1
|
Christman ND, Dalia AB. The molecular basis for DNA-binding by competence T4P is distinct in a representative Gram-positive and Gram-negative species. PLoS Pathog 2025; 21:e1013128. [PMID: 40258067 PMCID: PMC12040237 DOI: 10.1371/journal.ppat.1013128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/29/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025] Open
Abstract
Competence type IV pili (T4P) are bacterial surface appendages that facilitate DNA uptake during horizontal gene transfer by natural transformation. These dynamic structures actively extend from the cell surface, bind to DNA in the environment, and then retract to import bound DNA into the cell. Competence T4P are found in diverse Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA-binding by diderm competence T4P has been the recent focus of intensive study, relatively little is known about DNA-binding by monoderm competence T4P. Here, we use Streptococcus pneumoniae as a model system to address this question. Competence T4P likely bind to DNA via a tip-associated complex of proteins called minor pilins, and recent work highlights a high degree of structural conservation between the minor pilin tip complexes of monoderm and diderm competence T4P. In diderms, positively charged residues in one minor pilin, FimT, are critical for DNA-binding. We show that while these residues are conserved in ComGD, the FimT homolog of monoderms, they only play a minor role in DNA uptake for natural transformation. Instead, we find that two-positively charged residues in the neighboring minor pilin, ComGF (the PilW homolog of monoderms), play the dominant role in DNA uptake for natural transformation. Furthermore, we find that these residues are conserved in other monoderms, but not diderms. Together, these results suggest that the molecular basis for DNA-binding has either diverged or evolved independently in monoderm and diderm competence T4P.
Collapse
Affiliation(s)
- Nicholas D. Christman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Christman ND, Dalia AB. The molecular basis for DNA-binding by competence T4P is distinct in Gram-positive and Gram-negative species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638644. [PMID: 40027803 PMCID: PMC11870608 DOI: 10.1101/2025.02.17.638644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Competence type IV pili (T4P) are bacterial surface appendages that facilitate DNA uptake during horizontal gene transfer by natural transformation. These dynamic structures actively extend from the cell surface, bind to DNA in the environment, and then retract to import bound DNA into the cell. Competence T4P are found in diverse Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA-binding by diderm competence T4P has been the recent focus of intensive study, relatively little is known about DNA-binding by monoderm competence T4P. Here, we use Streptococcus pneumoniae as a model system to address this question. Competence T4P likely bind to DNA via a tip-associated complex of proteins called minor pilins, and recent work highlights a high degree of structural conservation between the minor pilin tip complexes of monoderm and diderm competence T4P. In diderms, positively charged residues in one minor pilin, FimT, are critical for DNA-binding. We show that while these residues are conserved in ComGD, the FimT homolog of monoderms, they only play a minor role in DNA uptake for natural transformation. Instead, we find that two-positively charged residues in the neighboring minor pilin, ComGF (the PilW homolog of monoderms), play the dominant role in DNA uptake for natural transformation. Furthermore, we find that these residues are conserved in other monoderms, but not diderms. Together, these results suggest that the molecular basis for DNA-binding has either diverged or evolved independently in monoderm and diderm competence T4P. AUTHOR SUMMARY Diverse bacteria use extracellular structures called competence type IV pili (T4P) to take up DNA from their environment. The uptake of DNA by T4P is the first step of natural transformation, a mode of horizontal gene transfer that contributes to the spread of antibiotic resistance and virulence traits in diverse clinically relevant Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA binding by competence T4P in diderms has been an area of recent study, relatively little is known about how monoderm competence T4P bind DNA. Here, we explore how monoderm competence T4P bind DNA using Streptococcus pneumoniae as a model system. Our results indicate that while monoderm T4P and diderm T4P likely have conserved structural features, the DNA-binding mechanism of each system is distinct.
Collapse
|
3
|
Bae HW, Choi SY, Cho YH. An outer membrane determinant for RNA phage genome entry in Pseudomonas aeruginosa. iScience 2024; 27:108675. [PMID: 38213628 PMCID: PMC10783630 DOI: 10.1016/j.isci.2023.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Host range of a phage is determined at the various life cycle stages during phage infection. We reported the limited phage-receptor interaction between the RNA phage, PP7 and its host Pseudomonas aeruginosa strains: PAO1 has susceptible type IV pilus (TFP) pilin, whereas PA14 has resistant pilin. Here, we have created a PA14 derivative (PA14P) with the PAO1 pilin gene and found that other determinants than TFP pilin could limit PP7 infectivity in PA14P. Transposon mutant screens revealed that PP7 infectivity was restored in the PA14P mutants (htrB2) lacking a secondary acyltransferase in lipid A biosynthesis. The lack of this enzyme increased the RNA phage entry, which is deemed attributed to the loosened lipopolysaccharide (LPS) structure. Polymyxin B treatment also selectively increased the RNA phage entry. These results demonstrated that LPS structures could limit the entry stage of RNA phages, providing another determinant for the host range in diverse P. aeruginosa strains.
