1
|
Planelles-Herrero VJ, Genova M, Krüger LK, Bittleston A, McNally KE, Morgan TE, Degliesposti G, Magiera MM, Janke C, Derivery E. Elongator is a microtubule polymerase selective for polyglutamylated tubulin. EMBO J 2025; 44:1322-1353. [PMID: 39815006 PMCID: PMC11876699 DOI: 10.1038/s44318-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Elongator is a tRNA-modifying complex that regulates protein translation. Recently, a moonlighting function of Elongator has been identified in regulating the polarization of the microtubule cytoskeleton during asymmetric cell division. Elongator induces symmetry breaking of the anaphase midzone by selectively stabilizing microtubules on one side of the spindle, contributing to the downstream polarized segregation of cell-fate determinants, and therefore to cell fate determination. Here, we investigate how Elongator controls microtubule dynamics. Elongator binds both to the tip of microtubules and to free GTP-tubulin heterodimers using two different subcomplexes, Elp123 and Elp456, respectively. We show that these activities must be coupled for Elongator to decrease the tubulin critical concentration for microtubule elongation. As a consequence, Elongator increases the growth speed and decreases the catastrophe rate of microtubules. Surprisingly, the Elp456 subcomplex binds to tubulin tails and has strong selectivity towards polyglutamylated tubulin. Hence, microtubules assembled by Elongator become selectively enriched with polyglutamylated tubulin, as observed in vitro, in mouse and Drosophila cell lines, as well as in vivo in Drosophila Sensory Organ Precursor cells. Therefore, Elongator rewrites the tubulin code of growing microtubules, placing it at the core of cytoskeletal dynamics and polarization during asymmetric cell division.
Collapse
Affiliation(s)
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Lara K Krüger
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Alice Bittleston
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Kerrie E McNally
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Tomos E Morgan
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Gianluca Degliesposti
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Emmanuel Derivery
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
2
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
3
|
Abbassi NEH, Jaciuk M, Scherf D, Böhnert P, Rau A, Hammermeister A, Rawski M, Indyka P, Wazny G, Chramiec-Głąbik A, Dobosz D, Skupien-Rabian B, Jankowska U, Rappsilber J, Schaffrath R, Lin TY, Glatt S. Cryo-EM structures of the human Elongator complex at work. Nat Commun 2024; 15:4094. [PMID: 38750017 PMCID: PMC11096365 DOI: 10.1038/s41467-024-48251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
tRNA modifications affect ribosomal elongation speed and co-translational folding dynamics. The Elongator complex is responsible for introducing 5-carboxymethyl at wobble uridine bases (cm5U34) in eukaryotic tRNAs. However, the structure and function of human Elongator remain poorly understood. In this study, we present a series of cryo-EM structures of human ELP123 in complex with tRNA and cofactors at four different stages of the reaction. The structures at resolutions of up to 2.9 Å together with complementary functional analyses reveal the molecular mechanism of the modification reaction. Our results show that tRNA binding exposes a universally conserved uridine at position 33 (U33), which triggers acetyl-CoA hydrolysis. We identify a series of conserved residues that are crucial for the radical-based acetylation of U34 and profile the molecular effects of patient-derived mutations. Together, we provide the high-resolution view of human Elongator and reveal its detailed mechanism of action.
Collapse
Affiliation(s)
- Nour-El-Hana Abbassi
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jaciuk
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - David Scherf
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel, Germany
| | - Pauline Böhnert
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel, Germany
| | - Alexander Rau
- Bioanalytics, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | | | - Michał Rawski
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Paulina Indyka
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Grzegorz Wazny
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | | | - Dominika Dobosz
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | | | - Urszula Jankowska
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Raffael Schaffrath
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel, Germany.
| | - Ting-Yu Lin
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland.
- Department of Biosciences, Durham University, Durham, UK.
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
Zhang X, Feng Q, Miao J, Zhu J, Zhou C, Fan D, Lu Y, Tian Q, Wang Y, Zhan Q, Wang ZQ, Wang A, Zhang L, Shangguan Y, Li W, Chen J, Weng Q, Huang T, Tang S, Si L, Huang X, Wang ZX, Han B. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). THE PLANT CELL 2023; 35:4002-4019. [PMID: 37648256 PMCID: PMC10615205 DOI: 10.1093/plcell/koad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Heading date (flowering time), which greatly influences regional and seasonal adaptability in rice (Oryza sativa), is regulated by many genes in different photoperiod pathways. Here, we characterized a heading date gene, Early heading date 5 (Ehd5), using a modified bulked segregant analysis method. The ehd5 mutant showed late flowering under both short-day and long-day conditions, as well as reduced yield, compared to the wild type. Ehd5, which encodes a WD40 domain-containing protein, is induced by light and follows a circadian rhythm expression pattern. Transcriptome analysis revealed that Ehd5 acts upstream of the flowering genes Early heading date 1 (Ehd1), RICE FLOWERING LOCUS T 1 (RFT1), and Heading date 3a (Hd3a). Functional analysis showed that Ehd5 directly interacts with Rice outermost cell-specific gene 4 (Roc4) and Grain number, plant height, and heading date 8 (Ghd8), which might affect the formation of Ghd7-Ghd8 complexes, resulting in increased expression of Ehd1, Hd3a, and RFT1. In a nutshell, these results demonstrate that Ehd5 functions as a positive regulator of rice flowering and provide insight into the molecular mechanisms underlying heading date.
