1
|
Chinellato M, Perin S, Carli A, Lastella L, Biondi B, Borsato G, Di Giorgio E, Brancolini C, Cendron L, Angelini A. Folding of Class IIa HDAC Derived Peptides into α-helices Upon Binding to Myocyte Enhancer Factor-2 in Complex with DNA. J Mol Biol 2024; 436:168541. [PMID: 38492719 DOI: 10.1016/j.jmb.2024.168541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Interaction of transcription factor myocyte enhancer factor-2 (MEF2) family members with class IIa histone deacetylases (HDACs) has been implicated in a wide variety of diseases. Though considerable knowledge on this topic has been accumulated over the years, a high resolution and detailed analysis of the binding mode of multiple class IIa HDAC derived peptides with MEF2D is still lacking. To fulfil this gap, we report here the crystal structure of MEF2D in complex with double strand DNA and four different class IIa HDAC derived peptides, namely HDAC4, HDAC5, HDAC7 and HDAC9. All class IIa HDAC derived peptides form extended amphipathic α-helix structures that fit snugly in the hydrophobic groove of MEF2D domain. Binding mode of class IIa HDAC derived peptides to MEF2D is very similar and occur primarily through nonpolar interactions mediated by highly conserved branched hydrophobic amino acids. Further studies revealed that class IIa HDAC derived peptides are unstructured in solution and appear to adopt a folded α-helix structure only upon binding to MEF2D. Comparison of our peptide-protein complexes with previously characterized structures of MEF2 bound to different co-activators and co-repressors, highlighted both differences and similarities, and revealed the adaptability of MEF2 in protein-protein interactions. The elucidation of the three-dimensional structure of MEF2D in complex with multiple class IIa HDAC derived peptides provide not only a better understanding of the molecular basis of their interactions but also have implications for the development of novel antagonist.
Collapse
Affiliation(s)
- Monica Chinellato
- Department of Biology, University of Padua, Via U. Bassi 58, 35131 Padova, Italy
| | - Stefano Perin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Alberto Carli
- Department of Biology, University of Padua, Via U. Bassi 58, 35131 Padova, Italy
| | - Luana Lastella
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy
| | - Giuseppe Borsato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università Degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università Degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Laura Cendron
- Department of Biology, University of Padua, Via U. Bassi 58, 35131 Padova, Italy.
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy.
| |
Collapse
|
2
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
3
|
Zhang P, Lu R. The Molecular and Biological Function of MEF2D in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:379-403. [PMID: 39017853 DOI: 10.1007/978-3-031-62731-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
4
|
Steinberg T, Dieterle MP, Ramminger I, Klein C, Brossette J, Husari A, Tomakidi P. On the Value of In Vitro Cell Systems for Mechanobiology from the Perspective of Yes-Associated Protein/Transcriptional Co-Activator with a PDZ-Binding Motif and Focal Adhesion Kinase and Their Involvement in Wound Healing, Cancer, Aging, and Senescence. Int J Mol Sci 2023; 24:12677. [PMID: 37628858 PMCID: PMC10454169 DOI: 10.3390/ijms241612677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.
Collapse
Affiliation(s)
- Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Charlotte Klein
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Julie Brossette
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Manso AM, Romaine A, Christensen G, Ross RS. Integrins in Cardiac Form, Function, and Disease. BIOLOGY OF EXTRACELLULAR MATRIX 2023:135-183. [DOI: 10.1007/978-3-031-23781-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Le Coq J, Acebrón I, Rodrigo Martin B, López Navajas P, Lietha D. New insights into FAK structure and function in focal adhesions. J Cell Sci 2022; 135:277381. [PMID: 36239192 DOI: 10.1242/jcs.259089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase (FAK; also known as PTK2) was discovered three decades ago and is now recognised as a key player in the regulation of cell-matrix adhesion and mesenchymal cell migration. Although it is essential during development, FAK also drives invasive cancer progression and metastasis. On a structural level, the basic building blocks of FAK have been described for some time. However, a picture of how FAK integrates into larger assemblies in various cellular environments, including one of its main cellular locations, the focal adhesion (FA) complex, is only beginning to emerge. Nano-resolution data from cellular studies, as well as atomic structures from reconstituted systems, have provided first insights, but also point to challenges that remain for obtaining a full structural understanding of how FAK is integrated in the FA complex and the structural changes occurring at different stages of FA maturation. In this Review, we discuss the known structural features of FAK, the interactions with its partners within the FA environment on the cell membrane and propose how its initial assembly in nascent FAs might change during FA maturation under force.
