1
|
McCaig CD. Electrical Forces Regulate Single-Cell Wound Healing. Rev Physiol Biochem Pharmacol 2025; 187:103-113. [PMID: 39838011 DOI: 10.1007/978-3-031-68827-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Damage to the cell membrane can be life threatening for single-celled organisms. Several mechanisms of single-cell wound healing occur and aspects of these are regulated by electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
2
|
Mahanta B, Courtemanche N. The mode of subunit addition regulates the processive elongation of actin filaments by formin. J Biol Chem 2025; 301:108071. [PMID: 39667500 PMCID: PMC11773026 DOI: 10.1016/j.jbc.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Formins play crucial roles in actin polymerization by nucleating filaments and regulating their elongation. Formins bind the barbed ends of filaments via their dimeric FH2 domains, which step processively onto incoming actin subunits during elongation. Actin monomers can bind formin-bound barbed ends directly or undergo diffusion-mediated delivery through interactions with formin FH1 domains and profilin. Despite its fundamental importance, a clear mechanism governing processive FH2 stepping has remained elusive. In this study, we systematically characterized the polymerization behavior of the Saccharomyces cerevisiae formin Bni1p using in vitro reconstitution assays and stochastic simulations. We found that Bni1p assembles populations of filaments with lengths that depend nonlinearly on the rate of elongation. This processive behavior is dictated by a variable probability of dissociation that depends on the reaction conditions. Bni1p dissociates from barbed ends with a basal off-rate, which enables prolonged filament assembly over the course of a long lifetime at the barbed end. A bias toward FH1-mediated delivery as the dominant mechanism for polymerization curtails elongation by shortening the lifetime of the formin at the filament end. This facilitates the assembly of populations of filaments with similar average lengths, even when polymerization proceeds at different rates. Our results suggest a central role for formin FH1 domains in regulating processivity. The specific effects of FH1 domains on processivity are variable and likely tailored to the physiological function of each formin.
Collapse
Affiliation(s)
- Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
3
|
Valencia DA, Koeberlein AN, Nakano H, Rudas A, Harui A, Spencer C, Nakano A, Quinlan ME. Human formin FHOD3-mediated actin elongation is required for sarcomere integrity in cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618125. [PMID: 39464085 PMCID: PMC11507729 DOI: 10.1101/2024.10.13.618125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Contractility and cell motility depend on accurately controlled assembly of the actin cytoskeleton. Formins are a large group of actin assembly proteins that nucleate new actin filaments and act as elongation factors. Some formins may cap filaments, instead of elongating them, and others are known to sever or bundle filaments. The Formin HOmology Domain-containing protein (FHOD)-family of formins is critical to the formation of the fundamental contractile unit in muscle, the sarcomere. Specifically, mammalian FHOD3L plays an essential role in cardiomyocytes. Despite our knowledge of FHOD3L's importance in cardiomyocytes, its biochemical and cellular activities remain poorly understood. It has been proposed that FHOD-family formins act by capping and bundling, as opposed to assembling new filaments. Here, we demonstrate that FHOD3L nucleates actin and rapidly but briefly elongates filaments after temporarily pausing elongation, in vitro. We designed function-separating mutants that enabled us to distinguish which biochemical roles are reqùired in the cell. We found that human FHOD3L's elongation activity, but not its nucleation, capping, or bundling activity, is necessary for proper sarcomere formation and contractile function in neonatal rat ventricular myocytes. The results of this work provide new insight into the mechanisms by which formins build specific structures and will contribute to knowledge regarding how cardiomyopathies arise from defects in sarcomere formation and maintenance.