Collapse
Affiliation(s)
- Xuening Zhang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Jiashun Miao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Jingjie Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Qilin Zhan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Zi-Qun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Ahong Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Yingying Shangguan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Wenjun Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Jiaying Chen
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Qijun Weng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Shican Tang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Lizhen Si
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234,China
| | - Zi-Xuan Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| |
Collapse
|
5
|
Jaciuk M, Scherf D, Kaszuba K, Gaik M, Rau A, Kościelniak A, Krutyhołowa R, Rawski M, Indyka P, Graziadei A, Chramiec-Głąbik A, Biela A, Dobosz D, Lin TY, Abbassi NEH, Hammermeister A, Rappsilber J, Kosinski J, Schaffrath R, Glatt S. Cryo-EM structure of the fully assembled Elongator complex. Nucleic Acids Res 2023; 51:2011-2032. [PMID: 36617428 PMCID: PMC10018365 DOI: 10.1093/nar/gkac1232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Transfer RNA (tRNA) molecules are essential to decode messenger RNA codons during protein synthesis. All known tRNAs are heavily modified at multiple positions through post-transcriptional addition of chemical groups. Modifications in the tRNA anticodons are directly influencing ribosome decoding and dynamics during translation elongation and are crucial for maintaining proteome integrity. In eukaryotes, wobble uridines are modified by Elongator, a large and highly conserved macromolecular complex. Elongator consists of two subcomplexes, namely Elp123 containing the enzymatically active Elp3 subunit and the associated Elp456 hetero-hexamer. The structure of the fully assembled complex and the function of the Elp456 subcomplex have remained elusive. Here, we show the cryo-electron microscopy structure of yeast Elongator at an overall resolution of 4.3 Å. We validate the obtained structure by complementary mutational analyses in vitro and in vivo. In addition, we determined various structures of the murine Elongator complex, including the fully assembled mouse Elongator complex at 5.9 Å resolution. Our results confirm the structural conservation of Elongator and its intermediates among eukaryotes. Furthermore, we complement our analyses with the biochemical characterization of the assembled human Elongator. Our results provide the molecular basis for the assembly of Elongator and its tRNA modification activity in eukaryotes.
Collapse
Affiliation(s)
- Marcin Jaciuk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - David Scherf
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel 34132, Germany
| | - Karol Kaszuba
- European Molecular Biology Laboratory Hamburg, Hamburg 22607, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany
| | - Monika Gaik
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Alexander Rau
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Anna Kościelniak
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Rościsław Krutyhołowa
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Michał Rawski
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow 30-387, Poland
| | - Paulina Indyka
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow 30-387, Poland
| | - Andrea Graziadei
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | | | - Anna Biela
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Dominika Dobosz
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Nour-el-Hana Abbassi
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Alexander Hammermeister
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel 34132, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jan Kosinski
- European Molecular Biology Laboratory Hamburg, Hamburg 22607, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Raffael Schaffrath
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel 34132, Germany
| | - Sebastian Glatt
- To whom correspondence should be addressed. Tel: +48 12 664 6321; Fax: +48 12 664 6902;
| |
Collapse
|
6
|
Sager G, Turkyilmaz A, Ates EA, Kutlubay B. HACE1, GLRX5, and ELP2 gene variant cause spastic paraplegies. Acta Neurol Belg 2022; 122:391-399. [PMID: 33813722 DOI: 10.1007/s13760-021-01649-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of conditions that are characterized by lower limb spasticity and weakness. Considering the clinical overlap between metabolic causes, genetic diseases, and autosomal recessive HSP, differentiation between these types can be difficult based solely on their clinical characteristics. This study aimed to investigate the genetic etiology of patients with clinically suspected HSP. The study group was composed of seven Turkish families who each had two affected children and three families who each had a single affected child (17 total patients). The 17 probands (14 males, 3 females) underwent whole exome sequencing. Five typical HSP genes (FA2H, AP4M1, AP4E1, CYP7B1, and MAG) and three genes not previously related to HSP (HACE1, GLRX5, ad ELP2) were identified in 14 probands. Eight novel variants were identified in seven families: c.653 T > C (p.Leu218Pro) in the FA2H gene, c.347G > A (p.Gly116Asp) in the GLRX5 gene, c.2581G > C (p.Ala861Pro) in the HACE1 gene, c.1580G > A (p.Arg527Gln) and c.1189-1G > A in the ELP2 gene, c.10C > T (p.Gln4*) and c.1025 + 1G > A in the AP4M1 gene, c.1291delG (p.Gly431Alafs*3) and c.3250delA (p.Ile1084*) in the AP4E1 gene, and c.475 T > G (p.Cys159Gly) in the MAG gene. The growing use of next-generation sequencing improved diagnosis but also led to the continual identification of new causal genes for neurogenetic diseases associated with lower limb spasticity. The increasing number of HSP genes identified thus far highlights the extreme genetic heterogeneity of these disorders and their clinical and functional overlap with other neurological conditions. Our findings suggest that the HACE1, GLRX5, and ELP2 genes are genetic causes of HSP.