Collapse
Affiliation(s)
- Johanne Le Coq
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Iván Acebrón
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Bárbara Rodrigo Martin
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Pilar López Navajas
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Daniel Lietha
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
7
|
Sadri G, Fischer AG, Brittian KR, Elliott E, Nystoriak MA, Uchida S, Wysoczynski M, Leask A, Jones SP, Moore JB. Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biol 2022; 109:49-69. [PMID: 35346795 PMCID: PMC9161575 DOI: 10.1016/j.matbio.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022]
Abstract
The cardiac extracellular matrix plays essential roles in homeostasis and injury responses. Although the role of fibrillar collagens have been thoroughly documented, the functions of non-fibrillar collagen members remain underexplored. These include a distinct group of non-fibrillar collagens, termed, fibril-associated collagens with interrupted triple helices (FACITs). Recent reports of collagen type XIX (encoded by Col19a1) expression in adult heart and evidence of its enhanced expression in cardiac ischemia suggest important functions for this FACIT in cardiac ECM structure and function. Here, we examined the cellular source of collagen XIX in the adult murine heart and evaluated its involvement in ECM structure and ventricular function. Immunodetection of collagen XIX in fractionated cardiovascular cell lineages revealed fibroblasts and smooth muscle cells as the primary sources of collagen XIX in the heart. Based on echocardiographic and histologic analyses, Col19a1 null (Col19a1N/N) mice exhibited reduced systolic function, thinning of left ventricular walls, and increased cardiomyocyte cross-sectional areas-without gross changes in myocardial collagen content or basement membrane morphology. Col19a1N/N cardiac fibroblasts had augmented expression of several enzymes involved in the synthesis and stability of fibrillar collagens, including PLOD1 and LOX. Furthermore, second harmonic generation-imaged ECM derived from Col19a1N/N cardiac fibroblasts, and transmission electron micrographs of decellularized hearts from Col19a1N/N null animals, showed marked reductions in fibrillar collagen structural organization. Col19a1N/N mice also displayed enhanced phosphorylation of focal adhesion kinase (FAK), signifying de-repression of the FAK pathway-a critical mediator of cardiomyocyte hypertrophy. Collectively, we show that collagen XIX, which had a heretofore unknown role in the mammalian heart, participates in the regulation of cardiac structure and function-potentially through modulation of ECM fibrillar collagen structural organization. Further, these data suggest that this FACIT may modify ECM superstructure via acting at the level of the fibroblast to regulate their expression of collagen synthetic and stabilization enzymes.