Collapse
Affiliation(s)
- Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Shin-Yae Choi
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| |
Collapse
|
4
|
de Amorim GC, Bardiaux B, Izadi-Pruneyre N. Structural Analysis of Proteins from Bacterial Secretion Systems and Their Assemblies by NMR Spectroscopy. Methods Mol Biol 2024; 2715:503-517. [PMID: 37930547 DOI: 10.1007/978-1-0716-3445-5_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial secretion systems are built up from proteins with different physicochemical characteristics, such as highly hydrophobic transmembrane polypeptides, and soluble periplasmic or intracellular domains. A single complex can be composed of more than ten proteins with distinct features, spreading through different cellular compartments. The membrane and multicompartment nature of the proteins, and their large molecular weight make their study challenging. However, information on their structure and assemblies is required to understand their mechanisms and interfere with them. An alternative strategy is to work with soluble domains and peptides corresponding to the regions of interest of the proteins.Here, we describe a simple and fast protocol to evaluate the stability, folding, and interaction of protein sub-complexes by using solution-state Nuclear Magnetic Resonance (NMR) spectroscopy. This technique is widely used for protein structure and protein-ligand interaction analysis in solution.
Collapse
Affiliation(s)
- Gisele Cardoso de Amorim
- Núcleo Multidisciplinar de Pesquisa em Biologia, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France.
| |
Collapse
|
5
|
Kilb A, Burghard-Schrod M, Holtrup S, Graumann PL. Uptake of environmental DNA in Bacillus subtilis occurs all over the cell surface through a dynamic pilus structure. PLoS Genet 2023; 19:e1010696. [PMID: 37816065 PMCID: PMC10564135 DOI: 10.1371/journal.pgen.1010696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023] Open
Abstract
At the transition to stationary phase, a subpopulation of Bacillus subtilis cells can enter the developmental state of competence, where DNA is taken up through the cell envelope, and is processed to single stranded DNA, which is incorporated into the genome if sufficient homology between sequences exists. We show here that the initial step of transport across the cell wall occurs via a true pilus structure, with an average length of about 500 nm, which assembles at various places on the cell surface. Once assembled, the pilus remains at one position and can be retracted in a time frame of seconds. The major pilin, ComGC, was studied at a single molecule level in live cells. ComGC was found in two distinct populations, one that would correspond to ComGC freely diffusing throughout the cell membrane, and one that is relatively stationary, likely reflecting pilus-incorporated molecules. The ratio of 65% diffusing and 35% stationary ComGC molecules changed towards more stationary molecules upon addition of external DNA, while the number of pili in the population did not strongly increase. These findings suggest that the pilus assembles stochastically, but engages more pilin monomers from the membrane fraction in the presence of transport substrate. Our data support a model in which transport of environmental DNA occurs through the entire cell surface by a dynamic pilus, mediating efficient uptake through the cell wall into the periplasm, where DNA diffuses to a cell pole containing the localized transport machinery mediating passage into the cytosol.
Collapse
Affiliation(s)
- Alexandra Kilb
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Marie Burghard-Schrod
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Sven Holtrup
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Peter L. Graumann
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
6
|
Seow VY, Tsygelnytska O, Biais N. Multisite transformation in Neisseria gonorrhoeae: insights on transformations mechanisms and new genetic modification protocols. Front Microbiol 2023; 14:1178128. [PMID: 37408636 PMCID: PMC10319059 DOI: 10.3389/fmicb.2023.1178128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Natural transformation, or the uptake of naked DNA from the external milieu by bacteria, holds a unique place in the history of biology. This is both the beginning of the realization of the correct chemical nature of genes and the first technical step to the molecular biology revolution that sees us today able to modify genomes almost at will. Yet the mechanistic understanding of bacterial transformation still presents many blind spots and many bacterial systems lag behind power horse model systems like Escherichia coli in terms of ease of genetic modification. Using Neisseria gonorrhoeae as a model system and using transformation with multiple DNA molecules, we tackle in this paper both some aspects of the mechanistic nature of bacterial transformation and the presentation of new molecular biology techniques for this organism. We show that similarly to what has been demonstrated in other naturally competent bacteria, Neisseria gonorrhoeae can incorporate, at the same time, different DNA molecules modifying DNA at different loci within its genome. In particular, co-transformation of a DNA molecule bearing an antibiotic selection cassette and another non-selected DNA piece can lead to the integration of both molecules in the genome while selecting only through the selective cassette at percentages above 70%. We also show that successive selections with two selection markers at the same genetic locus can drastically reduce the number of genetic markers needed to do multisite genetic modifications in Neisseria gonorrhoeae. Despite public health interest heightened with the recent rise in antibiotic resistance, the causative agent of gonorrhea still does not possess a plethora of molecular techniques. This paper will extend the techniques available to the Neisseria community while providing some insights into the mechanisms behind bacterial transformation in Neisseria gonorrhoeae. We are providing a suite of new techniques to quickly obtain modifications of genes and genomes in the Neisserial naturally competent bacteria.
Collapse
Affiliation(s)
- Vui Yin Seow
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
- The Graduate Center of the City University of New York, New York, NY, United States
- Laboratoire Jean Perrin, UMR8237, Sorbonne Université, Paris, France
| | - Olga Tsygelnytska
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Nicolas Biais
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
- The Graduate Center of the City University of New York, New York, NY, United States
- Laboratoire Jean Perrin, UMR8237, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Pelicic V. Mechanism of assembly of type 4 filaments: everything you always wanted to know (but were afraid to ask). MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36947586 DOI: 10.1099/mic.0.001311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Type 4 filaments (T4F) are a superfamily of filamentous nanomachines - virtually ubiquitous in prokaryotes and functionally versatile - of which type 4 pili (T4P) are the defining member. T4F are polymers of type 4 pilins, assembled by conserved multi-protein machineries. They have long been an important topic for research because they are key virulence factors in numerous bacterial pathogens. Our poor understanding of the molecular mechanisms of T4F assembly is a serious hindrance to the design of anti-T4F therapeutics. This review attempts to shed light on the fundamental mechanistic principles at play in T4F assembly by focusing on similarities rather than differences between several (mostly bacterial) T4F. This holistic approach, complemented by the revolutionary ability of artificial intelligence to predict protein structures, led to an intriguing mechanistic model of T4F assembly.