Collapse
Affiliation(s)
- Gunes Sager
- Department of Pediatric Neurology, Kartal Dr. Lutfi Kirdar City Hospital, Semsi Denizer Avenue, Cevizli, 34890, Kartal, Istanbul, Turkey.
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Erzurum City Hospital, Erzurum, Turkey
| | - Esra Arslan Ates
- Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Busra Kutlubay
- Department of Pediatric Neurology, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Chen P, Michel AH, Zhang J. Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms. Nat Commun 2022; 13:1490. [PMID: 35314699 PMCID: PMC8938418 DOI: 10.1038/s41467-022-29228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Due to epistasis, the same mutation can have drastically different phenotypic consequences in different individuals. This phenomenon is pertinent to precision medicine as well as antimicrobial drug development, but its general characteristics are largely unknown. We approach this question by genome-wide assessment of gene essentiality polymorphism in 16 Saccharomyces cerevisiae strains using transposon insertional mutagenesis. Essentiality polymorphism is observed for 9.8% of genes, most of which have had repeated essentiality switches in evolution. Genes exhibiting essentiality polymorphism lean toward having intermediate numbers of genetic and protein interactions. Gene essentiality changes tend to occur concordantly among components of the same protein complex or metabolic pathway and among a group of over 100 mitochondrial proteins, revealing molecular machines or functional modules as units of gene essentiality variation. Most essential genes tolerate transposon insertions consistently among strains in one or more coding segments, delineating nonessential regions within essential genes.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Agnès H Michel
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Dalwadi U, Mannar D, Zierhut F, Yip CK. Biochemical and Structural Characterization of Human Core Elongator and Its Subassemblies. ACS OMEGA 2022; 7:3424-3433. [PMID: 35128251 PMCID: PMC8811885 DOI: 10.1021/acsomega.1c05719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Conserved from yeast to humans and composed of six core subunits (Elp1-Elp6), Elongator is a multiprotein complex that catalyzes the modification of the anticodon loop of transfer RNAs (tRNAs) and in turn regulates messenger RNA decoding efficiency. Previous studies showed that yeast Elongator consists of two subassemblies (yElp1/2/3 and yElp4/5/6) and adopts an asymmetric overall architecture. Yet, much less is known about the structural properties of the orthologous human Elongator. Furthermore, the order in which the different Elongator subunits come together to form the full assembly as well as how they coordinate with one another to catalyze tRNA modification is not fully understood. Here, we purified recombinant human Elongator subunits and subassemblies and examined them by single-particle electron microscopy. We found that the human Elongator complex is assembled from two subcomplexes that share similar overall morphologies as their yeast counterparts. Complementary co-purification and pulldown assays revealed that the scaffolding subunit human ELP1 (hELP1) has stabilizing effects on the human ELP3 catalytic subunit. Furthermore, the peripheral hELP2 subunit appears to enhance the integrity and substrate-binding ability of the dimeric hELP1/2/3. Lastly, we found that hELP4/5/6 is recruited to hELP1/2/3 via hELP3. Collectively, our work generated insights into the assembly process of core human Elongator and the coordination of different subunits within this complex.
Collapse
|
9
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
10
|
Tao L, Liu YF, Zhang H, Li HZ, Zhao FP, Wang FY, Zhang RS, Di R, Chu MX. Genome-wide association study and inbreeding depression on body size traits in Qira black sheep (Ovis aries). Anim Genet 2021; 52:560-564. [PMID: 34096079 DOI: 10.1111/age.13099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
Abstract
Qira black sheep is a famous indigenous sheep breed in China. The objectives of this study are to identify candidate genes related to body size, and to estimate the level of inbreeding depression on body size based on runs of homozygosity in Qira black sheep. Here, 188 adult Qira black sheep were genotyped with a high density (630 K) SNP chip and genome-wide association study for body weight and body size traits (including withers height, body slanting length, tail length, chest girth, chest width, and chest depth) were performed using an additive linear model. In consequence, 12 genome- and chromosome-wide significant SNPs and, accordingly, six candidate genes involved in muscle differentiation, metabolism and cell processes were identified. Of them, ZNF704 (zinc finger protein 704) was identified for body weight; AK2 (adenylate kinase 2) and PARK2 (parkin RBR E3 ubiquitin protein ligase) for tail length; MOCOS (molybdenum cofactor sulfurase) and ELP2 (elongator acetyltransferase complex subunit 2) for chest width; and MFAP1 (microfibril associated protein 1) for chest girth. Additionally, inbreeding depressions on body size were observed in the current herd. These results will provide insightful understandings into the genetic mechanisms of adult body size, and into the conservation and utilization of Qira black sheep.