Collapse
Affiliation(s)
- Ghazal Sadri
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Annalara G Fischer
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kenneth R Brittian
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Erin Elliott
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew A Nystoriak
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Marcin Wysoczynski
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
8
|
Mao Q, Wu S, Peng C, Peng B, Luo X, Huang L, Zhang H. Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Mol Med Rep 2021; 24:636. [PMID: 34278478 PMCID: PMC8281443 DOI: 10.3892/mmr.2021.12275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiomyocyte hypertrophy is a compensatory phase of chronic heart failure that is induced by the activation of multiple signaling pathways. The extracellular signal-regulated protein kinase (ERK) signaling pathway is an important regulator of cardiomyocyte hypertrophy. In our previous study, it was demonstrated that phenylephrine (PE)-induced cardiomyocyte hypertrophy involves the hyperacetylation of histone H3K9ac by P300/CBP-associated factor (PCAF). However, the upstream signaling pathway has yet to be fully identified. In the present study, the role of the extracellular signal-regulated protein kinase (ERK)1/2 signaling pathway in PE-induced cardiomyocyte hypertrophy was investigated. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. The results showed that phospho-(p-)ERK1/2 interacted with PCAF and modified the pattern of histone H3K9ac acetylation. An ERK inhibitor (U0126) and/or a histone acetylase inhibitor (anacardic acid; AA) attenuated the overexpression of phospho-ERK1/2 and H3K9ac hyperacetylation by inhibiting the expression of PCAF in PE-induced cardiomyocyte hypertrophy. Moreover, U0126 and/or AA could attenuate the overexpression of several biomarker genes related to cardiac hypertrophy (myocyte enhancer factor 2C, atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain) and prevented cardiomyocyte hypertrophy. These results revealed a novel mechanism in that AA protects against PE-induced cardiomyocyte hypertrophy in mice via the ERK1/2 signaling pathway, and by modifying the acetylation of H3K9ac. These findings may assist in the development of novel methods for preventing and treating hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Qian Mao
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuqi Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaomei Luo
- Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lixin Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huanting Zhang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
9
|
Griffith BGC, Upstill-Goddard R, Brunton H, Grimes GR, Biankin AV, Serrels B, Byron A, Frame MC. FAK regulates IL-33 expression by controlling chromatin accessibility at c-Jun motifs. Sci Rep 2021; 11:229. [PMID: 33420223 PMCID: PMC7794255 DOI: 10.1038/s41598-020-80111-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
Focal adhesion kinase (FAK) localizes to focal adhesions and is overexpressed in many cancers. FAK can also translocate to the nucleus, where it binds to, and regulates, several transcription factors, including MBD2, p53 and IL-33, to control gene expression by unknown mechanisms. We have used ATAC-seq to reveal that FAK controls chromatin accessibility at a subset of regulated genes. Integration of ATAC-seq and RNA-seq data showed that FAK-dependent chromatin accessibility is linked to differential gene expression, including of the FAK-regulated cytokine and transcriptional regulator interleukin-33 (Il33), which controls anti-tumor immunity. Analysis of the accessibility peaks on the Il33 gene promoter/enhancer regions revealed sequences for several transcription factors, including ETS and AP-1 motifs, and we show that c-Jun, a component of AP-1, regulates Il33 gene expression by binding to its enhancer in a FAK kinase-dependent manner. This work provides the first demonstration that FAK controls transcription via chromatin accessibility, identifying a novel mechanism by which nuclear FAK regulates biologically important gene expression.
Collapse
Affiliation(s)
- Billie G C Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Rosanna Upstill-Goddard
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Holly Brunton
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- NanoString Technologies, Inc, Seattle, WA, 98109, USA.
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
10
|
Broadwell LJ, Smallegan MJ, Rigby KM, Navarro-Arriola JS, Montgomery RL, Rinn JL, Leinwand LA. Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. J Biol Chem 2021; 296:100694. [PMID: 33895132 PMCID: PMC8141895 DOI: 10.1016/j.jbc.2021.100694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 11/01/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, β-myosin heavy chain (β-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike β-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of β-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate β-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.
Collapse
Affiliation(s)
- Lindsey J Broadwell
- Department of Biochemistry, CU Boulder, Boulder, Colorado, USA; BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA
| | - Michael J Smallegan
- BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA; Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA
| | | | - Jose S Navarro-Arriola
- Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA
| | | | - John L Rinn
- Department of Biochemistry, CU Boulder, Boulder, Colorado, USA; BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA
| | - Leslie A Leinwand
- BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA; Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA.
