1
|
Niu SQ, Song HR, Zhang X, Bao XW, Li T, He LY, Li Y, Li Y, Zhang DX, Bai J, Liu SJ, Guo JL. The Cd resistant mechanism of Proteus mirabilis Ch8 through immobilizing and detoxifying. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116432. [PMID: 38728947 DOI: 10.1016/j.ecoenv.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.
Collapse
Affiliation(s)
- Shu-Qi Niu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Hao-Ran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Xiu-Wen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Ting Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yang Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Dai-Xi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Si-Jing Liu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China.
| |
Collapse
|
2
|
Anlauf MT, Bilsing FL, Reiners J, Spitz O, Hachani E, Smits SHJ, Schmitt L. Type 1 secretion necessitates a tight interplay between all domains of the ABC transporter. Sci Rep 2024; 14:8994. [PMID: 38637678 PMCID: PMC11026475 DOI: 10.1038/s41598-024-59759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Type I secretion systems (T1SS) facilitate the secretion of substrates in one step across both membranes of Gram-negative bacteria. A prime example is the hemolysin T1SS which secretes the toxin HlyA. Secretion is energized by the ABC transporter HlyB, which forms a complex together with the membrane fusion protein HlyD and the outer membrane protein TolC. HlyB features three domains: an N-terminal C39 peptidase-like domain (CLD), a transmembrane domain (TMD) and a C-terminal nucleotide binding domain (NBD). Here, we created chimeric transporters by swapping one or more domains of HlyB with the respective domain(s) of RtxB, a HlyB homolog from Kingella kingae. We tested all chimeric transporters for their ability to secrete pro-HlyA when co-expressed with HlyD. The CLD proved to be most critical, as a substitution abolished secretion. Swapping only the TMD or NBD reduced the secretion efficiency, while a simultaneous exchange abolished secretion. These results indicate that the CLD is the most critical secretion determinant, while TMD and NBD might possess additional recognition or interaction sites. This mode of recognition represents a hierarchical and extreme unusual case of substrate recognition for ABC transporters and optimal secretion requires a tight interplay between all domains.
Collapse
Affiliation(s)
- Manuel T Anlauf
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Florestan L Bilsing
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- INCONSULT, Duisburg, Germany
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
3
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Smith TJ, Sundarraman D, Melancon E, Desban L, Parthasarathy R, Guillemin K. A mucin-regulated adhesin determines the spatial organization and inflammatory character of a bacterial symbiont in the vertebrate gut. Cell Host Microbe 2023; 31:1371-1385.e6. [PMID: 37516109 PMCID: PMC10492631 DOI: 10.1016/j.chom.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
In a healthy gut, microbes are often aggregated with host mucus, yet the molecular basis for this organization and its impact on intestinal health are unclear. Mucus is a viscous physical barrier separating resident microbes from epithelia, but it also provides glycan cues that regulate microbial behaviors. Here, we describe a mucin-sensing pathway in an Aeromonas symbiont of zebrafish, Aer01. In response to the mucin-associated glycan N-acetylglucosamine, a sensor kinase regulates the expression of an aggregation-promoting adhesin we named MbpA. Upon MbpA disruption, Aer01 colonizes to normal levels but is largely planktonic and more pro-inflammatory. Increasing cell surface MbpA rescues these traits. MbpA-like adhesins are common in human-associated bacteria, and the expression of an Akkermansia muciniphila MbpA-like adhesin in MbpA-deficient Aer01 restores lumenal aggregation and reverses its pro-inflammatory character. Our work demonstrates how resident bacteria use mucin glycans to modulate behaviors congruent with host health.
Collapse
Affiliation(s)
- T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Deepika Sundarraman
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Laura Desban
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Raghuveer Parthasarathy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA; Institute of Neuroscience, University of Oregon, Eugene, OR, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
5
|
Pourhassan ZN, Cui H, Muckhoff N, Davari MD, Smits SHJ, Schwaneberg U, Schmitt L. A step forward to the optimized HlyA type 1 secretion system through directed evolution. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12653-7. [PMID: 37405436 PMCID: PMC10386944 DOI: 10.1007/s00253-023-12653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Secretion of proteins into the extracellular space has great advantages for the production of recombinant proteins. Type 1 secretion systems (T1SS) are attractive candidates to be optimized for biotechnological applications, as they have a relatively simple architecture compared to other classes of secretion systems. A paradigm of T1SS is the hemolysin A type 1 secretion system (HlyA T1SS) from Escherichia coli harboring only three membrane proteins, which makes the plasmid-based expression of the system easy. Although for decades the HlyA T1SS has been successfully applied for secretion of a long list of heterologous proteins from different origins as well as peptides, but its utility at commercial scales is still limited mainly due to low secretion titers of the system. To address this drawback, we engineered the inner membrane complex of the system, consisting of HlyB and HlyD proteins, following KnowVolution strategy. The applied KnowVolution campaign in this study provided a novel HlyB variant containing four substitutions (T36L/F216W/S290C/V421I) with up to 2.5-fold improved secretion for two hydrolases, a lipase and a cutinase. KEY POINTS: • An improvement in protein secretion via the use of T1SS • Reaching almost 400 mg/L of soluble lipase into the supernatant • A step forward to making E. coli cells more competitive for applying as a secretion host.