Collapse
Affiliation(s)
- L Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y F Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - H Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - H Z Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - F P Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - F Y Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - R S Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - R Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M X Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
11
|
Kojic M, Gawda T, Gaik M, Begg A, Salerno-Kochan A, Kurniawan ND, Jones A, Drożdżyk K, Kościelniak A, Chramiec-Głąbik A, Hediyeh-Zadeh S, Kasherman M, Shim WJ, Sinniah E, Genovesi LA, Abrahamsen RK, Fenger CD, Madsen CG, Cohen JS, Fatemi A, Stark Z, Lunke S, Lee J, Hansen JK, Boxill MF, Keren B, Marey I, Saenz MS, Brown K, Alexander SA, Mureev S, Batzilla A, Davis MJ, Piper M, Bodén M, Burne THJ, Palpant NJ, Møller RS, Glatt S, Wainwright BJ. Elp2 mutations perturb the epitranscriptome and lead to a complex neurodevelopmental phenotype. Nat Commun 2021; 12:2678. [PMID: 33976153 PMCID: PMC8113450 DOI: 10.1038/s41467-021-22888-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.
Collapse
Affiliation(s)
- Marija Kojic
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tomasz Gawda
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gaik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alexander Begg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anna Salerno-Kochan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Katarzyna Drożdżyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Kościelniak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Soroor Hediyeh-Zadeh
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Maria Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Laura A Genovesi
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rannvá K Abrahamsen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Camilla G Madsen
- Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ali Fatemi
- Department of Neurology and Developmental Medicine, Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zornitza Stark
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics Health Alliance, Parkville, VIC, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics Health Alliance, Parkville, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Joy Lee
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Department of Metabolic Medicine, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jonas K Hansen
- Department of Paediatrics, Regional Hospital Viborg, Viborg, Denmark
| | - Martin F Boxill
- Department of Paediatrics, Regional Hospital Viborg, Viborg, Denmark
| | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Isabelle Marey
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Margarita S Saenz
- The University of Colorado Anschutz, Children's Hospital Colorado, Aurora, CO, USA
| | - Kathleen Brown
- The University of Colorado Anschutz, Children's Hospital Colorado, Aurora, CO, USA
| | - Suzanne A Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD, Australia
| | - Sergey Mureev
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alina Batzilla
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- The Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department for Regional Health Research, The University of Southern Denmark, Odense, Denmark
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Brandon J Wainwright
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Dogan M, Teralı K, Eroz R, Demirci H, Kocabay K. Clinical and molecular findings in a Turkish family with an ultra-rare condition, ELP2-related neurodevelopmental disorder. Mol Biol Rep 2021; 48:701-708. [PMID: 33393008 DOI: 10.1007/s11033-020-06097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
Elongator is a multi-subunit protein complex bearing six different protein subunits, Elp1 to -6, that are highly conserved among eukaryotes. Elp2 is the second major subunit of Elongator and, together with Elp1 and Elp3, form the catalytic core of this essential complex. Pathogenic variants that affect the structure and function of the Elongator complex may cause neurodevelopmental disorders. Here, we report on a new family with three children affected with a severe form of intellectual disability along with spastic tetraparesis, choreoathetosis, and self injury. Molecular genetic analyses reveal a homozygous missense variant in the ELP2 gene (NM_018255.4 (ELP2): c.1385G > A (p.Arg462Gln)), while in silico studies suggest a loss of electrostatic interactions that may contribute to the overall stability of the encoded protein. We also include a comparison of the patients with ELP2-related neurodevelopmental disorder to those previously reported in the literature. Apart from being affected with intellectual disability, we have extremely limited clinical knowledge about patients harboring ELP2 variants. Besides providing support to the causal role of p.Arg462Gln in ELP2-related neurodevelopmental disorder, we add self-injurious behavior to the clinical phenotypic repertoire of the disease.
Collapse
Affiliation(s)
- Mustafa Dogan
- Department of Medical Genetics, Malatya Research and Training Hospital, Malatya, Turkey.