| |
Collapse
|
11
|
Li CW, Lau YT, Lam KL, Chan BP. Mechanically induced formation and maturation of 3D-matrix adhesions (3DMAs) in human mesenchymal stem cells. Biomaterials 2020; 258:120292. [DOI: 10.1016/j.biomaterials.2020.120292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/15/2020] [Accepted: 08/01/2020] [Indexed: 11/26/2022]
|
12
|
Role of FAK signaling in chagasic cardiac hypertrophy. Braz J Infect Dis 2020; 24:386-397. [PMID: 32931757 PMCID: PMC9392126 DOI: 10.1016/j.bjid.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Cardiac hypertrophy and dysfunction are a significant complication of chronic Chagas disease, with heart failure, stroke, and sudden death related to disease progression. Thus, understanding the signaling pathways involved in the chagasic cardiac hypertrophy may provide potential targets for pharmacological therapy. Herein, we investigated the implication of focal adhesion kinase (FAK) signaling pathway in triggering hypertrophic phenotype during acute and chronic T. cruzi infection. C57BL/6 mice infected with T. cruzi (Brazil strain) were evaluated for electrocardiographic (ECG) changes, plasma levels of endothelin-1 (ET-1) and activation of signaling pathways involved in cardiac hypertrophy, including FAK and ERK1/2, as well as expression of hypertrophy marker and components of the extracellular matrix in the different stages of T. cruzi infection (60-210 dpi). Heart dysfunction, evidenced by prolonged PR interval and decrease in heart rates in ECG tracing, was associated with high plasma ET-1 level, extracellular matrix remodeling and FAK signaling activation. Upregulation of both FAK tyrosine 397 (FAK-Y397) and serine 910 (FAK-S910) residues phosphorylation as well as ERK1/2 activation, lead to an enhancement of atrial natriuretic peptide gene expression in chronic infection. Our findings highlight FAK-ERK1/2 signaling as a regulator of cardiac hypertrophy in Trypanosoma cruzi infection. Both mechanical stress, induced by cardiac extracellular matrix (ECM) augment and cardiac overload, and ET-1 stimuli orchestrated FAK signaling activation with subsequent activation of the fetal cardiac gene program in the chronic phase of infection, highlighting FAK as an attractive target for Chagas disease therapy.
Collapse
|
13
|
Crystal Structures of Ternary Complexes of MEF2 and NKX2-5 Bound to DNA Reveal a Disease Related Protein-Protein Interaction Interface. J Mol Biol 2020; 432:5499-5508. [PMID: 32681840 DOI: 10.1016/j.jmb.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
MEF2 and NKX2-5 transcription factors interact with each other in cardiogenesis and are necessary for normal heart formation. Despite evidence suggesting that these two transcription factors function synergistically and possibly through direct physical interactions, molecular mechanisms by which they interact are not clear. Here we determined the crystal structures of ternary complexes of MEF2 and NKX2-5 bound to myocardin enhancer DNA in two crystal forms. These crystal structures are the first example of human MADS-box/homeobox ternary complex structures involved in cardiogenesis. Our structures reveal two possible modes of interactions between MEF2 and NKX2-5: MEF2 and NKX bind to adjacent DNA sites to recognize DNA in cis; and MEF2 and NKX bind to different DNA strands to interact with each other in trans via a conserved protein-protein interface observed in both crystal forms. Disease-related mutations are mapped to the observed protein-protein interface. Our structural studies provide a starting point to understand and further study the molecular mechanisms of the interactions between MEF2 and NKX2.5 and their roles in cardiogenesis.
Collapse
|
14
|
Murphy JM, Jeong K, Lim STS. FAK Family Kinases in Vascular Diseases. Int J Mol Sci 2020; 21:ijms21103630. [PMID: 32455571 PMCID: PMC7279255 DOI: 10.3390/ijms21103630] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In various vascular diseases, extracellular matrix (ECM) and integrin expression are frequently altered, leading to focal adhesion kinase (FAK) or proline-rich tyrosine kinase 2 (Pyk2) activation. In addition to the major roles of FAK and Pyk2 in regulating adhesion dynamics via integrins, recent studies have shown a new role for nuclear FAK in gene regulation in various vascular cells. In particular, FAK primarily localizes within the nuclei of vascular smooth muscle cells (VSMCs) of healthy arteries. However, vessel injury increased FAK localization back to adhesions and elevated FAK activity, leading to VSMC hyperplasia. The study suggested that abnormal FAK or Pyk2 activation in vascular cells may cause pathology in vascular diseases. Here we will review several studies of FAK and Pyk2 associated with integrin signaling in vascular diseases including restenosis, atherosclerosis, heart failure, pulmonary arterial hypertension, aneurysm, and thrombosis. Despite the importance of FAK family kinases in vascular diseases, comprehensive reviews are scarce. Therefore, we summarized animal models involving FAK family kinases in vascular diseases.