Collapse
Affiliation(s)
- Dylan A. Valencia
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Angela N. Koeberlein
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
| | - Akos Rudas
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Airi Harui
- Divison of Pulmonary & Critical Care Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Cassandra Spencer
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| | - Margot E. Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
4
|
Aydin F, Katkar HH, Morganthaler A, Harker AJ, Kovar DR, Voth GA. Prediction of the essential intermolecular contacts for side-binding of VASP on F-actin. Cytoskeleton (Hoboken) 2024; 81:382-392. [PMID: 38647032 PMCID: PMC11333183 DOI: 10.1002/cm.21864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) family proteins play a crucial role in mediating the actin network architecture in the cytoskeleton. The Ena/VASP homology 2 (EVH2) domain in each of the four identical arms of the tetrameric VASP consists of a loading poly-Pro region, a G-actin-binding domain (GAB), and an F-actin-binding domain (FAB). Together, the poly-Pro, GAB, and FAB domains allow VASP to bind to sides of actin filaments in a bundle, and recruit profilin-G-actin to processively elongate the filaments. The atomic resolution structure of the ternary complex, consisting of the loading poly-Pro region and GAB domain of VASP with profilin-actin, has been solved over a decade ago; however, a detailed structure of the FAB-F-actin complex has not been resolved to date. Experimental insights, based on homology of the FAB domain with the C region of WASP, have been used to hypothesize that the FAB domain binds to the cleft between subdomains 1 and 3 of F-actin. Here, in order to develop our understanding of the VASP-actin complex, we first augment known structural information about the GAB domain binding to actin with the missing FAB domain-actin structure, which we predict using homology modeling and docking simulations. In earlier work, we used mutagenesis and kinetic modeling to study the role of domain-level binding-unbinding kinetics of Ena/VASP on actin filaments in a bundle, specifically on the side of actin filaments. We further look at the nature of the side-binding of the FAB domain of VASP at the atomistic level using our predicted structure, and tabulate effective mutation sites on the FAB domain that would disrupt the VASP-actin complex. We test the binding affinity of Ena with mutated FAB domain using total internal reflection fluorescence microscopy experiments. The binding affinity of VASP is affected significantly for the mutant, providing additional support for our predicted structure.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| | - Harshwardhan H. Katkar
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| | - Alisha Morganthaler
- Department of Biochemistry and Molecular Biology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Alyssa J. Harker
- Department of Biochemistry and Molecular Biology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - David R. Kovar
- Department of Biochemistry and Molecular Biology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Gregory A. Voth
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
5
|
Das S, Banerjee A, Roy S, Mallick T, Maiti S, De P. Zwitterionic Polysulfobetaine Inhibits Cancer Cell Migration Owing to Actin Cytoskeleton Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:144-153. [PMID: 38150303 DOI: 10.1021/acsabm.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell migration is an essential dynamic process for most living cells, mainly driven by the reorganization of actin cytoskeleton. To control actin dynamics, a molecular architecture that can serve as a nucleator has been designed by polymerizing sulfobetaine methacrylate. The synthesized zwitterionic polymer, poly(sulfobetaine methacrylate) (PZI), effectively nucleates the polymerization process of G-actin and substantially accelerates the rate of polymerization. Isothermal titration calorimetry (ITC) and bioinformatics analysis indicated binding between PZI and monomeric G-actin. Thus, in vitro actin dynamics was studied by dynamic light scattering (DLS), pyrene-actin polymerization assay, and total internal reflection fluorescence microscopy (TIRFM). Furthermore, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore-containing monomeric unit was incorporated into the sulfobetaine zwitterionic architecture to visualize the effect of polymer in the cellular environment. The BODIPY-containing zwitterionic sulfobetaine polymer (PZI-F) successfully penetrated the cell and remained in the lysosome with minimal cytotoxicity. Confocal microscopy revealed the influence of this polymer on the cellular actin cytoskeleton dynamics. The PZI-F polymer was successfully able to inhibit the collective migration of the human cervical cancer cell line (HeLa cell) and breast cancer cell line (MDA-MB-231 cell), as confirmed by a wound healing assay. Therefore, polyzwitterionic sulfobetaine could be explored as an inhibitor of cancer cell migration.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
6
|
Bremer KV, Wu C, Patel AA, He KL, Grunfeld AM, Chanfreau GF, Quinlan ME. Formin tails act as a switch, inhibiting or enhancing processive actin elongation. J Biol Chem 2024; 300:105557. [PMID: 38097186 PMCID: PMC10797183 DOI: 10.1016/j.jbc.2023.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024] Open
Abstract
Formins are large, multidomain proteins that nucleate new actin filaments and accelerate elongation through a processive interaction with the barbed ends of filaments. Their actin assembly activity is generally attributed to their eponymous formin homology (FH) 1 and 2 domains; however, evidence is mounting that regions outside of the FH1FH2 stretch also tune actin assembly. Here, we explore the underlying contributions of the tail domain, which spans the sequence between the FH2 domain and the C terminus of formins. Tails vary in length from ∼0 to >200 residues and contain a number of recognizable motifs. The most common and well-studied motif is the ∼15-residue-long diaphanous autoregulatory domain. This domain mediates all or nothing regulation of actin assembly through an intramolecular interaction with the diaphanous inhibitory domain in the N-terminal half of the protein. Multiple reports demonstrate that the tail can enhance both nucleation and processivity. In this study, we provide a high-resolution view of the alternative splicing encompassing the tail in the formin homology domain (Fhod) family of formins during development. While four distinct tails are predicted, we found significant levels of only two of these. We characterized the biochemical effects of the different tails. Surprisingly, the two highly expressed Fhod-tails inhibit processive elongation and diminish nucleation, while a third supports activity. These findings demonstrate a new mechanism of modulating actin assembly by formins and support a model in which splice variants are specialized to build distinct actin structures during development.