Collapse
Affiliation(s)
- Vladimir Pelicic
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
8
|
Characterization of a glycan-binding complex of minor pilins completes the analysis of Streptococcus sanguinis type 4 pili subunits. Proc Natl Acad Sci U S A 2023; 120:e2216237120. [PMID: 36626560 PMCID: PMC9934059 DOI: 10.1073/pnas.2216237120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Type 4 filaments (T4F)-of which type 4 pili (T4P) are the archetype-are a superfamily of nanomachines nearly ubiquitous in prokaryotes. T4F are polymers of one major pilin, which also contain minor pilins whose roles are often poorly understood. Here, we complete the structure/function analysis of the full set of T4P pilins in the opportunistic bacterial pathogen Streptococcus sanguinis. We determined the structure of the minor pilin PilA, which is unexpectedly similar to one of the subunits of a tip-located complex of four minor pilins, widely conserved in T4F. We found that PilA interacts and dramatically stabilizes the minor pilin PilC. We determined the structure of PilC, showing that it is a modular pilin with a lectin module binding a subset of glycans prevalent in the human glycome, the host of S. sanguinis. Altogether, our findings support a model whereby the minor pilins in S. sanguinis T4P form a tip-located complex promoting adhesion to various host receptors. This has general implications for T4F.
Collapse
|
9
|
Ronish LA, Sidner B, Yu Y, Piepenbrink KH. Recognition of extracellular DNA by type IV pili promotes biofilm formation by Clostridioides difficile. J Biol Chem 2022; 298:102449. [PMID: 36064001 PMCID: PMC9556784 DOI: 10.1016/j.jbc.2022.102449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Clostridioides difficile is a Gram-positive bacillus, which is a frequent cause of gastrointestinal infections triggered by the depletion of the gut microbiome. Because of the frequent recurrence of these infections after antibiotic treatment, mechanisms of C. difficile persistence and recurrence, including biofilm formation, are of increasing interest. Previously, our group and others found that type IV pili, filamentous helical appendages polymerized from protein subunits, promoted microcolony and biofilm formation in C. difficile. In Gram-negative bacteria, the ability of type IV pili to mediate bacterial self-association has been explained through interactions between the pili of adjacent cells, but type IV pili from several Gram-negative species are also required for natural competence through DNA uptake. Here, we report the ability of two C. difficile pilin subunits, PilJ and PilW, to bind to DNA in vitro, as well as the defects in biofilm formation in the pilJ and pilW gene-interruption mutants. Additionally, we have resolved the X-ray crystal structure of PilW, which we use to model possible structural mechanisms for the formation of C. difficile biofilm through interactions between type IV pili and the DNA of the extracellular matrix. Taken together, our results provide further insight into the relationship between type IV pilus function and biofilm formation in C. difficile and, more broadly, suggest that DNA recognition by type IV pili and related structures may have functional importance beyond DNA uptake for natural competence.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ben Sidner
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
10
|
Hughes-Games A, Davis SA, Hill DJ. Direct visualization of sequence-specific DNA binding by gonococcal type IV pili. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35920810 DOI: 10.1099/mic.0.001224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhoea, is a major burden on global healthcare systems, with an estimated ~80-90 million new global cases annually. This burden is exacerbated by increasing levels of antimicrobial resistance, which has greatly limited viable antimicrobial therapies. Decreasing gonococcal drug susceptibility has been driven largely by accumulation of chromosomal resistance determinants, which can be acquired through natural transformation, whereby DNA in the extracellular milieu is imported into cells and incorporated into the genome by homologous recombination. N. gonorrhoeae possesses a specialized system for DNA uptake, which strongly biases transformation in favour of DNA from closely related bacteria by recognizing a 10-12 bp DNA uptake sequence (DUS) motif, which is highly overrepresented in their chromosomal DNA. This process relies on numerous proteins, including the DUS-specific receptor ComP, which assemble retractile protein filaments termed type IV pili (T4P) extending from the cell surface, and one model for neisserial DNA uptake proposes that these filaments bind DNA in a DUS-dependent manner before retracting to transport DNA into the periplasm. However, conflicting evidence indicates that elongated pilus filaments may not have such a direct role in DNA binding uptake as this model suggests. Here, we quantitatively measured DNA binding to gonococcal T4P fibres by directly visualizing binding complexes with confocal fluorescence microscopy in order to confirm the sequence-specific, comP-dependent DNA binding capacity of elongated T4P fibres. This supports the idea that pilus filaments could be responsible for initially capturing DNA in the first step of sequence-specific DNA uptake.
