1
|
Janati-Fard F, Housaindokht MR, Moosavi F, Nakhaei-Rad S. Structural Insights Into the Impact of the Glycine-Rich Loop Mutation in Noonan Syndrome on the ATP Binding Pocket of CRAF Kinase. Proteins 2025; 93:1022-1034. [PMID: 39739408 DOI: 10.1002/prot.26769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 01/02/2025]
Abstract
The pathogenic G361A variant of CRAF, associated with increased intrinsic kinase activity in Noonan syndrome (NS), remains poorly understood in terms of its molecular and structural impact on kinase activity. To elucidate the mechanistic implications of the glycine to alanine substitution at residue 361 in CRAF, we employed molecular dynamics simulations. Our findings reveal that this mutation predominantly affects the ATP binding pocket and critical intermolecular interactions within the active cleft that favors the phosphate transfer reaction. Notably, our data highlight significant alterations in key interactions involving Lys470/Asp486 and ATP.Mg2+ in CRAFG361A that are absent in wild-type CRAF. Additionally, we identified a novel interaction mode between Lys431 and γ-phosphate in wild-type CRAF, a residue evolutionarily conserved in CRAFs but not in related kinases such as BRAF, ARAF, and KSR1/2. Furthermore, observed shifts in the αC-helix and G-loop relative to the wild-type correlate with an enlarged ATP-binding cavity in the mutant, reflecting structural adaptations due to these mutations. Overall, these structural insights underscore the elevated intrinsic kinase activity of the CRAFG361A variant and provide crucial mechanistic details that could inform the development of specific inhibitors targeting this variant.
Collapse
Affiliation(s)
- Fatemeh Janati-Fard
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Fatemeh Moosavi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Lee E, Tran N, Redzic JS, Singh H, Alamillo L, Holyoak T, Hamelberg D, Eisenmesser EZ. Identifying and controlling inactive and active conformations of a serine protease. SCIENCE ADVANCES 2025; 11:eadu7447. [PMID: 40203097 PMCID: PMC11980832 DOI: 10.1126/sciadv.adu7447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Serine proteases have been proposed to dynamically sample inactive and active conformations, but direct evidence at atomic resolution has remained elusive. Using nuclear magnetic resonance (NMR), we identified a single residue, D164, in exfoliative toxin A (ETA) that acts as a molecular "switch" to regulate global dynamic sampling. Mutations at this site shift the balance between inactive and active states, correlating directly with catalytic activity. Beyond identifying this dynamic switch, we demonstrate how it works in concert with other allosterically coupled sites to rationally control enzyme movements and catalytic function. This study provides a framework for linking conformational dynamics to function and paves the way for engineering enzymes, in particular, proteases, with tailored activities for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Norman Tran
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Harmanpreet Singh
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Lorena Alamillo
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Cui Q. Identification and understanding of allostery hotspots in proteins: Integration of deep mutational scanning and multi-faceted computational analyses. J Mol Biol 2025:168998. [PMID: 39952349 DOI: 10.1016/j.jmb.2025.168998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/19/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Motivated by recent deep mutational scanning (DMS) experiments, we have carried out a diverse set of computations to better understand the distribution and contributions of allostery hotspot residues in a transcription factor, TetR. These include extensive atomistic simulations and free energy computations for different functional states of TetR, machine learning analysis of the DMS data and a statistical thermodynamic model for the experimental induction data for the WT protein and a handful of hotspot mutants. Collectively, these computations provided insights into the structural and energetic basis of allostery in TetR, and the distinct contributions of allostery hotspots. The results highlight that the allostery function (i.e., the induction activity) of TetR can be modulated by perturbing both inter-domain coupling and intra-domain properties, such as the population of the binding-competent conformation of each domain. This mechanistic degeneracy qualitatively explains the broad distribution of allostery hotspots across the protein structure observed in the DMS experiments, and also informs the design of strategies aimed at identifying allostery hotspots. The mechanistic framework and the multi-faceted computational approaches are expected to be applicable to the analysis of other allostery systems, especially those sharing the similar two-domain structural topology, and to the design of allostery modulators.