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Recep Eroz
- Department of Medical Genetics, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Huseyin Demirci
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Kenan Kocabay
- Department of Pediatrics, Faculty of Medicine, Duzce University, Duzce, Turkey
| |
Collapse
|
13
|
Zhao YC, Tang D, Yang S, Liu H, Luo S, Stinchcombe TE, Glass C, Su L, Shen S, Christiani DC, Wei Q. Novel Variants of ELP2 and PIAS1 in the Interferon Gamma Signaling Pathway Are Associated with Non-Small Cell Lung Cancer Survival. Cancer Epidemiol Biomarkers Prev 2020; 29:1679-1688. [PMID: 32493705 DOI: 10.1158/1055-9965.epi-19-1450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/12/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND IFNγ is a pleiotropic cytokine that plays critical immunomodulatory roles in intercellular communication in innate and adaptive immune responses. Despite recognition of IFNγ signaling effects on host defense against viral infection and its utility in immunotherapy and tumor progression, the roles of genetic variants of the IFNγ signaling pathway genes in survival of patients with cancer remain unknown. METHODS We used a discovery genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (n = 1,185) and a replication genotyping dataset from the Harvard Lung Cancer Susceptibility Study (n = 984) to evaluate associations between 14,553 genetic variants in 150 IFNγ pathway genes and survival of non-small cell lung cancer (NSCLC). RESULTS The combined analysis identified two independent potentially functional SNPs, ELP2 rs7242481G>A and PIAS1 rs1049493T>C, to be significantly associated with NSCLC survival, with a combined HR of 0.85 (95% confidence interval, 0.78-0.92; P < 0.0001) and 0.87 (0.81-0.93; P < 0.0001), respectively. Expression quantitative trait loci analyses showed that the survival-associated ELP2 rs7242481A allele was significantly associated with increased mRNA expression levels of elongator acetyltransferase complex subunit 2 (ELP2) in 373 lymphoblastoid cell lines and 369 whole-blood samples. The PIAS1 rs1049493C allele was significantly associated with decreased mRNA expression levels of PIAS1 in 383 normal lung tissues and 369 whole-blood samples. CONCLUSIONS Genetic variants of IFNγ signaling genes are potential prognostic markers for NSCLC survival, likely through modulating the expression of key genes involved in host immune response. IMPACT Once validated, these variants could be useful predictors of NSCLC survival.
Collapse
Affiliation(s)
- Yu Chen Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Dongfang Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Sen Yang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Thomas E Stinchcombe
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Li Su
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Sipeng Shen
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - David C Christiani
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina. .,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
14
|
Dauden MI, Jaciuk M, Weis F, Lin TY, Kleindienst C, Abbassi NEH, Khatter H, Krutyhołowa R, Breunig KD, Kosinski J, Müller CW, Glatt S. Molecular basis of tRNA recognition by the Elongator complex. SCIENCE ADVANCES 2019; 5:eaaw2326. [PMID: 31309145 PMCID: PMC6620098 DOI: 10.1126/sciadv.aaw2326] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/03/2019] [Indexed: 05/17/2023]
Abstract
The highly conserved Elongator complex modifies transfer RNAs (tRNAs) in their wobble base position, thereby regulating protein synthesis and ensuring proteome stability. The precise mechanisms of tRNA recognition and its modification reaction remain elusive. Here, we show cryo-electron microscopy structures of the catalytic subcomplex of Elongator and its tRNA-bound state at resolutions of 3.3 and 4.4 Å. The structures resolve details of the catalytic site, including the substrate tRNA, the iron-sulfur cluster, and a SAM molecule, which are all validated by mutational analyses in vitro and in vivo. tRNA binding induces conformational rearrangements, which precisely position the targeted anticodon base in the active site. Our results provide the molecular basis for substrate recognition of Elongator, essential to understand its cellular function and role in neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Maria I. Dauden
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marcin Jaciuk
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Felix Weis
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Ting-Yu Lin
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Carolin Kleindienst
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nour El Hana Abbassi
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Heena Khatter
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Rościsław Krutyhołowa
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karin D. Breunig
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Christoph W. Müller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Ciani M, Benussi L, Bonvicini C, Ghidoni R. Genome Wide Association Study and Next Generation Sequencing: A Glimmer of Light Toward New Possible Horizons in Frontotemporal Dementia Research. Front Neurosci 2019; 13:506. [PMID: 31156380 PMCID: PMC6532367 DOI: 10.3389/fnins.2019.