
3
|
Taneja I, Holehouse AS. Folded domain charge properties influence the conformational behavior of disordered tails. Curr Res Struct Biol 2021; 3:216-228. [PMID: 34557680 PMCID: PMC8446786 DOI: 10.1016/j.crstbi.2021.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins and protein regions (IDRs) make up around 30% of the human proteome where they play essential roles in dictating and regulating many core biological processes. While IDRs are often studied as isolated domains, in naturally occurring proteins most IDRs are found adjacent to folded domains, where they exist as either N- or C-terminal tails or as linkers connecting two folded domains. Prior work has shown that charge properties of IDRs can influence their conformational behavior, both in isolation and in the context of folded domains. In contrast, the converse scenario is less well-explored: how do the charge properties of folded domains influence IDR conformational behavior? To answer this question, we combined a large-scale structural bioinformatics analysis with all-atom implicit solvent simulations of both rationally designed and naturally occurring proteins. Our results reveal three key takeaways. Firstly, the relative position and accessibility of charged residues across the surface of a folded domain can dictate IDR conformational behavior, overriding expectations based on net surface charge properties. Secondly, naturally occurring proteins possess multiple charge patches that are physically accessible to local IDRs. Finally, even modest changes in the local electrostatic environment of a folded domain can substantially modulate IDR-folded domain interactions. Taken together, our results suggest that folded domain surfaces can act as local determinants of IDR conformational behavior. Intrinsically disordered regions (IDRs) are mostly found adjacent to folded domains. Here we propose that the folded domain surface properties influence IDR behavior. We combine all-atom simulations and sequence design of IDRs and folded domains. IDR conformational behavior is determined by a complex combination of factors. Folded domains can substantially alter IDR conformational biases.
Collapse
Affiliation(s)
- Ishan Taneja
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
4
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
5
|
Mashima T, Rosier BJHM, Oohora K, de Greef TFA, Hayashi T, Brunsveld L. Dynamic Protease Activation on a Multimeric Synthetic Protein Scaffold via Adaptable DNA-Based Recruitment Domains. Angew Chem Int Ed Engl 2021; 60:11262-11266. [PMID: 33725379 PMCID: PMC8252739 DOI: 10.1002/anie.202102160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Hexameric hemoprotein (HTHP) is employed as a scaffold protein for the supramolecular assembly and activation of the apoptotic signalling enzyme caspase-9, using short DNA elements as modular recruitment domains. Caspase-9 assembly and activation on the HTHP platform due to enhanced proximity is followed by combinatorial inhibition at high scaffold concentrations. The DNA recruitment domains allow for reversible switching of the caspase-9 assembly and activity state using short modulatory DNA strands. Tuning of the recruitment domain affinity allows for generating kinetically trapped active enzyme complexes, as well as for dynamic repositioning of caspases over scaffold populations and inhibition using monovalent sink platforms. The conceptual combination of a highly structured multivalent protein platform with modular DNA recruitment domains provides emergent biomimicry properties with advanced levels of control over protein assembly.
Collapse
Affiliation(s)
- Tsuyoshi Mashima
- Institute for Complex Molecular Systems andLaboratory of Chemical BiologyDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Bas J. H. M. Rosier
- Institute for Complex Molecular Systems andLaboratory of Chemical BiologyDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Koji Oohora
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversitySuita 565–0871OsakaJapan
| | - Tom F. A. de Greef
- Institute for Complex Molecular Systems andLaboratory of Chemical BiologyDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
- Computational Biology groupDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Takashi Hayashi
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversitySuita 565–0871OsakaJapan
| | - Luc Brunsveld
- Institute for Complex Molecular Systems andLaboratory of Chemical BiologyDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| |
Collapse
|
6
|
Mashima T, Rosier BJHM, Oohora K, Greef TFA, Hayashi T, Brunsveld L. Dynamic Protease Activation on a Multimeric Synthetic Protein Scaffold via Adaptable DNA‐Based Recruitment Domains. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tsuyoshi Mashima
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Bas J. H. M. Rosier
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Koji Oohora
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565–0871 Osaka Japan
| | - Tom F. A. Greef
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
- Computational Biology group Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - Takashi Hayashi
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565–0871 Osaka Japan
| | - Luc Brunsveld
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| |
Collapse
|
7
|
Magdalena Estirado E, Rosier BJHM, de Greef TFA, Brunsveld L. Dynamic modulation of proximity-induced enzyme activity using supramolecular polymers. Chem Commun (Camb) 2020; 56:5747-5750. [PMID: 32319466 DOI: 10.1039/d0cc02120b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthetic supramolecular polymers are used as dynamic nanoscaffolds for the activation of the apoptotic signalling enzyme caspase-9. Recruitment of caspase-9 to the nanoscaffold results in an increase in enzymatic activity due to enhanced proximity, with a bell-shaped response as a function of nanoscaffold concentration. The modularity of the system allows for dynamic regulation of enzyme activity through variation of the recruitment-motif density along the supramolecular polymer.