Collapse
Affiliation(s)
- Zohreh N Pourhassan
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Present Address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Neele Muckhoff
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
6
|
Hodges FJ, Torres VVL, Cunningham AF, Henderson IR, Icke C. Redefining the bacterial Type I protein secretion system. Adv Microb Physiol 2023; 82:155-204. [PMID: 36948654 DOI: 10.1016/bs.ampbs.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.
Collapse
Affiliation(s)
- Freya J Hodges
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Sengupta S, Azad RK. Reconstructing horizontal gene flow network to understand prokaryotic evolution. Open Biol 2022; 12:220169. [PMID: 36446404 PMCID: PMC9708380 DOI: 10.1098/rsob.220169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major source of phenotypic innovation and a mechanism of niche adaptation in prokaryotes. Quantification of HGT is critical to decipher its myriad roles in microbial evolution and adaptation. Advances in genome sequencing and bioinformatics have augmented our ability to understand the microbial world, particularly the direct or indirect influence of HGT on diverse life forms. Methods for detecting HGT can be classified into phylogenetic-based and parametric or composition-based approaches. Here, we exploited the complementary strengths of both the approaches to construct a high confidence horizontal gene flow network. Our network is unique in its ability to detect the transfer of native genes of a genome to genomes from other taxa, thus establishing donor and recipient organisms (taxa), rather than through a post hoc analysis as is the practice with several other approaches. The scale-free horizontal gene flow network presented here provides new insights into modes of transfer for the exchange of genetic information and also illuminates differential gene flow across phyla.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA,Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
8
|
Sengupta S, Azad RK. Reconstructing horizontal gene flow network to understand prokaryotic evolution. Open Biol 2022. [PMID: 36446404 DOI: 10.6084/m9.figshare.c.6307519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major source of phenotypic innovation and a mechanism of niche adaptation in prokaryotes. Quantification of HGT is critical to decipher its myriad roles in microbial evolution and adaptation. Advances in genome sequencing and bioinformatics have augmented our ability to understand the microbial world, particularly the direct or indirect influence of HGT on diverse life forms. Methods for detecting HGT can be classified into phylogenetic-based and parametric or composition-based approaches. Here, we exploited the complementary strengths of both the approaches to construct a high confidence horizontal gene flow network. Our network is unique in its ability to detect the transfer of native genes of a genome to genomes from other taxa, thus establishing donor and recipient organisms (taxa), rather than through a post hoc analysis as is the practice with several other approaches. The scale-free horizontal gene flow network presented here provides new insights into modes of transfer for the exchange of genetic information and also illuminates differential gene flow across phyla.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA.,Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
9
|
The hemolysin A secretion system is a multi-engine pump containing three ABC transporters. Cell 2022; 185:3329-3340.e13. [DOI: 10.1016/j.cell.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
|
10
|
Damas MSF, Ferreira RL, Campanini EB, Soares GG, Campos LC, Laprega PM, Soares da Costa A, Freire CCDM, Pitondo-Silva A, Cerdeira LT, da Cunha AF, Pranchevicius MCDS. Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Front Med (Lausanne) 2022; 9:931379. [PMID: 35966843 PMCID: PMC9366087 DOI: 10.3389/fmed.2022.931379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (blaIND–13, blaCIA–3, blaTEM–116, blaOXA–209, blaVEB–15), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.
Collapse
Affiliation(s)
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - André Pitondo-Silva
- Programa de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | | | - Maria-Cristina da Silva Pranchevicius
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Centro de Ciências Biológicas e da Saúde, Biodiversidade Tropical - BIOTROP, Universidade Federal de São Carlos, São Carlos, Brazil
- *Correspondence: Maria-Cristina da Silva Pranchevicius,
| |
Collapse
|
11
|
Ali N, Lin Y, Jiang L, Ali I, Ahmed I, Akhtar K, He B, Wen R. Biochar and Manure Applications Differentially Altered the Class 1 Integrons, Antimicrobial Resistance, and Gene Cassettes Diversity in Paddy Soils. Front Microbiol 2022; 13:943880. [PMID: 35847108 PMCID: PMC9277118 DOI: 10.3389/fmicb.2022.943880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Integrons are genetic components that are critically involved in bacterial evolution and antimicrobial resistance by assisting in the propagation and expression of gene cassettes. In recent decades, biochar has been introduced as a fertilizer to enhance physiochemical properties and crop yield of soil, while manure has been used as a fertilizer for centuries. The current study aimed to investigate the impact of biochar, manure, and a combination of biochar and manure on integrons, their gene cassettes, and relative antimicrobial resistance in paddy soil. Field experiments revealed class 1 (CL1) integrons were prevalent in all samples, with higher concentration and abundance in manure-treated plots than in biochar-treated ones. The gene cassette arrays in the paddy featured a broad pool of cassettes with a total of 35% novel gene cassettes. A majority of gene cassettes encoded resistance to aminoglycosides, heat shock protein, heavy metals, pilus secretory proteins, and twin-arginine translocases (Tat), TatA, TatB, and TatC. Both in combination and solo treatments, the diversity of gene cassettes was increased in the manure-enriched soil, however, biochar reduced the gene cassettes’ diversity and their cassettes array. Manure considerably enhanced CL1 integrons abundance and antimicrobial resistance, whereas biochar amendments significantly reduced integrons and antimicrobial resistance. The results highlighted the differential effects of biochar and manure on integrons and its gene cassette arrays, showing increased abundance of integrons and antibiotic resistance upon manure application and decrease of the same with biochar. The use of biochar alone or in combination with manure could be a beneficial alternative to mitigate the spread of antimicrobial resistance and bacterial evolution in the environment, specifically in paddy soils.