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a focal neurodegenerative disease, with a strong genetic background, that causes early onset dementia. The present knowledge about the risk loci and causative mutations of FTD mainly derives from genetic linkage analysis, studies of candidate genes, Genome-Wide Association Studies (GWAS) and Next-Generation Sequencing (NGS) applications. In this review, we report recent insights into the genetics of FTD, and, specifically, the results achieved thanks to GWAS and NGS approaches. Linkage studies of large FTD pedigrees have prompted the identification of causal mutations in different genes: mutations in C9orf72, MAPT, and GRN genes explain the large majority of cases with a high family history of the disease. In cases with a less clear inheritance, GWAS and NGS have contributed to further understand the genetic picture of FTD. GWAS identified several common genetic variants with a modest risk effect. Of interest, many of these variants are in genes belonging to the endo-lysosomal pathway, the immune response and neuronal survival. On the opposite, the NGS approach allowed the identification of rare variants with a strong risk effect. These variants were identified in known FTD-associated genes and again in genes involved in the endo-lysosomal pathway and in the immune response. Interestingly, both approaches demonstrated that several genes are associated to multiple neurodegenerative disorders including FTD. Thanks to these complementary approaches, the genetic picture of FTD is becoming more clear and novel key molecular processes are emerging. This will foster opportunities to move toward prevention and therapy for this incurable disease.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
16
|
Charging the code - tRNA modification complexes. Curr Opin Struct Biol 2019; 55:138-146. [PMID: 31102979 DOI: 10.1016/j.sbi.2019.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
All types of cellular RNAs are post-transcriptionally modified, constituting the so called 'epitranscriptome'. In particular, tRNAs and their anticodon stem loops represent major modification hotspots. The attachment of small chemical groups at the heart of the ribosomal decoding machinery can directly affect translational rates, reading frame maintenance, co-translational folding dynamics and overall proteome stability. The variety of tRNA modification patterns is driven by the activity of specialized tRNA modifiers and large modification complexes. Notably, the absence or dysfunction of these cellular machines is correlated with several human pathophysiologies. In this review, we aim to highlight the most recent scientific progress and summarize currently available structural information of the most prominent eukaryotic tRNA modifiers.
Collapse
|
17
|
Jain BP. Genome Wide Analysis of WD40 Proteins in Saccharomyces cerevisiae and Their Orthologs in Candida albicans. Protein J 2019; 38:58-75. [PMID: 30511317 DOI: 10.1007/s10930-018-9804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The WD40 domain containing proteins are present in the lower organisms (Monera) to higher complex metazoans with involvement in diverse cellular processes. The WD40 repeats fold into β propeller structure due to which the proteins harbouring WD40 domains function as scaffold by offering platform for interactions, bring together diverse cellular proteins to form a single complex for mediating downstream effects. Multiple functions of WD40 domain containing proteins in lower eukaryote as in Fungi have been reported with involvement in vegetative and reproductive growth, virulence etc. In this article insilico analysis of the WDR proteins in the budding yeast Saccharomyces cerevisiae was performed. By WDSP software 83 proteins in S. cerevisiae were identified with at least one WD40 motif. WD40 proteins with 6 or more WD40 motifs were considered for further studies. The WD40 proteins in yeast which are involved in various biological processes show distribution on all chromosomes (16 chromosomes in yeast) except chromosome 1. Besides the WD40 domain some of these proteins also contain other protein domains which might be responsible for the diversity in the functions of WD40 proteins in the budding yeast. These proteins in budding yeast were analysed by DAVID and Blast2Go software for functional and domains categorization. Candida albicans, an opportunistic fungal pathogen also have orthologs of these WD40 proteins with possible similar functions. This is the first time genome wide analysis of WD40 proteins in lower eukaryote i.e. budding yeast. This data may be useful in further study of the functional diversity of yeast proteomes.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Bihar, Motihari, 845401, India.
| |
Collapse
|
18
|
Suppression of Elp2 prevents renal fibrosis and inflammation induced by unilateral ureter obstruction (UUO) via inactivating Stat3-regulated TGF-β1 and NF-κB pathways. Biochem Biophys Res Commun 2018; 501:400-407. [DOI: 10.1016/j.bbrc.2018.04.227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/29/2018] [Indexed: 01/02/2023]
|
19
|
Dalwadi U, Yip CK. Structural insights into the function of Elongator. Cell Mol Life Sci 2018; 75:1613-1622. [PMID: 29332244 PMCID: PMC11105301 DOI: 10.1007/s00018-018-2747-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/09/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Conserved from yeast to humans, Elongator is a protein complex implicated in multiple processes including transcription regulation, α-tubulin acetylation, and tRNA modification, and its defects have been shown to cause human diseases such as familial dysautonomia. Elongator consists of two copies of six core subunits (Elp1, Elp2, Elp3, Elp4, Elp5, and Elp6) that are organized into two subcomplexes: Elp1/2/3 and Elp4/5/6 and form a stable assembly of ~ 850 kDa in size. Although the catalytic subunit of Elongator is Elp3, which contains a radical S-adenosyl-L-methionine (SAM) domain and a putative histone acetyltransferase domain, the Elp4/5/6 subcomplex also possesses ATP-modulated tRNA binding activity. How at the molecular level, Elongator performs its multiple functions and how the different subunits regulate Elongator's activities remains poorly understood. Here, we provide an overview of the proposed functions of Elongator and describe how recent structural studies provide new insights into the mechanism of action of this multifunctional complex.