Collapse
Affiliation(s)
- Alex Hughes-Games
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, UK.,School of Chemistry, University of Bristol, Bristol, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Bristol, UK
| | - Darryl J Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Shao Y, Chen M, Luo J, Li D, Yuan L, Yang X, Wang M, Chen M, Guo Q. Serogroup Y Clonal Complex 23 Meningococcus in China Acquiring Penicillin Resistance from Commensal Neisseria lactamica Species. Antimicrob Agents Chemother 2022; 66:e0238321. [PMID: 35652645 PMCID: PMC9211434 DOI: 10.1128/aac.02383-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Invasive meningococcal disease (IMD) due to serogroup Y Neisseria meningitidis (NmY) is rare in China; recently, an invasive NmY isolate, Nm512, was discovered in Shanghai with decreased susceptibility to penicillin (PenNS). Here, we investigated the epidemiology of NmY isolates in Shanghai and explored the potential commensal Neisseria lactamica donor of the PenNS NmY isolate. A total of 491 N. meningitidis and 724 commensal Neisseria spp. isolates were collected. Eleven NmY isolates were discovered from IMD (n = 1) and carriers (n = 10), including two PenNS isolates with five-key-mutation-harboring (F504L-A510V-I515V-H541N-I566V) penA genes. Five of the eight ST-175 complex (CC175) isolates had a genotype [Y:P1.5-1,2-2:F5-8:ST-175(CC175)] identical to that of the predominant invasive clone found in South Africa. Only one invasive NmY CC23 isolate (Nm512) was discovered; this isolate carried a novel PenNSpenA832 allele, which was identified in commensal N. lactamica isolates locally. Recombination analysis and transformation of the penA allele highlighted that N. meningitidis Nm512 may acquire resistance from its commensal donor; this was supported by the similar distribution of transformation-required DNA uptake sequence variants and the highly cognate receptor ComP between N. meningitidis and N. lactamica. In 2,309 NmY CC23 genomes from the PubMLST database, isolates with key-mutation-harboring penA genes comprised 12% and have been increasing since the 1990s, accompanied by recruitment of the blaROB-1 and/or quinolone resistance allele. Moreover, penA22 was predominant among genomes without key mutations in penA. These results strongly suggest that Nm512 is a descendant of the penA22-harboring CC23 isolate from Europe and acquired its penicillin resistance locally from commensal N. lactamica species by natural transformation.
Collapse
Affiliation(s)
- Youxing Shao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People’s Republic of China, Shanghai, People’s Republic of China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- Department of Microbiology, Shanghai Institutes of Preventive Medicine, Shanghai, People’s Republic of China
| | - Jiayuan Luo
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Dan Li
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Lingyue Yuan
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Xiaoying Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People’s Republic of China, Shanghai, People’s Republic of China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People’s Republic of China, Shanghai, People’s Republic of China
| | - Min Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People’s Republic of China, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
The molecular basis of FimT-mediated DNA uptake during bacterial natural transformation. Nat Commun 2022; 13:1065. [PMID: 35246533 PMCID: PMC8897410 DOI: 10.1038/s41467-022-28690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Naturally competent bacteria encode sophisticated protein machinery for the uptake and translocation of exogenous DNA into the cell. If this DNA is integrated into the bacterial genome, the bacterium is said to be naturally transformed. Most competent bacterial species utilise type IV pili for the initial DNA uptake step. These proteinaceous cell-surface structures are composed of thousands of pilus subunits (pilins), designated as major or minor according to their relative abundance in the pilus. Here, we show that the minor pilin FimT plays an important role in the natural transformation of Legionella pneumophila. We use NMR spectroscopy, in vitro DNA binding assays and in vivo transformation assays to understand the molecular basis of FimT's role in this process. FimT binds to DNA via an electropositive patch, rich in arginines, several of which are well-conserved and located in a conformationally flexible C-terminal tail. FimT orthologues from other Gammaproteobacteria share the ability to bind to DNA. Our results suggest that FimT plays an important role in DNA uptake in a wide range of competent species.
Collapse
|
13
|
Sacharok AL, Porsch EA, Yount TA, Keenan O, St. Geme JW. Kingella kingae PilC1 and PilC2 are adhesive multifunctional proteins that promote bacterial adherence, twitching motility, DNA transformation, and pilus biogenesis. PLoS Pathog 2022; 18:e1010440. [PMID: 35353876 PMCID: PMC9000118 DOI: 10.1371/journal.ppat.1010440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/11/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022] Open
Abstract
The gram-negative bacterium Kingella kingae is a leading cause of osteoarticular infections in young children and initiates infection by colonizing the oropharynx. Adherence to respiratory epithelial cells represents an initial step in the process of K. kingae colonization and is mediated in part by type IV pili. In previous work, we observed that elimination of the K. kingae PilC1 and PilC2 pilus-associated proteins resulted in non-piliated organisms that were non-adherent, suggesting that PilC1 and PilC2 have a role in pilus biogenesis. To further define the functions of PilC1 and PilC2, in this study we eliminated the PilT retraction ATPase in the ΔpilC1ΔpilC2 mutant, thereby blocking pilus retraction and restoring piliation. The resulting strain was non-adherent in assays with cultured epithelial cells, supporting the possibility that PilC1 and PilC2 have adhesive activity. Consistent with this conclusion, purified PilC1 and PilC2 were capable of saturable binding to epithelial cells. Additional analysis revealed that PilC1 but not PilC2 also mediated adherence to selected extracellular matrix proteins, underscoring the differential binding specificity of these adhesins. Examination of deletion constructs and purified PilC1 and PilC2 fragments localized adhesive activity to the N-terminal region of both PilC1 and PilC2. The deletion constructs also localized the twitching motility property to the N-terminal region of these proteins. In contrast, the deletion constructs established that the pilus biogenesis function of PilC1 and PilC2 resides in the C-terminal region of