Collapse
Affiliation(s)
- Niyaz Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yinfu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ligeng Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Izhar Ali
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, VIC, Australia
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Bing He,
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning, China
- Ronghui Wen,
| |
Collapse
|
12
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
13
|
Figueiredo G, Gomes M, Covas C, Mendo S, Caetano T. The Unexplored Wealth of Microbial Secondary Metabolites: the Sphingobacteriaceae Case Study. MICROBIAL ECOLOGY 2022; 83:470-481. [PMID: 33987687 DOI: 10.1007/s00248-021-01762-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Research on secondary metabolites (SMs) has been mostly focused on Gram-positive bacteria, especially Actinobacteria. The association of genomics with robust bioinformatics tools revealed the neglected potential of Gram-negative bacteria as promising sources of new SMs. The family Sphingobacteriaceae belongs to the phylum Bacteroidetes having representatives in practically all environments including humans, rhizosphere, soils, wastewaters, among others. Some genera of this family have demonstrated great potential as plant growth promoters, bioremediators and producers of some value-added compounds such as carotenoids and antimicrobials. However, to date, Sphingobacteriaceae's SMs are still poorly characterized, and likewise, little is known about their chemistry. This study revealed that Sphingobacteriaceae pangenome encodes a total of 446 biosynthetic gene clusters (BGCs), which are distributed across 85 strains, highlighting the great potential of this bacterial family to produce SMs. Pedobacter, Mucilaginibacter and Sphingobacterium were the genera with the highest number of BGCs, especially those encoding the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), terpenes, polyketides and nonribosomal peptides (NRPs). In Mucilaginibacter and Sphingobacterium genera, M. lappiensis ATCC BAA-1855, Mucilaginibacter sp. OK098 (both with 11 BGCs) and Sphingobacterium sp. 21 (6 BGCs) are the strains with the highest number of BGCs. Most of the BGCs found in these two genera did not have significant hits with the MIBiG database. These results strongly suggest that the bioactivities and environmental functions of these compounds, especially RiPPs, PKs and NRPs, are still unknown. Among RiPPs, two genera encoded the production of class I and class III lanthipeptides. The last are associated with LanKC proteins bearing uncommon lyase domains, whose dehydration mechanism deserves further investigation. This study translated genomics into functional information that unveils the enormous potential of environmental Gram-negative bacteria to produce metabolites with unknown chemistries, bioactivities and, more importantly, unknown ecological roles.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Margarida Gomes
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Claúdia Covas
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sónia Mendo
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tânia Caetano
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Zhu W, Hu L, Wang Y, Lv L, Wang H, Shi W, Zhu J, Lu H. A hemolysin secretion pathway-based novel secretory expression platform for efficient manufacturing of tag peptides and anti-microbial peptides in Escherichia coli. BIORESOUR BIOPROCESS 2021; 8:115. [PMID: 38650268 PMCID: PMC10992379 DOI: 10.1186/s40643-021-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. RESULTS In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. CONCLUSIONS The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents.