Collapse
Affiliation(s)
- Kathryn V Bremer
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aanand A Patel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Kevin L He
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Alex M Grunfeld
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
7
|
Chou SZ, Pollard TD. Cryo-EM structures of both ends of the actin filament explain why the barbed end elongates faster than the pointed end. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540494. [PMID: 37214997 PMCID: PMC10197683 DOI: 10.1101/2023.05.12.540494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Actin filament ends are the sites of subunit addition during elongation and subunit loss during depolymerization. Prior work established the kinetics and thermodynamics of the assembly reactions at both ends but not the structural basis of their differences. Cryo-EM reconstructions of the barbed end at 3.1 Å resolution and the pointed end at 3.5 Å reveal distinct conformations at the two ends. These conformations explain why barbed ends elongate faster than pointed ends and why pointed ends rapidly dissociate the γ-phosphate released from ATP hydrolysis during assembly. The D-loop of the penultimate subunit at the pointed end is folded onto the terminal subunit, precluding its binding incoming actin monomers, and gates on the phosphate release channels of both subunits are wide open. The samples were prepared with FH2 dimers from fission yeast formin Cdc12. The barbed end reconstruction has extra density that may be partial occupancy by the FH2 domains. Significance Statement Cells depend cytoplasmic filaments assembled from the protein actin for their physical integrity, as tracks for myosin motor proteins and movements of the whole cell and internal organelles. Actin filaments elongate and shrink at their ends by adding or dissociating single actin molecules. We used cryo-electron microscopy to determine the structures of the two ends of actin filaments at 3.5 Å resolution for the slowly growing pointed end and 3.1 Å for the rapidly growing barbed end. These structures reveal why barbed ends grow faster than the pointed ends, why the rate at the pointed end is not diffusion-limited and why the pointed end has a low affinity for the γ-phosphate released from bound ATP inside the filament.
Collapse
|
8
|
Wirshing AC, Rodriguez SG, Goode BL. Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures. J Cell Biol 2023; 222:213854. [PMID: 36729023 PMCID: PMC9929936 DOI: 10.1083/jcb.202209105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
How cells simultaneously assemble actin structures of distinct sizes, shapes, and filamentous architectures is still not well understood. Here, we used budding yeast as a model to investigate how competition for the barbed ends of actin filaments might influence this process. We found that while vertebrate capping protein (CapZ) and formins can simultaneously associate with barbed ends and catalyze each other's displacement, yeast capping protein (Cap1/2) poorly displaces both yeast and vertebrate formins. Consistent with these biochemical differences, in vivo formin-mediated actin cable assembly was strongly attenuated by the overexpression of CapZ but not Cap1/2. Multiwavelength live cell imaging further revealed that actin patches in cap2∆ cells acquire cable-like features over time, including recruitment of formins and tropomyosin. Together, our results suggest that the activities of S. cerevisiae Cap1/2 have been tuned across evolution to allow robust cable assembly by formins in the presence of high cytosolic levels of Cap1/2, which conversely limit patch growth and shield patches from formins.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Sofia Gonzalez Rodriguez
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Bruce L. Goode
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA,Correspondence to Bruce L. Goode:
| |
Collapse
|
9
|
Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 2022; 23:836-852. [PMID: 35918536 DOI: 10.1038/s41580-022-00508-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
10
|
Schutt CE, Karlén M, Karlsson R. A structural model of the profilin-formin pacemaker system for actin filament elongation. Sci Rep 2022; 12:20515. [PMID: 36443454 PMCID: PMC9705415 DOI: 10.1038/s41598-022-25011-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The formins constitute a large class of multi-domain polymerases that catalyze the localization and growth of unbranched actin filaments in cells from yeast to mammals. The conserved FH2 domains form dimers that bind actin at the barbed end of growing filaments and remain attached as new subunits are added. Profilin-actin is recruited and delivered to the barbed end by formin FH1 domains via the binding of profilin to interspersed tracts of poly-L-proline. We present a structural model showing that profilin-actin can bind the FH2 dimer at the barbed end stabilizing a state where profilin prevents its associated actin subunit from directly joining the barbed end. It is only with the dissociation of profilin from the polymerase that an actin subunit rotates and docks into its helical position, consistent with observations that under physiological conditions optimal elongation rates depend on the dissociation rate of profilin, independently of cellular concentrations of actin subunits.