Collapse
|
15
|
Perri AM, Agosti V, Olivo E, Concolino A, Angelis MD, Tammè L, Fiumara CV, Cuda G, Scumaci D. Histone proteomics reveals novel post-translational modifications in breast cancer. Aging (Albany NY) 2019; 11:11722-11755. [PMID: 31816600 PMCID: PMC6932915 DOI: 10.18632/aging.102577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2019] [Indexed: 04/28/2023]
Abstract
Histones and their variants are subjected to several post-translational modifications (PTMs). Histones PTMs play an important role in the regulation of gene expression and are critical for the development and progression of many types of cancer, including breast cancer. In this study, we used two-dimensional TAU/SDS electrophoresis, coupled with mass spectrometry for a comprehensive profiling of histone PTMs in breast cancer cell lines.Proteomic approach allowed us to identify 85 histone PTMs, seventeen of which are not reported in the UniProt database. Western blot analysis was performed to confirm a peculiar pattern of PTMs in the sporadic and hereditary breast cancer cell lines compared to normal cells. Overlapping mass spectrometry data with western blotting results, we identified, for the first time to our knowledge, a tyrosine phosphorylation on histone H1, which is significantly higher in breast cancer cells. Additionally, by inhibiting specific signaling paths, such as PI3K, PPARγ and FAK pathways, we established a correlation between their regulation and the presence of new histone PTMs. Our results may provide new insight on the possible implication of these modifications in breast cancer and may offer new perspectives for future clinical applications.
Collapse
Affiliation(s)
- Angela Mena Perri
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Valter Agosti
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, CIS for Genomics and Molecular Pathology, Magna Graecia University, Catanzaro, Italy
| | - Erika Olivo
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Antonio Concolino
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - MariaTeresa De Angelis
- Stem Cell Laboratory, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine University “Magna Graecia” of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Laura Tammè
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Claudia Vincenza Fiumara
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Giovanni Cuda
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Domenica Scumaci
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| |
Collapse
|
16
|
Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:250. [PMID: 31186061 PMCID: PMC6560741 DOI: 10.1186/s13046-019-1265-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
FAK is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a malignant phenotype. Except for its typical role as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, related studies have shown new aspects of the roles of FAK in the nucleus. FAK can promote p53 degradation through ubiquitination, leading to cancer cell growth and proliferation. FAK can also regulate GATA4 and IL-33 expression, resulting in reduced inflammatory responses and immune escape. These findings establish a new model of FAK from the cytoplasm to the nucleus. Activated FAK binds to transcription factors and regulates gene expression. Inactive FAK synergizes with different E3 ligases to promote the turnover of transcription factors by enhancing ubiquitination. In the tumor microenvironment, nuclear FAK can regulate the formation of new blood vessels, affecting the tumor blood supply. This article reviews the roles of nuclear FAK in regulating gene expression. In addition, the use of FAK inhibitors to target nuclear FAK functions will also be emphasized.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
17
|
Jeong K, Kim JH, Murphy JM, Park H, Kim SJ, Rodriguez YAR, Kong H, Choi C, Guan JL, Taylor JM, Lincoln TM, Gerthoffer WT, Kim JS, Ahn EYE, Schlaepfer DD, Lim STS. Nuclear Focal Adhesion Kinase Controls Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia Through GATA4-Mediated Cyclin D1 Transcription. Circ Res 2019; 125:152-166. [PMID: 31096851 DOI: 10.1161/circresaha.118.314344] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVE To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTS Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ERT2) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONS Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
Collapse
Affiliation(s)
- Kyuho Jeong
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Jung-Hyun Kim
- Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - James M Murphy
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Hyeonsoo Park
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Su-Jeong Kim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Yelitza A R Rodriguez
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Hyunkyung Kong
- Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - Chungsik Choi
- Department of Physiology (C.C., T.M.L.), University of South Alabama, College of Medicine, Mobile
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati, College of Medicine, OH (J.-L.G.)