Collapse
Affiliation(s)
- Wen Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liangyin Lv
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqiang Shi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
15
|
Ozma MA, Khodadadi E, Rezaee MA, Asgharzadeh M, Aghazadeh M, Zeinalzadeh E, Ganbarov K, Kafil H. Bacterial proteomics and its application for pathogenesis studies. Curr Pharm Biotechnol 2021; 23:1245-1256. [PMID: 34503411 DOI: 10.2174/1389201022666210908153234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
Bacteria build their structures by implementing several macromolecules such as proteins, polysaccharides, phospholipids, and nucleic acids, which leads to preserve their lives and play an essential role in their pathogenesis. There are two genomic and proteomic methods to study various macromolecules of bacteria, which are complementary methods and provide comprehensive information. Proteomic approaches are used to identify proteins and their cell applications. Furthermore, to study bacterial proteins, macromolecules are involved in the bacteria's structures and functions. These protein-based methods provide comprehensive information about the cells, such as the external structures, internal compositions, post-translational modifications, and mechanisms of particular actions such as biofilm formation, antibiotic resistance, and adaptation to the environment, which are helpful in promoting bacterial pathogenesis. These methods use various devices such as MALDI-TOF MS, LC-MS, and two-dimensional electrophoresis, which are valuable tools for studying different structural and functional proteins of the bacteria and their mechanisms of pathogenesis that causes rapid, easy, and accurate diagnosis of the infections.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Ehsaneh Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Aghazadeh
- Microbiome and Health Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Hossein Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614711. Iran
| |
Collapse
|
16
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
17
|
Motlova L, Klimova N, Fiser R, Sebo P, Bumba L. Continuous Assembly of β-Roll Structures Is Implicated in the Type I-Dependent Secretion of Large Repeat-in-Toxins (RTX) Proteins. J Mol Biol 2020; 432:5696-5710. [PMID: 32860773 DOI: 10.1016/j.jmb.2020.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023]
Abstract
Repeats-in-Toxin (RTX) proteins of Gram-negative bacteria are excreted through the type I secretion system (T1SS) that recognizes non-cleavable C-terminal secretion signals. These are preceded by arrays of glycine and aspartate-rich nonapeptide repeats grouped by four to eight β strands into blocks that fold into calcium-binding parallel β-roll structures. The β-rolls are interspersed by linkers of variable length and sequence and the organization of multiple RTX repeat blocks within large RTX domains remains unknown. Here we examined the structure and function of the RTX domain of Bordetella pertussis adenylate cyclase toxin (CyaA) that is composed of five β-roll RTX blocks. We show that the non-folded RTX repeats maintain the stability of the CyaA polypeptide in the Ca2+-depleted bacterial cytosol and thereby enable its efficient translocation through the T1SS apparatus. The efficacy of secretion of truncated CyaA constructs was dictated by the number of retained RTX repeat blocks and depended on the presence of extracellular Ca2+ ions. We further describe the crystal structure of the RTX blocks IV-V of CyaA (CyaA1372-1681) that consists of a contiguous assembly of two β-rolls that differs substantially from the arrangement of the RTX blocks observed in RTX lipases or other RTX proteins. These results provide a novel structural insight into the architecture of the RTX domains of large RTX proteins and support the "push-ratchet" mechanism of the T1SS-mediated secretion of very large RTX proteins.
Collapse
Affiliation(s)
- Lucia Motlova
- Faculty of Sciences, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Nela Klimova
- Faculty of Sciences, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.; Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radovan Fiser
- Faculty of Sciences, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic..
| |
Collapse
|
18
|
Shvarev D, Maldener I. The HlyD-like membrane fusion protein All5304 is essential for acid stress survival of the filamentous cyanobacterium Anabaena sp. PCC 7120. FEMS Microbiol Lett 2020; 367:5863934. [PMID: 32592389 DOI: 10.1093/femsle/fnaa108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
Acid stress is an environmental problem for plants and fresh water cyanobacteria like the filamentous, heterocyst forming species Anabaena sp. PCC 7120 (hereafter Anabaena sp.). Heterocyst differentiation, cell-cell communication and nitrogen fixation has been deeply studied in this model organism, but little is known about the cellular response of Anabaena sp. to decreased pH values, causing acid stress. ATP-binding cassette (ABC) transporters are involved in acid stress response in other bacteria, by exporting proteins responsible for survival under acidification. The genome of Anabaena sp. encodes numerous ABC transporter components, whose function is not known yet. Here, we describe the function of the gene all5304 encoding a protein with homology to membrane fusion proteins of tripartite efflux pumps driven by ABC transporters like HlyBD-TolC of Escherichia coli. The all5304 mutant shows less resistance against low pH, even though the expression of the gene is independent from the pH of the medium. We compared the exoproteome of the wild type and mutant cultures and identified three proteins-candidate substrates of the putative transporter. Including the in silico analysis of All5304, our results suggest that All5304 functions as part of an efflux pump, secreting of a protein necessary for acid tolerance in Anabaena sp.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Dineshkumar K, Aparna V, Wu L, Wan J, Abdelaziz MH, Su Z, Wang S, Xu H. Bacterial bug-out bags: outer membrane vesicles and their proteins and functions. J Microbiol 2020; 58:531-542. [DOI: 10.1007/s12275-020-0026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
|
20
|
Klingl S, Kordes S, Schmid B, Gerlach RG, Hensel M, Muller YA. Recombinant protein production and purification of SiiD, SiiE and SiiF - Components of the SPI4-encoded type I secretion system from Salmonella Typhimurium. Protein Expr Purif 2020; 172:105632. [PMID: 32251835 DOI: 10.1016/j.pep.2020.105632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
In humans, Salmonella enterica infections are responsible for a plethora of medical conditions. These include intestinal inflammation and typhoid fever. The initial contact between Salmonella and polarized epithelial cells is established by the SPI4-encoded type I secretion system (T1SS), which secretes SiiE, a giant non-fimbrial adhesin. We have recombinantly produced various domains of this T1SS from Salmonella enterica serovar Typhimurium in Escherichia coli for further experimental characterization. We purified three variants of SiiD, the periplasmic adapter protein spanning the space between the inner and outer membrane, two variants of the SiiE N-terminal region and the N-terminal domain of the SiiF ATP-binding cassette (ABC) transporter. In all three proteins, at least one variant yielded high amounts of pure soluble protein. Secondary structure content and cooperative unfolding were investigated by circular dichroism (CD) spectroscopy. Secondary structure contents were in good agreement with estimates derived from SiiD and SiiF homology models or, in case of the SiiE N-terminal region, a secondary structure prediction. For one SiiD variant, protein crystals could be obtained that diffracted X-rays to approximately 4 Å resolution.