Collapse
Affiliation(s)
- Clarence E. Schutt
- grid.16750.350000 0001 2097 5006Department of Chemistry, Princeton University, Princeton, NJ USA
| | | | - Roger Karlsson
- Department of Molecular Biosciences, WGI, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
11
|
Merino F, Pospich S, Raunser S. Towards a structural understanding of the remodeling of the actin cytoskeleton. Semin Cell Dev Biol 2019; 102:51-64. [PMID: 31836290 PMCID: PMC7221352 DOI: 10.1016/j.semcdb.2019.11.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022]
Abstract
Actin filaments (F-actin) are a key component of eukaryotic cells. Whether serving as a scaffold for myosin or using their polymerization to push onto cellular components, their function is always related to force generation. To control and fine-tune force production, cells have a large array of actin-binding proteins (ABPs) dedicated to control every aspect of actin polymerization, filament localization, and their overall mechanical properties. Although great advances have been made in our biochemical understanding of the remodeling of the actin cytoskeleton, the structural basis of this process is still being deciphered. In this review, we summarize our current understanding of this process. We outline how ABPs control the nucleation and disassembly, and how these processes are affected by the nucleotide state of the filaments. In addition, we highlight recent advances in the understanding of actomyosin force generation, and describe recent advances brought forward by the developments of electron cryomicroscopy.
Collapse
Affiliation(s)
- Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
12
|
Aydin F, Katkar HH, Voth GA. Multiscale simulation of actin filaments and actin-associated proteins. Biophys Rev 2018; 10:1521-1535. [PMID: 30382557 PMCID: PMC6297090 DOI: 10.1007/s12551-018-0474-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/21/2018] [Indexed: 02/04/2023] Open
Abstract
Actin is an important cytoskeletal protein that serves as a building block to form filament networks that span across the cell. These networks are orchestrated by a myriad of other cytoskeletal entities including the unbranched filament-forming protein formin and branched network-forming protein complex Arp2/3. Computational models have been able to provide insights into many important structural transitions that are involved in forming these networks, and into the nature of interactions essential for actin filament formation and for regulating the behavior of actin-associated proteins. In this review, we summarize a subset of such models that focus on the atomistic features and those that can integrate atomistic features into a larger picture in a multiscale fashion.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Harshwardhan H Katkar
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Gregory A Voth
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Courtemanche N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys Rev 2018; 10:1553-1569. [PMID: 30392063 DOI: 10.1007/s12551-018-0468-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Cellular viability requires tight regulation of actin cytoskeletal dynamics. Distinct families of nucleation-promoting factors enable the rapid assembly of filament nuclei that elongate and are incorporated into diverse and specialized actin-based structures. In addition to promoting filament nucleation, the formin family of proteins directs the elongation of unbranched actin filaments. Processive association of formins with growing filament ends is achieved through continuous barbed end binding of the highly conserved, dimeric formin homology (FH) 2 domain. In cooperation with the FH1 domain and C-terminal tail region, FH2 dimers mediate actin subunit addition at speeds that can dramatically exceed the rate of spontaneous assembly. Here, I review recent biophysical, structural, and computational studies that have provided insight into the mechanisms of formin-mediated actin assembly and dynamics.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, 420 Washington Ave SE, 6-130 MCB, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Aydin F, Courtemanche N, Pollard TD, Voth GA. Gating mechanisms during actin filament elongation by formins. eLife 2018; 7:37342. [PMID: 30035712 PMCID: PMC6056239 DOI: 10.7554/elife.37342] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/01/2018] [Indexed: 02/03/2023] Open
Abstract