Collapse
Affiliation(s)
- Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
20
|
Dauden MI, Jaciuk M, Müller CW, Glatt S. Structural asymmetry in the eukaryotic Elongator complex. FEBS Lett 2017; 592:502-515. [DOI: 10.1002/1873-3468.12865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Maria I. Dauden
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Marcin Jaciuk
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Christoph W. Müller
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| |
Collapse
|
21
|
Kalimutho M, Bain AL, Mukherjee B, Nag P, Nanayakkara DM, Harten SK, Harris JL, Subramanian GN, Sinha D, Shirasawa S, Srihari S, Burma S, Khanna KK. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae. Mol Oncol 2017; 11:470-490. [PMID: 28173629 PMCID: PMC5527460 DOI: 10.1002/1878-0261.12040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/08/2023] Open
Abstract
Activating KRAS mutations drive colorectal cancer tumorigenesis and influence response to anti‐EGFR‐targeted therapy. Despite recent advances in understanding Ras signaling biology and the revolution in therapies for melanoma using BRAF inhibitors, no targeted agents have been effective in KRAS‐mutant cancers, mainly due to activation of compensatory pathways. Here, by leveraging the largest synthetic lethal genetic interactome in yeast, we identify that KRAS‐mutated colorectal cancer cells have augmented homologous recombination repair (HRR) signaling. We found that KRAS mutation resulted in slowing and stalling of the replication fork and accumulation of DNA damage. Moreover, we found that KRAS‐mutant HCT116 cells have an increase in MYC‐mediated RAD51 expression with a corresponding increase in RAD51 recruitment to irradiation‐induced DNA double‐strand breaks (DSBs) compared to genetically complemented isogenic cells. MYC depletion using RNA interference significantly reduced IR‐induced RAD51 foci formation and HRR. On the contrary, overexpression of either HA‐tagged wild‐type (WT) MYC or phospho‐mutant S62A increased RAD51 protein levels and hence IR‐induced RAD51 foci. Likewise, depletion of RAD51 selectively induced apoptosis in HCT116‐mutant cells by increasing DSBs. Pharmacological inhibition targeting HRR signaling combined with PARP inhibition selectivity killed KRAS‐mutant cells. Interestingly, these differences were not seen in a second isogenic pair of KRAS WT and mutant cells (DLD‐1), likely due to their nondependency on the KRAS mutation for survival. Our data thus highlight a possible mechanism by which KRAS‐mutant‐dependent cells drive HRR in vitro by upregulating MYC‐RAD51 expression. These data may offer a promising therapeutic vulnerability in colorectal cancer cells harboring otherwise nondruggable KRAS mutations, which warrants further investigation in vivo.
Collapse
Affiliation(s)
- Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Natural Sciences, Griffith University, Nathan, Australia
| | - Amanda L Bain
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bipasha Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Purba Nag
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Natural Sciences, Griffith University, Nathan, Australia
| | - Devathri M Nanayakkara
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sarah K Harten
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Janelle L Harris
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Goutham N Subramanian
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Debottam Sinha
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Natural Sciences, Griffith University, Nathan, Australia
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Japan
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Sandeep Burma
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
22
|
Kolaj-Robin O, Séraphin B. Structures and Activities of the Elongator Complex and Its Cofactors. RNA MODIFICATION 2017; 41:117-149. [DOI: 10.1016/bs.enz.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Dauden MI, Kosinski J, Kolaj-Robin O, Desfosses A, Ori A, Faux C, Hoffmann NA, Onuma OF, Breunig KD, Beck M, Sachse C, Séraphin B, Glatt S, Müller CW. Architecture of the yeast Elongator complex. EMBO Rep 2016; 18:264-279. [PMID: 27974378 PMCID: PMC5286394 DOI: 10.15252/embr.201643353] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 11/09/2022] Open
Abstract
The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.