these proteins. Taken together, these results provide definitive evidence that PilC1 and PilC2 are adhesins and localize adhesive activity and twitching motility to the N-terminal domain and biogenesis to the C-terminal domain. Kingella kingae is an emerging pediatric pathogen that is a leading cause of osteoarticular infections in children under the age of four. Adherence to epithelial cells is thought to be the first step in K. kingae colonization of the host and a prerequisite for invasive disease. Previous work has established that type IV pili are responsible for K. kingae adherence to host cells. In this work we identify the K. kingae pilus adhesins and localize the adhesive region to the N-terminal domain of these two proteins. We further establish that the two adhesins have distinct binding specificities and also influence other biologic processes. Our study provides new insights into the adherence mechanisms of an increasingly recognized pediatric pathogen and furthers our understanding of K. kingae interactions with host cells, identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Alexandra L. Sacharok
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Eric A. Porsch
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Taylor A. Yount
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Orlaith Keenan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph W. St. Geme
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Barnier JP, Meyer J, Kolappan S, Bouzinba-Ségard H, Gesbert G, Jamet A, Frapy E, Schönherr-Hellec S, Capel E, Virion Z, Dupuis M, Bille E, Morand P, Schmitt T, Bourdoulous S, Nassif X, Craig L, Coureuil M. The minor pilin PilV provides a conserved adhesion site throughout the antigenically variable meningococcal type IV pilus. Proc Natl Acad Sci U S A 2021; 118:e2109364118. [PMID: 34725157 PMCID: PMC8609321 DOI: 10.1073/pnas.2109364118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023] Open
Abstract
Neisseria meningitidis utilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of N. meningitidis to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified. Here, we show that both PilE and PilV promote adhesion to endothelial vessels in vivo. The substantial adhesion defect observed for pilV mutants suggests it is the main adhesin. Consistent with this observation, superresolution microscopy showed the abundant distribution of PilV throughout the pilus. We determined the crystal structure of PilV and modeled it within the pilus filament. The small size of PilV causes it to be recessed relative to adjacent PilE subunits, which are dominated by a prominent hypervariable loop. Nonetheless, we identified a conserved surface-exposed adhesive loop on PilV by alanine scanning mutagenesis. Critically, antibodies directed against PilV inhibit N. meningitidis colonization of human skin grafts. These findings explain how N. meningitidis T4P undergo antigenic variation to evade the humoral immune response while maintaining their adhesive function and establish the potential of this highly conserved minor pilin as a vaccine and therapeutic target for the prevention and treatment of N. meningitidis infections.
Collapse
Affiliation(s)
- Jean-Philippe Barnier
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Hôpital Necker Enfants-Malades, Paris 75015, France
| | - Julie Meyer
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
| | - Subramania Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 3Y6, Canada
| | - Haniaa Bouzinba-Ségard
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris 75014, France
| | - Gaël Gesbert
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
| | - Anne Jamet
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Hôpital Necker Enfants-Malades, Paris 75015, France
| | - Eric Frapy
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
| | - Sophia Schönherr-Hellec
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
| | - Elena Capel
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
| | - Zoé Virion
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
| | - Marion Dupuis
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
| | - Emmanuelle Bille
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Hôpital Necker Enfants-Malades, Paris 75015, France
| | - Philippe Morand
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
- Service de Bactériologie, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Hôpital Cochin, Paris 75014, France
| | - Taliah Schmitt
- Service de Chirurgie Reconstructrice et Plastique, Groupe Hospitalier Paris Saint-Joseph, Paris 75014, France
| | - Sandrine Bourdoulous
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris 75014, France
| | - Xavier Nassif
- Faculté de Médecine, Université de Paris, Paris 75006, France
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Hôpital Necker Enfants-Malades, Paris 75015, France
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 3Y6, Canada;
| | - Mathieu Coureuil
- Faculté de Médecine, Université de Paris, Paris 75006, France;
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants-Malades, Paris 75015, France
| |
Collapse
|
15
|
Oeser S, Wallner T, Schuergers N, Bučinská L, Sivabalasarma S, Bähre H, Albers SV, Wilde A. Minor pilins are involved in motility and natural competence in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 2021; 116:743-765. [PMID: 34115422 DOI: 10.1111/mmi.14768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria synthesize type IV pili, which are known to be essential for motility, adhesion and natural competence. They consist of long flexible fibers that are primarily composed of the major pilin PilA1 in Synechocystis sp. PCC 6803. In addition, Synechocystis encodes less abundant pilin-like proteins, which are known as minor pilins. In this study, we show that the minor pilin PilA5 is essential for natural transformation but is dispensable for motility and flocculation. In contrast, a set of minor pilins encoded by the pilA9-slr2019 transcriptional unit are necessary for motility but are dispensable for natural transformation. Neither pilA5-pilA6 nor pilA9-slr2019 are essential for pilus assembly as mutant strains showed type IV pili on the cell surface. Three further gene products with similarity to PilX-like minor pilins have a function in flocculation of Synechocystis. The results of our study indicate that different minor pilins facilitate distinct pilus functions. Further, our microarray analysis demonstrated that the transcription levels of the minor pilin genes change in response to surface contact. A total of 122 genes were determined to have altered transcription between planktonic and surface growth, including several plasmid genes which are involved exopolysaccharide synthesis and the formation of bloom-like aggregates.