Collapse
Affiliation(s)
- Stefan Klingl
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | - Sina Kordes
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | - Benedikt Schmid
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | | | - Michael Hensel
- Abt. Mikrobiologie and CellNanOs, Universität Osnabrück, Osnabrück, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91052, Erlangen, Germany.
| |
Collapse
|
21
|
Nonaka S, Salim E, Kamiya K, Hori A, Nainu F, Asri RM, Masyita A, Nishiuchi T, Takeuchi S, Kodera N, Kuraishi T. Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Pseudomonas entomophila. Front Immunol 2020; 11:520. [PMID: 32292407 PMCID: PMC7118224 DOI: 10.3389/fimmu.2020.00520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas entomophila is a highly pathogenic bacterium that infects insects. It is also used as a suitable model pathogen to analyze Drosophila's innate immunity. P. entomophila's virulence is largely derived from Monalysin, a β-barrel pore-forming toxin that damages Drosophila tissues, inducing necrotic cell death. Here we report the first and efficient purification of endogenous Monalysin and its characterization. Monalysin is successfully purified as a pro-form, and trypsin treatment results in a cleaved mature form of purified Monalysin which kills Drosophila cell lines and adult flies. Electrophysiological measurement of Monalysin in a lipid membrane with an on-chip device confirms that Monalysin forms a pore, in a cleavage-dependent manner. This analysis also provides a pore-size estimate of Monalysin using current amplitude for a single pore and suggests lipid preferences for the insertion. Atomic Force Microscope (AFM) analysis displays its structure in a solution and shows that active-Monalysin is stable and composed of an 8-mer complex; this observation is consistent with mass spectrometry data. AFM analysis also shows the 8-mer structure of active-Monalysin in a lipid bilayer, and real-time imaging demonstrates the moment at which Monalysin is inserted into the lipid membrane. These results collectively suggest that endogenous Monalysin is indeed a pore-forming toxin composed of a rigid structure before pore formation in the lipid membrane. The endogenous Monalysin characterized in this study could be a desirable tool for analyzing host defense mechanisms against entomopathogenic bacteria producing damage-inducing toxins.
Collapse
Affiliation(s)
- Saori Nonaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Koki Kamiya
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Graduate School of Science and Technology, Gunma University, Maebashi, Japan
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Rangga Meidianto Asri
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ayu Masyita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa, Japan
| | - Shoji Takeuchi
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
22
|
Beis K, Rebuffat S. Multifaceted ABC transporters associated to microcin and bacteriocin export. Res Microbiol 2019; 170:399-406. [DOI: 10.1016/j.resmic.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
|
23
|
Alternative Sigma Factor RpoX Is a Part of the RpoE Regulon and Plays Distinct Roles in Stress Responses, Motility, Biofilm Formation, and Hemolytic Activities in the Marine Pathogen Vibrio alginolyticus. Appl Environ Microbiol 2019; 85:AEM.00234-19. [PMID: 31053580 DOI: 10.1128/aem.00234-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022] Open
Abstract
Vibrio alginolyticus is one of the most abundant microorganisms in marine environments and is also an opportunistic pathogen mediating high-mortality vibriosis in marine animals. Alternative sigma factors play essential roles in bacterial pathogens in the adaptation to environmental changes during infection and the adaptation to various niches, but little is known about them for V. alginolyticus Our previous investigation indicated that the transcript level of the gene rpoX significantly decreased in an RpoE mutant. Here, we found that rpoX was highly expressed in response to high temperature and low osmotic stress and was under the direct control of the alternative sigma factor RpoE and its own product RpoX. Moreover, transcriptome sequencing (RNA-seq) results showed that RpoE and RpoX had different regulons, although they coregulated 105 genes at high temperature (42°C), including genes associated with biofilm formation, motility, virulence, regulatory factors, and the stress response. RNA-seq and chromatin immunoprecipitation sequencing (ChIP-seq) analyses as well as electrophoretic mobility shift assays (EMSAs) revealed the distinct binding motifs of RpoE and RpoX proteins. Furthermore, quantitative real-time reverse transcription-PCR (qRT-PCR) analysis also confirmed that RpoX can upregulate genes associated with flagella, biofilm formation, and hemolytic activities at higher temperatures. rpoX abrogation does not appear to attenuate virulence toward model fish at normal temperature. Collectively, data from this study demonstrated the regulatory cascades of RpoE and an alternative sigma factor, RpoX, in response to heat and osmotic stresses and their distinct and overlapping roles in pathogenesis and stress responses in the marine bacterium V. alginolyticus IMPORTANCE The alternative sigma factor RpoE is essential for the virulence of Vibrio alginolyticus toward marine fish, coral, and other animals in response to sea surface temperature increases. In this study, we characterized another alternative sigma factor, RpoX, which is induced at high temperatures and under low-osmotic-stress conditions. The expression of rpoX is under the tight control of RpoE and RpoX. Although RpoE and RpoX coregulate 105 genes, they are programming different regulatory functions in stress responses and virulence in V. alginolyticus These findings illuminated the RpoE-RpoX-centered regulatory cascades and their distinct and overlapping regulatory roles in V. alginolyticus, which facilitates unraveling of the mechanisms by which the bacterium causes diseases in various sea animals in response to temperature fluctuations as well as the development of appropriate strategies to tackle infections by this bacterium.