| | - Joan M Taylor
- Department of Pathology, University of North Carolina, School of Medicine, Chapel Hill (J.M.T.)
| | - Thomas M Lincoln
- Department of Physiology (C.C., T.M.L.), University of South Alabama, College of Medicine, Mobile
| | - William T Gerthoffer
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Jun-Sub Kim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile.,Department of Biotechnology, Korea National Transportation University, Chungbuk (J.-S.K.)
| | - Eun-Young Erin Ahn
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile.,Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - David D Schlaepfer
- Department of Reproductive Medicine, Moores Cancer Center, University of California, San Diego, La Jolla (D.D.S.)
| | - Ssang-Taek Steve Lim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| |
Collapse
|
18
|
Majumdar R, Steen K, Coulombe PA, Parent CA. Non-canonical processes that shape the cell migration landscape. Curr Opin Cell Biol 2019; 57:123-134. [PMID: 30852463 PMCID: PMC7087401 DOI: 10.1016/j.ceb.2018.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Migration is a vital, intricate, and multi-faceted process that involves the entire cell, entails the integration of multiple external cues and, at times, necessitates high-level coordination among fields of cells that can be physically attached or not, depending on the physiological setting. Recent advances have highlighted the essential role of cellular components that have not been traditionally considered when studying cell migration. This review details how much we recently learned by studying the role of intermediate filaments, the nucleus, extracellular vesicles, and mitochondria during cell migration.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Schoenherr C, Frame MC, Byron A. Trafficking of Adhesion and Growth Factor Receptors and Their Effector Kinases. Annu Rev Cell Dev Biol 2018; 34:29-58. [PMID: 30110558 DOI: 10.1146/annurev-cellbio-100617-062559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| |
Collapse
|
20
|
Lei X, Shi H, Kou Y, Rajashekar N, Wu F, Sen C, Xu J, Chen L. Crystal Structure of Apo MEF2B Reveals New Insights in DNA Binding and Cofactor Interaction. Biochemistry 2018; 57:4047-4051. [PMID: 29944822 DOI: 10.1021/acs.biochem.8b00439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The myocyte enhancer factor 2 (MEF2) family of transcription factors plays important roles in developmental processes and adaptive responses. Although MEF2 proteins are known to bind DNA in the nucleus to regulate specific gene expression, there are reports that show that MEF2 also functions in the cytoplasm. Previous structural studies of MEF2 focused exclusively on DNA-bound MEF2 with and without various corepressors or coactivators. While these studies have established a comprehensive structural model of DNA recognition and cofactor recruitment by MEF2, the structure of MEF2 not bound to DNA, which include cytoplasmic MEF2 and free MEF2 in the nucleus, is unknown. Here we determined the structure of the MADS-box/MEF2 domain of MEF2B without DNA nor cofactor. The Apo structure of MEF2B reveals a largely preformed DNA binding interface that may be important for recognizing the shape of DNA from the minor groove side. In addition, our structure also reveals that the C-terminal helix of the MEF2-specific domain could flip up to bind to the hydrophobic groove that serves as the binding sites of MEF2 transcription cofactors. These observations shed new insights into DNA binding and cofactor interaction by MEF2 proteins.