Formins play an important role in the polymerization of unbranched actin filaments, and particular formins slow elongation by 5–95%. We studied the interactions between actin and the FH2 domains of formins Cdc12, Bni1 and mDia1 to understand the factors underlying their different rates of polymerization. All-atom molecular dynamics simulations revealed two factors that influence actin filament elongation and correlate with the rates of elongation. First, FH2 domains can sterically block the addition of new actin subunits. Second, FH2 domains flatten the helical twist of the terminal actin subunits, making the end less favorable for subunit addition. Coarse-grained simulations over longer time scales support these conclusions. The simulations show that filaments spend time in states that either allow or block elongation. The rate of elongation is a time-average of the degree to which the formin compromises subunit addition rather than the formin-actin complex literally being in ‘open’ or ‘closed’ states.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States
| |
Collapse
|
15
|
Cao L, Kerleau M, Suzuki EL, Wioland H, Jouet S, Guichard B, Lenz M, Romet-Lemonne G, Jegou A. Modulation of formin processivity by profilin and mechanical tension. eLife 2018; 7:34176. [PMID: 29799413 PMCID: PMC5969902 DOI: 10.7554/elife.34176] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/06/2018] [Indexed: 12/22/2022] Open
Abstract
Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.
Collapse
Affiliation(s)
- Luyan Cao
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Mikael Kerleau
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Emiko L Suzuki
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Sandy Jouet
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | | | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
16
|
Horan BG, Zerze GH, Kim YC, Vavylonis D, Mittal J. Computational modeling highlights the role of the disordered Formin Homology 1 domain in profilin-actin transfer. FEBS Lett 2018; 592:1804-1816. [PMID: 29754461 DOI: 10.1002/1873-3468.13088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 11/11/2022]
Abstract
Formins accelerate actin polymerization, assumed to occur through flexible Formin Homology 1 (FH1) domain-mediated transfer of profilin-actin to the barbed end. To study FH1 properties and address sequence effects, including varying length/distribution of profilin-binding proline-rich motifs, we performed all-atom simulations of a set of representative FH1 domains of formins: mouse mDia1 and mDia2, budding yeast Bni1 and Bnr1, and fission yeast Cdc12, For3, and Fus1. We find FH1 has flexible regions between high-propensity polyproline helix regions. A coarse-grained model retaining sequence specificity, assuming rigid polyproline segments, describes their size. Multiple bound profilins or profilin-actin complexes expand mDia1-FH1, which may be important in cells. Simulations of the barbed end bound to Bni1-FH1-FH2 dimer show that the leading FH1 can better transfer profilin or profilin-actin, with decreasing probability as the distance from FH2 increases.
Collapse
Affiliation(s)
- Brandon G Horan
- Department of Physics, Lehigh University, Bethlehem, PA, USA
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, USA
| | | | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
17
|
Silkworth WT, Kunes KL, Nickel GC, Phillips ML, Quinlan ME, Vizcarra CL. The neuron-specific formin Delphilin nucleates nonmuscle actin but does not enhance elongation. Mol Biol Cell 2017; 29:610-621. [PMID: 29282276 PMCID: PMC6004577 DOI: 10.1091/mbc.e17-06-0363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
The formin Delphilin binds the glutamate receptor, GluRδ2, in dendritic spines of Purkinje cells. Both proteins play a role in learning. To understand how Delphilin functions in neurons, we studied the actin assembly properties of this formin. Formins have a conserved formin homology 2 domain, which nucleates and associates with the fast-growing end of actin filaments, influencing filament growth together with the formin homology 1 (FH1) domain. The strength of nucleation and elongation varies widely across formins. Additionally, most formins have conserved domains that regulate actin assembly through an intramolecular interaction. Delphilin is distinct from other formins in several ways: its expression is limited to Purkinje cells, it lacks classical autoinhibitory domains, and its FH1 domain has minimal proline-rich sequence. We found that Delphilin is an actin nucleator that does not accelerate elongation, although it binds to the barbed end of filaments. In addition, Delphilin exhibits a preference for actin isoforms, nucleating nonmuscle actin but not muscle actin, which has not been described or systematically studied in other formins. Finally, Delphilin is the first formin studied that is not regulated by intramolecular interactions. We speculate how the activity we observe is consistent with its localization in the small dendritic spines.