Collapse
|
24
|
Tsallagov SI, Sorokin DY, Tikhonova TV, Popov VO, Muyzer G. Comparative Genomics of Thiohalobacter thiocyanaticus HRh1 T and Guyparkeria sp. SCN-R1, Halophilic Chemolithoautotrophic Sulfur-Oxidizing Gammaproteobacteria Capable of Using Thiocyanate as Energy Source. Front Microbiol 2019; 10:898. [PMID: 31118923 PMCID: PMC6504805 DOI: 10.3389/fmicb.2019.00898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/09/2019] [Indexed: 12/01/2022] Open
Abstract
The genomes of Thiohalobacter thiocyanaticus and Guyparkeria (formerly known as Halothiobacillus) sp. SCN-R1, two gammaproteobacterial halophilic sulfur-oxidizing bacteria (SOB) capable of thiocyanate oxidation via the "cyanate pathway", have been analyzed with a particular focus on their thiocyanate-oxidizing potential and sulfur oxidation pathways. Both genomes encode homologs of the enzyme thiocyanate dehydrogenase (TcDH) that oxidizes thiocyanate via the "cyanate pathway" in members of the haloalkaliphilic SOB of the genus Thioalkalivibrio. However, despite the presence of conservative motives indicative of TcDH, the putative TcDH of the halophilic SOB have a low overall amino acid similarity to the Thioalkalivibrio enzyme, and also the surrounding genes in the TcDH locus were different. In particular, an alternative copper transport system Cus is present instead of Cop and a putative zero-valent sulfur acceptor protein gene appears just before TcDH. Moreover, in contrast to the thiocyanate-oxidizing Thioalkalivibrio species, both genomes of the halophilic SOB contained a gene encoding the enzyme cyanate hydratase. The sulfur-oxidizing pathway in the genome of Thiohalobacter includes a Fcc type of sulfide dehydrogenase, a rDsr complex/AprAB/Sat for oxidation of zero-valent sulfur to sulfate, and an incomplete Sox pathway, lacking SoxCD. The sulfur oxidation pathway reconstructed from the genome of Guyparkeria sp. SCN-R1 was more similar to that of members of the Thiomicrospira-Hydrogenovibrio group, including a Fcc type of sulfide dehydrogenase and a complete Sox complex. One of the outstanding properties of Thiohalobacter is the presence of a Na+-dependent ATP synthase, which is rarely found in aerobic Prokaryotes.Overall, the results showed that, despite an obvious difference in the general sulfur-oxidation pathways, halophilic and haloalkaliphilic SOB belonging to different genera within the Gammaproteobacteria developed a similar unique thiocyanate-degrading mechanism based on the direct oxidative attack on the sulfane atom of thiocyanate.