Collapse
Affiliation(s)
- Eva Magdalena Estirado
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Bas J H M Rosier
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Tom F A de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. and Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
8
|
The Interplay of Structural and Cellular Biophysics Controls Clustering of Multivalent Molecules. Biophys J 2019; 116:560-572. [PMID: 30661665 DOI: 10.1016/j.bpj.2019.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Dynamic molecular clusters are assembled through weak multivalent interactions and are platforms for cellular functions, especially receptor-mediated signaling. Clustering is also a prerequisite for liquid-liquid phase separation. It is not well understood, however, how molecular structure and cellular organization control clustering. Using coarse-grained kinetic Langevin dynamics, we performed computational experiments on a prototypical ternary system modeled after membrane-bound nephrin, the adaptor Nck1, and the actin nucleation promoting factor NWASP. Steady-state cluster size distributions favored stoichiometries that optimized binding (stoichiometry matching) but still were quite broad. At high concentrations, the system can be driven beyond the saturation boundary such that cluster size is limited only by the number of available molecules. This behavior would be predictive of phase separation. Domains close to binding sites sterically inhibited clustering much less than terminal domains because the latter effectively restrict access to the cluster interior. Increased flexibility of interacting molecules diminished clustering by shielding binding sites within compact conformations. Membrane association of nephrin increased the cluster size distribution in a density-dependent manner. These properties provide insights into how molecular ensembles function to localize and amplify cell signaling.
Collapse
|
9
|
Pedersen SW, Albertsen L, Moran GE, Levesque B, Pedersen SB, Bartels L, Wapenaar H, Ye F, Zhang M, Bowen ME, Strømgaard K. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions. ACS Chem Biol 2017; 12:2313-2323. [PMID: 28692247 DOI: 10.1021/acschembio.7b00361] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effect of phosphorylation on PSD-95, we used semisynthetic strategies to introduce phosphorylated amino acids at four positions within the PDZ domains and examined the effects on interactions with a large set of binding partners. We observed complex effects on affinity. Most notably, phosphorylation at Y397 induced a significant increase in affinity for stargazin, as confirmed by NMR and single molecule FRET. Additionally, we compared the effects of phosphorylation to phosphomimetic mutations, which revealed that phosphomimetics are ineffective substitutes for tyrosine phosphorylation. Our strategy to generate site-specifically phosphorylated PDZ domains provides a detailed understanding of the role of phosphorylation in the regulation of PSD-95 interactions.
Collapse
Affiliation(s)
- Søren W. Pedersen
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Albertsen
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Griffin E. Moran
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Brié Levesque
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Stine B. Pedersen
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lina Bartels
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hannah Wapenaar
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Fei Ye
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Center of Systems Biology and Human Health, School of
Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
| | - Mingjie Zhang
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Center of Systems Biology and Human Health, School of
Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
| | - Mark E. Bowen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kristian Strømgaard
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Toto A, Pedersen SW, Karlsson OA, Moran GE, Andersson E, Chi CN, Strømgaard K, Gianni S, Jemth P. Ligand binding to the PDZ domains of postsynaptic density protein 95. Protein Eng Des Sel 2016; 29:169-75. [PMID: 26941280 DOI: 10.1093/protein/gzw004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 11/13/2022] Open
Abstract
Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 are well studied and include the following three protein ligands: (i)N-methyl-d-aspartate-type ionotropic glutamate receptor subunit GluN2B, (ii) neuronal nitric oxide synthase and (iii) cysteine-rich protein (CRIPT), all of which bind to one or more of the three PDZ domains in PSD-95. While interactions for individual PDZ domains of PSD-95 have been well studied, less is known about the influence of neighbouring domains on the function of the respective individual domain. We therefore performed a systematic study on the ligand-binding kinetics of PSD-95 using constructs of different size for PSD-95 and its ligands. Regarding the canonical peptide-binding pocket and relatively short peptides (up to 15-mer), the PDZ domains in PSD-95 by and large work as individual binding modules. However, in agreement with previous studies, residues outside of the canonical binding pocket modulate the affinity of the ligands. In particular, the dissociation of the 101 amino acid CRIPT from PSD-95 is slowed down at least 10-fold for full-length PSD-95 when compared with the individual PDZ3 domain.
Collapse
Affiliation(s)
- Angelo Toto
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy
| | - Søren W Pedersen
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - O Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Griffin E Moran
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| |
Collapse
|
11
|
Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Mol Neurobiol 2016; 54:1759-1776. [PMID: 26884267 DOI: 10.1007/s12035-016-9745-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.
Collapse
|
12
|
Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism. Nat Commun 2015; 6:6488. [DOI: 10.1038/ncomms7488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/02/2015] [Indexed: 01/22/2023] Open
|