Collapse
Affiliation(s)
- Xiao Lei
- Molecular and Computational Biology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Haoran Shi
- Molecular and Computational Biology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Yi Kou
- Molecular and Computational Biology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States.,Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States.,USC Norris Comprehensive Cancer Center, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Niroop Rajashekar
- Molecular and Computational Biology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Fang Wu
- Department of Statistics and Applied Probability , University of California , Santa Barbara , California 93106 , United States
| | - Chandani Sen
- Molecular and Computational Biology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Jiang Xu
- Molecular and Computational Biology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States.,Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States.,USC Norris Comprehensive Cancer Center, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States.,Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States.,USC Norris Comprehensive Cancer Center, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
21
|
Li X, Kang P, Chen Z, Lal S, Zhang L, Gassensmith JJ, Qin Z. Rock the nucleus: significantly enhanced nuclear membrane permeability and gene transfection by plasmonic nanobubble induced nanomechanical transduction. Chem Commun (Camb) 2018; 54:2479-2482. [DOI: 10.1039/c7cc09613e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomechanical transduction increases permeability of the nuclear membrane and facilitates nuclear uptake of macromolecules that would otherwise not enter the nucleus.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Mechanical Engineering
- University of Texas at Dallas
- Richardson
- USA
| | - Peiyuan Kang
- Department of Mechanical Engineering
- University of Texas at Dallas
- Richardson
- USA
| | - Zhuo Chen
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Sneha Lal
- Department of Biological Sciences
- University of Texas at Dallas
- Richardson
- USA
| | - Li Zhang
- Department of Biological Sciences
- University of Texas at Dallas
- Richardson
- USA
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
- Department of Bioengineering, University of Texas at Dallas
| | - Zhenpeng Qin
- Department of Mechanical Engineering
- University of Texas at Dallas
- Richardson
- USA
- Department of Bioengineering, University of Texas at Dallas
| |
Collapse
|
22
|
Serrels B, McGivern N, Canel M, Byron A, Johnson SC, McSorley HJ, Quinn N, Taggart D, Von Kreigsheim A, Anderton SM, Serrels A, Frame MC. IL-33 and ST2 mediate FAK-dependent antitumor immune evasion through transcriptional networks. Sci Signal 2017; 10:eaan8355. [PMID: 29208683 PMCID: PMC6128400 DOI: 10.1126/scisignal.aan8355] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Focal adhesion kinase (FAK) mediates tumor cell-intrinsic behaviors that promote tumor growth and metastasis. We previously showed that FAK also induces the expression of inflammatory genes that inhibit antitumor immunity in the microenvironment. We identified a crucial, previously unknown role for the dual-function cytokine interleukin-33 (IL-33) in FAK-dependent immune evasion. In murine squamous cell carcinoma (SCC) cells, specifically nuclear FAK enhanced the expression of the genes encoding IL-33, the chemokine CCL5, and the soluble, secreted form of the IL-33 receptor, called soluble ST2 (sST2). The abundance of IL-33 and CCL5 was increased in FAK-positive SCC cells but not in normal keratinocytes. IL-33 associated with FAK in the nucleus, and the FAK-IL-33 complex interacted with a network of chromatin modifiers and transcriptional regulators, including TAF9, WDR82, and BRD4, which promote the activity of nuclear factor κB (NF-κB) and its induction of genes encoding chemokines, including CCL5. We did not detect secretion of IL-33 from FAK-positive SCC cells; thus, we propose that the increased production and secretion of sST2 likely sequesters IL-33 secreted by other cell types within the tumor environment, thus blocking its stimulatory effects on infiltrating host immune cells. Depleting FAK, IL-33, or sST2 from SCC cells before implantation induced tumor regression in syngeneic mice, except when CD8+ T cells were co-depleted. Our data provide mechanistic insight into how FAK controls the tumor immune environment, namely, through a transcriptional regulatory network mediated by nuclear IL-33. Targeting this axis may boost antitumor immunity in patients.