Collapse
Affiliation(s)
- Stanislav I. Tsallagov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Tamara V. Tikhonova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Ruano-Gallego D, Fraile S, Gutierrez C, Fernández LÁ. Screening and purification of nanobodies from E. coli culture supernatants using the hemolysin secretion system. Microb Cell Fact 2019; 18:47. [PMID: 30857538 PMCID: PMC6410518 DOI: 10.1186/s12934-019-1094-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/25/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The hemolysin (Hly) secretion system of E. coli allows the one-step translocation of hemolysin A (HlyA) from the bacterial cytoplasm to the extracellular medium, without a periplasmic intermediate. In this work, we investigate whether the Hly secretion system of E. coli is competent to secrete a repertoire of functional single-domain VHH antibodies (nanobodies, Nbs), facilitating direct screening of VHH libraries and the purification of selected Nb from the extracellular medium. RESULTS We employed a phagemid library of VHHs obtained by immunization of a dromedary with three protein antigens from enterohemorrhagic E. coli (EHEC), namely, the extracellular secreted protein A (EspA), the extracellular C-terminal region of Intimin (Int280), and the translocated intimin receptor middle domain (TirM). VHH clones binding each antigen were enriched and amplified by biopanning, and subsequently fused to the C-terminal secretion signal of HlyA to be expressed and secreted in a E. coli strain carrying the Hly export machinery (HlyB, HlyD and TolC). Individual E. coli clones were grown and induced in 96-well microtiter plates, and the supernatants of the producing cultures directly used in ELISA for detection of Nbs binding EspA, Int280 and TirM. A set of Nb sequences specifically binding each of these antigens were identified, indicating that the Hly system is able to secrete a diversity of functional Nbs. We performed thiol alkylation assays demonstrating that Nbs are correctly oxidized upon secretion, forming disulphide bonds between cysteine pairs despite the absence of a periplasmic intermediate. In addition, we show that the secreted Nb-HlyA fusions can be directly purified from the supernatant of E. coli cultures, avoiding cell lysis and in a single affinity chromatography step. CONCLUSIONS Our data demonstrate the Hly secretion system of E. coli can be used as an expression platform for screening and purification of Nb binders from VHH repertories.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM-Cantoblanco, 28049 Madrid, Spain
| | - Sofía Fraile
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM-Cantoblanco, 28049 Madrid, Spain
| | - Carlos Gutierrez
- Research Institute of Biomedical and Health Sciences, Veterinary Faculty, Universidad de Las Palmas de Gran Canaria (UPGC), 35413 Arucas, Las Palmas, Canary Islands Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM-Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB, Schmitt L. Type I Secretion Systems-One Mechanism for All? Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0003-2018. [PMID: 30848237 PMCID: PMC11588160 DOI: 10.1128/microbiolspec.psib-0003-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Type I secretion systems (T1SS) are widespread in Gram-negative bacteria, especially in pathogenic bacteria, and they secrete adhesins, iron-scavenger proteins, lipases, proteases, or pore-forming toxins in the unfolded state in one step across two membranes without any periplasmic intermediate into the extracellular space. The substrates of T1SS are in general characterized by a C-terminal secretion sequence and nonapeptide repeats, so-called GG repeats, located N terminal to the secretion sequence. These GG repeats bind Ca2+ ions in the extracellular space, which triggers folding of the entire protein. Here we summarize our current knowledge of how Gram-negative bacteria secrete these substrates, which can possess a molecular mass of up to 1,500 kDa. We also describe recent findings that demonstrate that the absence of periplasmic intermediates, the "classic" mode of action, does not hold true for all T1SS and that we are beginning to realize modifications of a common theme.
Collapse
Affiliation(s)
- Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, University of Paris-Sud, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Jo I, Kim JS, Xu Y, Hyun J, Lee K, Ha NC. Recent paradigm shift in the assembly of bacterial tripartite efflux pumps and the type I secretion system. J Microbiol 2019; 57:185-194. [PMID: 30806976 DOI: 10.1007/s12275-019-8520-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/15/2023]
Abstract
Tripartite efflux pumps and the type I secretion system of Gram-negative bacteria are large protein complexes that span the entire cell envelope. These complexes expel antibiotics and other toxic substances or transport protein toxins from bacterial cells. Elucidating the binary and ternary complex structures at an atomic resolution are crucial to understanding the assembly and working mechanism. Recent advances in cryoelectron microscopy along with the construction of chimeric proteins drastically shifted the assembly models. In this review, we describe the current assembly models from a historical perspective and emphasize the common assembly mechanism for the assembly of diverse tripartite pumps and type I secretion systems.
Collapse
Affiliation(s)
- Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Sik Kim
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, P. R. China
| | - Jaekyung Hyun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
28
|
Dorati F, Barrett GA, Sanchez-Contreras M, Arseneault T, José MS, Studholme DJ, Murillo J, Caballero P, Waterfield NR, Arnold DL, Shaw LJ, Jackson RW. Coping with Environmental Eukaryotes; Identification of Pseudomonas syringae Genes during the Interaction with Alternative Hosts or Predators. Microorganisms 2018; 6:microorganisms6020032. [PMID: 29690522 PMCID: PMC6027264 DOI: 10.3390/microorganisms6020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms underpinning the ecological success of plant pathogens is critical to develop strategies for controlling diseases and protecting crops. Recent observations have shown that plant pathogenic bacteria, particularly Pseudomonas, exist in a range of natural environments away from their natural plant host e.g., water courses, soil, non-host plants. This exposes them to a variety of eukaryotic predators such as nematodes, insects and amoebae present in the environment. Nematodes and amoeba in particular are bacterial predators while insect herbivores may act as indirect predators, ingesting bacteria on plant tissue. We therefore postulated that bacteria are probably under selective pressure to avoid or survive predation and have therefore developed appropriate coping mechanisms. We tested the hypothesis that plant pathogenic Pseudomonas syringae are able to cope with predation pressure and found that three pathovars show weak, but significant resistance or toxicity. To identify the gene systems that contribute to resistance or toxicity we applied a heterologous screening technique, called Rapid Virulence Annotation (RVA), for anti-predation and toxicity mechanisms. Three cosmid libraries for P. syringae pv. aesculi, pv. tomato and pv. phaseolicola, of approximately 2000 cosmids each, were screened in the susceptible/non-toxic bacterium Escherichia coli against nematode, amoebae and an insect. A number of potential conserved and unique genes were identified which included genes encoding haemolysins, biofilm formation, motility and adhesion. These data provide the first multi-pathovar comparative insight to how plant pathogens cope with different predation pressures and infection of an insect gut and provide a foundation for further study into the function of selected genes and their role in ecological success.