Collapse
Affiliation(s)
- William T Silkworth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristina L Kunes
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Grace C Nickel
- Department of Chemistry, Barnard College, New York, NY 10027
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | | |
Collapse
|
18
|
Abstract
Organisms from all domains of life depend on filaments of the protein actin to provide structure and to support internal movements. Many eukaryotic cells use forces produced by actin polymerization for their motility, and myosin motor proteins use ATP hydrolysis to produce force on actin filaments. Actin polymerizes spontaneously, followed by hydrolysis of a bound adenosine triphosphate (ATP). Dissociation of the γ-phosphate prepares the polymer for disassembly. This review provides an overview of the properties of actin and shows how dozens of proteins control both the assembly and disassembly of actin filaments. These players catalyze nucleotide exchange on actin monomers, initiate polymerization, promote phosphate dissociation, cap the ends of polymers, cross-link filaments to each other and other cellular components, and sever filaments.
Collapse
|
19
|
Abstract
Seven decades of research have revealed much about actin structure, assembly, regulatory proteins, and cellular functions. However, some key information is still missing, so we do not understand the mechanisms of most processes that depend on actin. This chapter summarizes our current knowledge and explains some examples of work that will be required to fill these gaps and arrive at a mechanistic understanding of actin biology.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, 208103, New Haven, CT, 06520-8103, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, 208103, New Haven, CT, 06520-8103, USA. .,Department of Cell Biology, Yale University, 208103, New Haven, CT, 06520-8103, USA.
| |
Collapse
|
20
|
Montaville P, Kühn S, Compper C, Carlier MF. Role of the C-terminal Extension of Formin 2 in Its Activation by Spire Protein and Processive Assembly of Actin Filaments. J Biol Chem 2015; 291:3302-18. [PMID: 26668326 DOI: 10.1074/jbc.m115.681379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end.
Collapse
Affiliation(s)
- Pierre Montaville
- From the Cytoskeleton Dynamics and Motility, Institut de Biologie Intégrative de la Cellule, CNRS, 91198 Gif-sur-Yvette, France
| | - Sonja Kühn
- From the Cytoskeleton Dynamics and Motility, Institut de Biologie Intégrative de la Cellule, CNRS, 91198 Gif-sur-Yvette, France
| | - Christel Compper
- From the Cytoskeleton Dynamics and Motility, Institut de Biologie Intégrative de la Cellule, CNRS, 91198 Gif-sur-Yvette, France
| | - Marie-France Carlier
- From the Cytoskeleton Dynamics and Motility, Institut de Biologie Intégrative de la Cellule, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Shekhar S, Kerleau M, Kühn S, Pernier J, Romet-Lemonne G, Jégou A, Carlier MF. Formin and capping protein together embrace the actin filament in a ménage à trois. Nat Commun 2015; 6:8730. [PMID: 26564775 PMCID: PMC4660058 DOI: 10.1038/ncomms9730] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/24/2015] [Indexed: 11/09/2022] Open
Abstract
Proteins targeting actin filament barbed ends play a pivotal role in motile processes. While formins enhance filament assembly, capping protein (CP) blocks polymerization. On their own, they both bind barbed ends with high affinity and very slow dissociation. Their barbed-end binding is thought to be mutually exclusive. CP has recently been shown to be present in filopodia and controls their morphology and dynamics. Here we explore how CP and formins may functionally coregulate filament barbed-end assembly. We show, using kinetic analysis of individual filaments by microfluidics-assisted fluorescence microscopy, that CP and mDia1 formin are able to simultaneously bind barbed ends. This is further confirmed using single-molecule imaging. Their mutually weakened binding enables rapid displacement of one by the other. We show that formin FMNL2 behaves similarly, thus suggesting that this is a general property of formins. Implications in filopodia regulation and barbed-end structural regulation are discussed.
Collapse
Affiliation(s)
- Shashank Shekhar
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Mikael Kerleau
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Sonja Kühn
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Julien Pernier
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Guillaume Romet-Lemonne
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Antoine Jégou
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|