Collapse
Affiliation(s)
- Sabrina Oeser
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Thomas Wallner
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Lenka Bučinská
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Trebon, Czech Republic
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Medical School Hannover, Hannover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Hughes-Games A, Roberts AP, Davis SA, Hill DJ. Identification of integrative and conjugative elements in pathogenic and commensal Neisseriaceae species via genomic distributions of DNA uptake sequence dialects. Microb Genom 2020; 6:e000372. [PMID: 32375974 PMCID: PMC7371117 DOI: 10.1099/mgen.0.000372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023] Open
Abstract
Mobile genetic elements (MGEs) are key factors responsible for dissemination of virulence determinants and antimicrobial-resistance genes amongst pathogenic bacteria. Conjugative MGEs are notable for their high gene loads donated per transfer event, broad host ranges and phylogenetic ubiquity amongst prokaryotes, with the subclass of chromosomally inserted integrative and conjugative elements (ICEs) being particularly abundant. The focus on a small number of model systems has biased the study of ICEs towards those conferring readily selectable phenotypes to host cells, whereas the identification and characterization of integrated cryptic elements remains challenging. Even though antimicrobial resistance and horizontally acquired virulence genes are major factors aggravating neisserial infection, conjugative MGEs of Neisseria gonorrhoeae and Neisseria meningitidis remain poorly characterized. Using a phenotype-independent approach based on atypical distributions of DNA uptake sequences (DUSs) in MGEs relative to the chromosomal background, we have identified two groups of chromosomally integrated conjugative elements in Neisseria: one found almost exclusively in pathogenic species possibly deriving from the genus Kingella, the other belonging to a group of Neisseria mucosa-like commensals. The former element appears to enable transfer of traditionally gonococcal-specific loci such as the virulence-associated toxin-antitoxin system fitAB to N. meningitidis chromosomes, whilst the circular form of the latter possesses a unique attachment site (attP) sequence seemingly adapted to exploit DUS motifs as chromosomal integration sites. In addition to validating the use of DUS distributions in Neisseriaceae MGE identification, the >170 identified ICE sequences provide a valuable resource for future studies of ICE evolution and host adaptation.
Collapse
Affiliation(s)
- Alex Hughes-Games
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Adam P. Roberts
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Bristol, UK
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
de Meirelles JL, Nepomuceno FC, Peña-García J, Schmidt RR, Pérez-Sánchez H, Verli H. Current Status of Carbohydrates Information in the Protein Data Bank. J Chem Inf Model 2020; 60:684-699. [PMID: 31961683 DOI: 10.1021/acs.jcim.9b00874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbohydrates are well known for their physicochemical, biological, functional, and therapeutic characteristics. Unfortunately, their chemical nature imposes severe challenges for the structural elucidation of these phenomena, impairing not only the depth of our understanding of carbohydrates but also the development of new biotechnological and therapeutic applications based on these molecules. In the recent past, the amount of structural information, obtained mainly from X-ray crystallography, has increased progressively, as well as its quality. In this context, the current work presents a global analysis of the carbohydrate information available in the Protein Data Bank (PDB). From high quality structures, it is clear that most of the data are highly concentrated on a few sets of residue types, on their monosaccharidic forms, and connected by a small diversity of glycosidic linkages. The geometries of these linkages can be mostly associated with the types of linkages instead of residues, while the level of puckering distortion was characterized, quantified, and located in a pseudorotational equilibrium landscape, not only to local minima but also to transitional states. These qualitative and quantitative analyses offer a global picture of the carbohydrate structural content in the PDB, potentially supporting the building of new models for carbohydrate-related biological phenomena at the atomistic level, including new developments on force field parameters.
Collapse
Affiliation(s)
- João L de Meirelles
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Av. Bento Goncalves, 9500 , Porto Alegre , Brazil 91509-900
| | - Felipe C Nepomuceno
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Av. Bento Goncalves, 9500 , Porto Alegre , Brazil 91509-900
| | - Jorge Peña-García
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department , Universidad Católica de Murcia (UCAM) , Murcia , Spain 30107
| | - Ricardo Rodríguez Schmidt
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department , Universidad Católica de Murcia (UCAM) , Murcia , Spain 30107
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department , Universidad Católica de Murcia (UCAM) , Murcia , Spain 30107
| | - Hugo Verli
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Av. Bento Goncalves, 9500 , Porto Alegre , Brazil 91509-900
| |
Collapse
|
18
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Berry JL, Gurung I, Anonsen JH, Spielman I, Harper E, Hall AMJ, Goosens VJ, Raynaud C, Koomey M, Biais N, Matthews S, Pelicic V. Global biochemical and structural analysis of the type IV pilus from the Gram-positive bacterium Streptococcus sanguinis. J Biol Chem 2019; 294:6796-6808. [PMID: 30837269 PMCID: PMC6497953 DOI: 10.1074/jbc.ra118.006917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/27/2019] [Indexed: 11/06/2022] Open
Abstract