Collapse
Affiliation(s)
- Federico Dorati
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | - Glyn A Barrett
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Tanya Arseneault
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Research and Development Centre, Quebec, J3B 3E6, Canada.
| | - Mateo San José
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Jesús Murillo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Nicholas R Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, BA1 9BJ, UK.
- Warwick Medical School, University of Warwick, Warwick, CV4 7AL, UK.
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| | - Liz J Shaw
- School of Archaeology, Geography and Environmental Science, University of Reading, Reading, RG6 6AX, UK.
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| |
Collapse
|
29
|
Kanonenberg K, Spitz O, Erenburg IN, Beer T, Schmitt L. Type I secretion system—it takes three and a substrate. FEMS Microbiol Lett 2018; 365:4966979. [DOI: 10.1093/femsle/fny094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Murata D, Okano H, Angkawidjaja C, Akutsu M, Tanaka SI, Kitahara K, Yoshizawa T, Matsumura H, Kado Y, Mizohata E, Inoue T, Sano S, Koga Y, Kanaya S, Takano K. Structural Basis for the Serratia marcescens Lipase Secretion System: Crystal Structures of the Membrane Fusion Protein and Nucleotide-Binding Domain. Biochemistry 2017; 56:6281-6291. [PMID: 29094929 DOI: 10.1021/acs.biochem.7b00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Serratia marcescens secretes a lipase, LipA, through a type I secretion system (T1SS). The T1SS for LipA, the Lip system, is composed of an inner membrane ABC transporter with its nucleotide-binding domains (NBD), LipB, a membrane fusion protein, LipC, and an outer membrane channel protein, LipD. Passenger protein secreted by this system has been functionally and structurally characterized well, but relatively little information about the transporter complex is available. Here, we report the crystallographic studies of LipC without the membrane anchor region, LipC-, and the NBD of LipB (LipB-NBD). LipC- crystallographic analysis has led to the determination of the structure of the long α-helical and lipoyl domains, but not the area where it interacts with LipB, suggesting that the region is flexible without LipB. The long α-helical domain has three α-helices, which interacts with LipD in the periplasm. LipB-NBD has the common overall architecture and ATP hydrolysis activity of ABC transporter NBDs. Using the predicted models of full-length LipB and LipD, the overall structural insight into the Lip system is discussed.
Collapse
Affiliation(s)
- Daichi Murata
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hiroyuki Okano
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Clement Angkawidjaja
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt , Max-von-Laue-Straße, 60438 Frankfurt am Main, Germany
| | - Shun-Ichi Tanaka
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Kenyu Kitahara
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Yuji Kado
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Eiichi Mizohata
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Tsuyoshi Inoue
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Satoshi Sano
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Shigenori Kanaya
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
31
|
Jo I, Hong S, Lee M, Song S, Kim JS, Mitra AK, Hyun J, Lee K, Ha NC. Stoichiometry and mechanistic implications of the MacAB-TolC tripartite efflux pump. Biochem Biophys Res Commun 2017; 494:668-673. [PMID: 29061301 DOI: 10.1016/j.bbrc.2017.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
The MacAB-TolC tripartite efflux pump is involved in resistance to macrolide antibiotics and secretion of protein toxins in many Gram-negative bacteria. The pump spans the entire cell envelope and operates by expelling substances to extracellular space. X-ray crystal and electron microscopic structures have revealed the funnel-like MacA hexamer in the periplasmic space and the cylindrical TolC trimer. Nonetheless, the inner membrane transporter MacB still remains ambiguous in terms of its oligomeric state in the functional complex. In this study, we purified a stable binary complex using a fusion protein of MacA and MacB of Escherichia coli, and then supplemented MacA to meet the correct stoichiometry between the two proteins. The result demonstrated that MacB is a homodimer in the complex, which is consistent with results from the recent complex structure using cryo-electron microscopy single particle analysis. Structural comparison with the previously reported MacB periplasmic domain structure suggests a molecular mechanism for regulation of the activity of MacB via an interaction between the MacB periplasmic domain and MacA. Our results provide a better understanding of the tripartite pumps at the molecular level.
Collapse
Affiliation(s)
- Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokho Hong
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Saemee Song
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Sik Kim
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Alok K Mitra
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jaekyung Hyun
- Electron Microscopy Research Center, Korea Basic Science Institute, Chungcheongbukdo 28119, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
32
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|