Collapse
Affiliation(s)
- Maria I Dauden
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Olga Kolaj-Robin
- Université de Strasbourg, IGBMC, Illkirch, France.,CNRS, IGBMC UMR 7104, Illkirch, France.,Inserm, IGBMC U964, Illkirch, France
| | - Ambroise Desfosses
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Alessandro Ori
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Celine Faux
- Université de Strasbourg, IGBMC, Illkirch, France.,CNRS, IGBMC UMR 7104, Illkirch, France.,Inserm, IGBMC U964, Illkirch, France
| | - Niklas A Hoffmann
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Osita F Onuma
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Karin D Breunig
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Bertrand Séraphin
- Université de Strasbourg, IGBMC, Illkirch, France.,CNRS, IGBMC UMR 7104, Illkirch, France.,Inserm, IGBMC U964, Illkirch, France
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Christoph W Müller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
24
|
Setiaputra DT, Cheng DT, Lu S, Hansen JM, Dalwadi U, Lam CH, To JL, Dong MQ, Yip CK. Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement. EMBO Rep 2016; 18:280-291. [PMID: 27872205 DOI: 10.15252/embr.201642548] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Elongator is a ~850 kDa protein complex involved in multiple processes from transcription to tRNA modification. Conserved from yeast to humans, Elongator is assembled from two copies of six unique subunits (Elp1 to Elp6). Despite the wealth of structural data on the individual subunits, the overall architecture and subunit organization of the full Elongator and the molecular mechanisms of how it exerts its multiple activities remain unclear. Using single-particle electron microscopy (EM), we revealed that yeast Elongator adopts a bilobal architecture and an unexpected asymmetric subunit arrangement resulting from the hexameric Elp456 subassembly anchored to one of the two Elp123 lobes that form the structural scaffold. By integrating the EM data with available subunit crystal structures and restraints generated from cross-linking coupled to mass spectrometry, we constructed a multiscale molecular model that showed the two Elp3, the main catalytic subunit, are located in two distinct environments. This work provides the first structural insights into Elongator and a framework to understand the molecular basis of its multifunctionality.
Collapse
Affiliation(s)
- Dheva T Setiaputra
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Derrick Th Cheng
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Shan Lu
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Jesse M Hansen
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cindy Hy Lam
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L To
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi. Nat Struct Mol Biol 2016; 23:794-802. [PMID: 27455459 PMCID: PMC5018218 DOI: 10.1038/nsmb.3265] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
During translation elongation decoding is based on the recognition of codons by corresponding tRNA anticodon triplets. Molecular mechanisms that regulate global protein synthesis via specific base modifications in tRNA anticodons have recently received increasing attention. The conserved eukaryotic Elongator complex specifically modifies uridines located in the wobble base position of tRNAs. Here, we present the crystal structure of Dehalococcoides mccartyi Elp3 (DmcElp3) at 2.15 Å resolution. Our results reveal the unexpected arrangement of Elp3 lysine acetyl transferase (KAT) and radical S-adenosyl-methionine (SAM) domains that share a large interface to form a composite active site and tRNA binding pocket with an iron sulfur cluster located in the dimerization interface of two DmcElp3 molecules. Structure-guided mutagenesis studies of yeast Elp3 confirm the relevance of our findings for eukaryotic Elp3s and for understanding Elongator’s role in the onset of various neurodegenerative diseases and cancer in humans.
Collapse
|
26
|
Woloszynska M, Le Gall S, Van Lijsebettens M. Plant Elongator-mediated transcriptional control in a chromatin and epigenetic context. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1025-33. [PMID: 27354117 DOI: 10.1016/j.bbagrm.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Elongator (Elp) genes were identified in plants by the leaf growth-altering elo mutations in the yeast (Saccharomyces cerevisiae) gene homologs. Protein purification of the Elongator complex from Arabidopsis thaliana cell cultures confirmed its conserved structure and composition. The Elongator function in plant growth, development, and immune response is well-documented in the elp/elo mutants and correlated with the histone acetyl transferase activity of the ELP3/ELO3 subunit at the coding part of key regulatory genes of developmental and immune response pathways. Here we will focus on additional roles in transcription, such as the cytosine demethylation activity of ELP3/ELO3 at gene promoter regions and primary microRNA transcription and processing through the ELP2 subunit interaction with components of the small interference RNA machinery. Furthermore, specific interactions and upstream regulators support a role for Elongator in transcription and might reveal mechanistic insights into the specificity of the histone acetyl transferase and cytosine demethylation activities for target genes.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Sabine Le Gall
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
27
|
Dimerization of elongator protein 1 is essential for Elongator complex assembly. Proc Natl Acad Sci U S A 2015; 112:10697-702. [PMID: 26261306 DOI: 10.1073/pnas.1502597112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionarily conserved Elongator complex, which is composed of six subunits elongator protein 1 (Elp1 to -6), plays vital roles in gene regulation. The molecular hallmark of familial dysautonomia (FD) is the splicing mutation of Elp1 [also known as IκB kinase complex-associated protein (IKAP)] in the nervous system that is believed to be the primary cause of the devastating symptoms of this disease. Here, we demonstrate that disease-related mutations in Elp1 affect Elongator assembly, and we have determined the structure of the C-terminal portion of human Elp1 (Elp1-CT), which is sufficient for full-length Elp1 dimerization, as well as the structure of the cognate dimerization domain of yeast Elp1 (yElp1-DD). Our study reveals that the formation of the Elp1 dimer contributes to its stability in vitro and in vivo and is required for the assembly of both the human and yeast Elongator complexes. Functional studies suggest that Elp1 dimerization is essential for yeast viability. Collectively, our results identify the evolutionarily conserved dimerization domain of Elp1 and suggest that the pathological mechanisms underlying the onset and progression of Elp1 mutation-related disease may result from impaired Elongator activities.
Collapse
|