Type IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, Streptococcus sanguinis In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in S. sanguinis We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, i.e. a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent. The 3D structure of PilE1, solved by NMR, revealed a classical pilin-fold with a highly unusual flexible C terminus. Intriguingly, PilE1 more closely resembles pseudopilins forming shorter Tff than bona fide Tfp-forming major pilins, underlining the evolutionary relatedness among different Tff. Finally, we show that S. sanguinis Tfp contain a low abundance of three additional proteins processed by PilD, the minor pilins PilA, PilB, and PilC. These findings provide the first global biochemical and structural picture of a Gram-positive Tfp and have fundamental implications for our understanding of a widespread class of filamentous nanomachines.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ishwori Gurung
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jan Haug Anonsen
- the Department of Biological Sciences, Proteomics and Mass Spectrometry Unit, University of Oslo, 0371 Oslo, Norway.,the Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, 0371 Oslo, Norway
| | - Ingrid Spielman
- the Department of Biology, Brooklyn College of the City University of New York, New York, New York 11210.,The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Elliot Harper
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alexander M J Hall
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Vivianne J Goosens
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claire Raynaud
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael Koomey
- the Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, 0371 Oslo, Norway
| | - Nicolas Biais
- the Department of Biology, Brooklyn College of the City University of New York, New York, New York 11210.,The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Steve Matthews
- the Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Vladimir Pelicic
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom,
| |
Collapse
|
20
|
McCallum M, Burrows LL, Howell PL. The Dynamic Structures of the Type IV Pilus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0006-2018. [PMID: 30825300 PMCID: PMC11588161 DOI: 10.1128/microbiolspec.psib-0006-2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 01/09/2023] Open
Abstract
Type IV pilus (T4P)-like systems have been identified in almost every major phylum of prokaryotic life. They include the type IVa pilus (T4aP), type II secretion system (T2SS), type IVb pilus (T4bP), Tad/Flp pilus, Com pilus, and archaeal flagellum (archaellum). These systems are used for adhesion, natural competence, phage adsorption, folded-protein secretion, surface sensing, swimming motility, and twitching motility. The T4aP allows for all of these functions except swimming and is therefore a good model system for understanding T4P-like systems. Recent structural analyses have revolutionized our understanding of how the T4aP machinery assembles and functions. Here we review the structure and function of the T4aP.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
21
|
Abstract
Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake by these versatile molecular machines.
Collapse
Affiliation(s)
- Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
22
|
Luna Rico A, Zheng W, Petiot N, Egelman EH, Francetic O. Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic Escherichia coli. Mol Microbiol 2019; 111:732-749. [PMID: 30561149 DOI: 10.1111/mmi.14188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
Type 4a pili (T4aP) are long, thin and dynamic fibres displayed on the surface of diverse bacteria promoting adherence, motility and transport functions. Genomes of many Enterobacteriaceae contain conserved gene clusters encoding putative T4aP assembly systems. However, their expression has been observed only in few strains including Enterohaemorrhagic Escherichia coli (EHEC) and their inducers remain unknown. Here we used EHEC genomic DNA as a template to amplify and assemble an artificial operon composed of four gene clusters encoding 13 pilus assembly proteins. Controlled expressions of this operon in nonpathogenic E. coli strains led to efficient assembly of T4aP composed of the major pilin PpdD, as shown by shearing assays and immunofluorescence microscopy. When compared with PpdD pili assembled in a heterologous Klebsiella T2SS type 2 secretion system (T2SS) by using cryo-electron microscopy (cryoEM), these pili showed indistinguishable helical parameters, emphasizing that major pilins are the principal determinants of the fibre structure. Bacterial two-hybrid analysis identified several interactions of PpdD with T4aP assembly proteins, and with components of the T2SS that allow for heterologous fibre assembly. These studies lay ground for further characterization of the T4aP structure, function and biogenesis in enterobacteria.
Collapse
Affiliation(s)
- Areli Luna Rico
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France.,Structural Bioinformatics Unit and NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nathalie Petiot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| |
Collapse
|
23
|
González-Rivera C, Khara P, Awad D, Patel R, Li YG, Bogisch M, Christie PJ. Two pKM101-encoded proteins, the pilus-tip protein TraC and Pep, assemble on the Escherichia coli cell surface as adhesins required for efficient conjugative DNA transfer. Mol Microbiol 2018; 111:96-117. [PMID: 30264928 DOI: 10.1111/mmi.14141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/10/2023]
Abstract
Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope-spanning translocation channel, and those functioning in Gram-negative species additionally elaborate an extracellular pilus to initiate donor-recipient cell contacts. We report that pKM101, a self-transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101-encoded proteins, the pilus-tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface-displayed TraC and Pep are required for an efficient conjugative transfer, 'extracellular complementation' potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the β-barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS-encoded, pilus-independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.