Collapse
Affiliation(s)
- Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
| | - Niamh McGivern
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Marta Canel
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Sarah C Johnson
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Henry J McSorley
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Niall Quinn
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - David Taggart
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alex Von Kreigsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Stephen M Anderton
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
23
|
Chen X, Gao B, Ponnusamy M, Lin Z, Liu J. MEF2 signaling and human diseases. Oncotarget 2017; 8:112152-112165. [PMID: 29340119 PMCID: PMC5762387 DOI: 10.18632/oncotarget.22899] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023] Open
Abstract
The members of myocyte Enhancer Factor 2 (MEF2) protein family was previously believed to function in the development of heart and muscle. Recent reports indicate that they are also closely associated with development and progression of many human diseases. Although their role in cancer biology is well established, the molecular mechanisms underlying their action is yet largely unknown. MEF2 family is closely associated with various signaling pathways, including Ca2+ signaling, MAP kinase signaling, Wnt signaling, PI3K/Akt signaling, etc. microRNAs also contribute to regulate the activities of MEF2. In this review, we summarize the known molecular mechanism by which MEF2 family contribute to human diseases.
Collapse
Affiliation(s)
- Xiao Chen
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Bing Gao
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
24
|
Abstract
Focal adhesion kinase (FAK) has known signaling roles in cytoplasmic adhesion structures, but was recently shown to act as a transcriptional regulator in the nucleus. In this issue of Structure, Cardoso et al. (2016) report that mechanical forces translocate FAK to the nucleus of cardiomyocytes, and provide structural insights into how FAK interacts with the MEF2 transcription factor to control cardiac hypertrophy.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signalling and Adhesion Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
25
|
Kleinschmidt EG, Schlaepfer DD. Focal adhesion kinase signaling in unexpected places. Curr Opin Cell Biol 2017; 45:24-30. [PMID: 28213315 DOI: 10.1016/j.ceb.2017.01.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase first identified at extracellular matrix and integrin receptor cell adhesion sites and is a key regulator of cell movement. FAK is activated by a variety of stimuli. Herein, we discuss advances in conformational-associated FAK activation and dimerization mechanisms. Additionally, new roles have emerged for FAK signaling at cell adhesions, adherens junctions, endosomes, and the nucleus. In light of these new findings, we review how FAK activation at these sites is connected to the regulation of integrin recycling-activation, vascular permeability, cell survival, and transcriptional regulation, respectively. Studies uncovering FAK signaling connections in unexpected places within cells have yielded important new regulatory insights in cell biology.
Collapse
Affiliation(s)
- Elizabeth G Kleinschmidt
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, United States; Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Drive, MC 0983, La Jolla, CA 92093-0983, United States
| | - David D Schlaepfer
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, United States; Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Drive, MC 0983, La Jolla, CA 92093-0983, United States.
| |
Collapse
|
26
|
Vlahakis A, Debnath J. The Interconnections between Autophagy and Integrin-Mediated Cell Adhesion. J Mol Biol 2016; 429:515-530. [PMID: 27932295 DOI: 10.1016/j.jmb.2016.11.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
Autophagy is a cellular degradation process integral for promoting cellular adaptation during metabolic stress while also functioning as a cellular homeostatic mechanism. Mounting evidence also demonstrates that autophagy is induced upon loss of integrin-mediated cell attachments to the surrounding extracellular matrix (ECM). Analogous to its established cytoprotective role during nutrient starvation, autophagy protects cells from detachment-induced cell death, termed anoikis. Here, we review the significance of autophagy as an anoikis resistance pathway, focusing on the intracellular signals associated with integrins that modulate the autophagy response and dictate the balance between cell death and survival following loss of cell-matrix contact. In addition, we highlight recent studies demonstrating that autophagy functions in the upstream regulation of integrin-mediated cell adhesion via the control of focal adhesion remodeling, and discuss how these emerging interconnections between integrin-mediated adhesion pathways and autophagy influence cancer progression and metastasis.
Collapse
Affiliation(s)
- Ariadne Vlahakis
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Desjardins CA, Naya FJ. The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming. J Cardiovasc Dev Dis 2016; 3. [PMID: 27630998 PMCID: PMC5019174 DOI: 10.3390/jcdd3030026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor–2 (MEF2) transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems. Furthermore, we describe the recently characterized role of MEF2 in direct reprogramming and genome-wide cardiomyocyte gene regulation. A thorough understanding of the regulatory functions of the MEF2 family in cardiac development and cardiogenomics is required in order to develop effective therapeutic strategies to repair the diseased heart.
Collapse
|