Collapse
Affiliation(s)
- Christian González-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Dominik Awad
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Roosheel Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | | | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Ellison CK, Dalia TN, Vidal Ceballos A, Wang JCY, Biais N, Brun YV, Dalia AB. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol 2018; 3:773-780. [PMID: 29891864 PMCID: PMC6582970 DOI: 10.1038/s41564-018-0174-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022]
Affiliation(s)
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Alfredo Vidal Ceballos
- Biology Department, CUNY Brooklyn College, Brooklyn, NY, USA.,Graduate Center of CUNY, New York, NY, USA
| | | | - Nicolas Biais
- Biology Department, CUNY Brooklyn College, Brooklyn, NY, USA.,Graduate Center of CUNY, New York, NY, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
25
|
Wang F, Coureuil M, Osinski T, Orlova A, Altindal T, Gesbert G, Nassif X, Egelman EH, Craig L. Cryoelectron Microscopy Reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae Type IV Pili at Sub-nanometer Resolution. Structure 2018; 25:1423-1435.e4. [PMID: 28877506 DOI: 10.1016/j.str.2017.07.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/03/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023]
Abstract
We report here cryoelectron microscopy reconstructions of type IV pili (T4P) from two important human pathogens, Pseudomonas aeruginosa and Neisseria gonorrhoeae, at ∼ 8 and 5 Å resolution, respectively. The two structures reveal distinct arrangements of the pilin globular domains on the pilus surfaces, which impart different helical parameters, but similar packing of the conserved N-terminal α helices, α1, in the filament core. In contrast to the continuous α helix seen in the X-ray crystal structures of the P. aeruginosa and N. gonorrhoeae pilin subunits, α1 in the pilus filaments has a melted segment located between conserved helix-breaking residues Gly14 and Pro22, as seen for the Neisseria meningitidis T4P. Using mutagenesis we show that Pro22 is critical for pilus assembly, as are Thr2 and Glu5, which are positioned to interact in the hydrophobic filament core. These structures provide a framework for understanding T4P assembly, function, and biophysical properties.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mathieu Coureuil
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 15 Rue de l'École de Médecine, 75006 Paris, France
| | - Tomasz Osinski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Gaël Gesbert
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France
| | - Xavier Nassif
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
26
|
Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem Soc Trans 2017; 44:1659-1666. [PMID: 27913675 DOI: 10.1042/bst20160221] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022]
Abstract
Type IV pili are hair-like bacterial surface appendages that play a role in diverse processes such as cellular adhesion, colonization, twitching motility, biofilm formation, and horizontal gene transfer. These extracellular fibers are composed exclusively or primarily of many copies of one or more pilin proteins, tightly packed in a helix so that the highly hydrophobic amino-terminus of the pilin is buried in the pilus core. Type IV pili have been characterized extensively in Gram-negative bacteria, and recent advances in high-throughput genomic sequencing have revealed that they are also widespread in Gram-positive bacteria. Here, we review the current state of knowledge of type IV pilus systems in Gram-positive bacterial species and discuss them in the broader context of eubacterial type IV pili.
Collapse
|
27
|
Muschiol S, Erlendsson S, Aschtgen MS, Oliveira V, Schmieder P, de Lichtenberg C, Teilum K, Boesen T, Akbey U, Henriques-Normark B. Structure of the competence pilus major pilin ComGC in Streptococcus pneumoniae. J Biol Chem 2017; 292:14134-14146. [PMID: 28659339 PMCID: PMC5572924 DOI: 10.1074/jbc.m117.787671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/14/2017] [Indexed: 01/23/2023] Open
Abstract
Type IV pili are important virulence factors on the surface of many pathogenic bacteria and have been implicated in a wide range of diverse functions, including attachment, twitching motility, biofilm formation, and horizontal gene transfer. The respiratory pathogen Streptococcus pneumoniae deploys type IV pili to take up DNA during transformation. These “competence pili” are composed of the major pilin protein ComGC and exclusively assembled during bacterial competence, but their biogenesis remains unclear. Here, we report the high resolution NMR structure of N-terminal truncated ComGC revealing a highly flexible and structurally divergent type IV pilin. It consists of only three α-helical segments forming a well-defined electronegative cavity and confined electronegative and hydrophobic patches. The structure is particularly flexible between the first and second α-helix with the first helical part exhibiting slightly slower dynamics than the rest of the pilin, suggesting that the first helix is involved in forming the pilus structure core and that parts of helices two and three are primarily surface-exposed. Taken together, our results provide the first structure of a type IV pilin protein involved in the formation of competence-induced pili in Gram-positive bacteria and corroborate the remarkable structural diversity among type IV pilin proteins.
Collapse
Affiliation(s)
- Sandra Muschiol
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden,.
| | - Simon Erlendsson
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Center for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marie-Stephanie Aschtgen
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Vitor Oliveira
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie FMP, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Casper de Lichtenberg
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Center for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Center for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Umit Akbey
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark,; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
| | - Birgitta Henriques-Normark
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden,; Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
28
|
Karuppiah V, Thistlethwaite A, Derrick JP. Structures of type IV pilins from Thermus thermophilus demonstrate similarities with type II secretion system pseudopilins. J Struct Biol 2016; 196:375-384. [PMID: 27612581 PMCID: PMC5131608 DOI: 10.1016/j.jsb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
Type IV pilins are proteins which form polymers that extend from the surface of the bacterial cell; they are involved in mediating a wide variety of functions, including adhesion, motility and natural competence. Here we describe the determination of the crystal structures of three type IVa pilins proteins from the thermophile Thermus thermophilus. They form part of a cluster of pilus-like proteins within the genome; our results show that one, Tt1222, is very closely related to the main structural type IV pilin, PilA4. The other two, Tt1218 and Tt1219, also adopt canonical pilin-like folds but, interestingly, are most closely related to the structures of the type II secretion system pseudopilins, EpsI/GspI and XcpW/GspJ. GspI and GspJ have been shown to form a complex with another pseudopilin, GspK, and this heterotrimeric complex is known to play a key role in initiating assembly of a pseudopilus which is thought to drive the secretion process. The structural similarity of Tt1218 and Tt1219 to GspI and GspJ suggests that they might work in a similar way, to deliver functions associated with type IV pili in T. thermophilus, such as natural competence.
Collapse
Affiliation(s)
- Vijaykumar Karuppiah
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Angela Thistlethwaite
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Jeremy P Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|