Collapse
Affiliation(s)
- Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston 02215, MA, USA
| |
Collapse
|
4
|
Raza SHA, Zhong R, Yu X, Zhao G, Wei X, Lei H. Advances of Predicting Allosteric Mechanisms Through Protein Contact in New Technologies and Their Application. Mol Biotechnol 2024; 66:3385-3397. [PMID: 37957479 DOI: 10.1007/s12033-023-00951-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Allostery is an intriguing phenomenon wherein the binding activity of a biological macromolecule is modulated via non-canonical binding site, resulting in synchronized functional changes. The mechanics underlying allostery are relatively complex and this review is focused on common methodologies used to study allostery, such as X-ray crystallography, NMR spectroscopy, and HDXMS. Different methodological approaches are used to generate data in different scenarios. For example, X-ray crystallography provides high-resolution structural information, NMR spectroscopy offers dynamic insights into allosteric interactions in solution, and HDXMS provides information on protein dynamics. The residue transition state (RTS) approach has emerged as a critical tool in understanding the energetics and conformational changes associated with allosteric regulation. Allostery has significant implications in drug discovery, gene transcription, disease diagnosis, and enzyme catalysis. Enzymes' catalytic activity can be modulated by allosteric regulation, offering opportunities to develop novel therapeutic alternatives. Understanding allosteric mechanisms associated with infectious organisms like SARS-CoV and bacterial pathogens can aid in the development of new antiviral drugs and antibiotics. Allosteric mechanisms are crucial in the regulation of a variety of signal transduction and cell metabolism pathways, which in turn govern various cellular processes. Despite progress, challenges remain in identifying allosteric sites and characterizing their contribution to a variety of biological processes. Increased understanding of these mechanisms can help develop allosteric systems specifically designed to modulate key biological mechanisms, providing novel opportunities for the development of targeted therapeutics. Therefore, the current review aims to summarize common methodologies that are used to further our understanding of allosteric mechanisms. In conclusion, this review provides insights into the methodologies used for the study of allostery, its applications in in silico modeling, the mechanisms underlying antibody allostery, and the ongoing challenges and prospects in advancing our comprehension of this intriguing phenomenon.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Licheng Detection and Certification Group Co., Ltd., Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
5
|
Liu H, Zhuo C, Gao J, Zeng C, Zhao Y. AI-integrated network for RNA complex structure and dynamic prediction. BIOPHYSICS REVIEWS 2024; 5:041304. [PMID: 39512332 PMCID: PMC11540444 DOI: 10.1063/5.0237319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
RNA complexes are essential components in many cellular processes. The functions of these complexes are linked to their tertiary structures, which are shaped by detailed interface information, such as binding sites, interface contact, and dynamic conformational changes. Network-based approaches have been widely used to analyze RNA complex structures. With their roots in the graph theory, these methods have a long history of providing insight into the static and dynamic properties of RNA molecules. These approaches have been effective in identifying functional binding sites and analyzing the dynamic behavior of RNA complexes. Recently, the advent of artificial intelligence (AI) has brought transformative changes to the field. These technologies have been increasingly applied to studying RNA complex structures, providing new avenues for understanding the complex interactions within RNA complexes. By integrating AI with traditional network analysis methods, researchers can build more accurate models of RNA complex structures, predict their dynamic behaviors, and even design RNA-based inhibitors. In this review, we introduce the integration of network-based methodologies with AI techniques to enhance the understanding of RNA complex structures. We examine how these advanced computational tools can be used to model and analyze the detailed interface information and dynamic behaviors of RNA molecules. Additionally, we explore the potential future directions of how AI-integrated networks can aid in the modeling and analyzing RNA complex structures.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
6
|
Erkip A, Erman B. Dynamically driven correlations in elastic net models reveal sequence of events and causality in proteins. Proteins 2024; 92:1113-1126. [PMID: 38687146 DOI: 10.1002/prot.26697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
An explicit analytic solution is given for the Langevin equation applied to the Gaussian Network Model of a protein subjected to both a random and a deterministic periodic force. Synchronous and asynchronous components of time correlation functions are derived and an expression for phase differences in the time correlations of residue pairs is obtained. The synchronous component enables the determination of dynamic communities within the protein structure. The asynchronous component reveals causality, where the time correlation function between residues i and j differs depending on whether i is observed before j or vice versa, resulting in directional information flow. Driver and driven residues in the allosteric process of cyclophilin A and human NAD-dependent isocitrate dehydrogenase are determined by a perturbation-scanning technique. Factors affecting phase differences between fluctuations of residues, such as network topology, connectivity, and residue centrality, are identified. Within the constraints of the isotropic Gaussian Network Model, our results show that asynchronicity increases with viscosity and distance between residues, decreases with increasing connectivity, and decreases with increasing levels of eigenvector centrality.
Collapse
Affiliation(s)
- Albert Erkip
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Istanbul, Turkey
| |
Collapse
|
7
|
Zuiderweg ERP. Validating the 15N- 1H HSQC-ROESY experiment for detecting 1HN exchange broadening in proteated proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 363:107676. [PMID: 38815459 DOI: 10.1016/j.jmr.2024.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
It is advantageous to investigate milli-to-micro-second conformational exchange data contained in the solution NMR protein relaxation data other than 15N nuclei. Not only does one search under another lamp post, one also looks at dynamics at other time scales. The HSQC-ROESY 1HN relaxation dispersion experiment for amide protons as introduced by Ishima, et al (1998). J. Am. Soc. 120, 10534-10542, is such an experiment, but has by the authors been advised to only be used for perdeuterated proteins to avoid complication with the 1H-1H multiple-spin effects. This is regretful, since not all proteins can be perdeuterated. Here we analyze in detail the 1HN relaxation terms for this experiment for a fully proteated protein. Indeed, the 1HN relaxation theory is in this case complex and includes dipolar-dipolar relaxation interference and TOCSY transfers. With simulate both of these effects and show that the interference can be exploited for detecting exchange broadening. The TOCSY effect is shown to minor, and when it is not, a solution is provided. We apply the HSQC-ROESY experiment, with a small modification to suppress ROESY crosspeaks, to a 7 kDa GB1 protein that is just 15N and 13C labeled. At 10 °C we cannot detect any conformational exchange broadening: the 1HN R2 relaxation rates with 1.357 kHz spinlock field not larger than those recorded with a 12.136 kHz spinlock field. This means that there is no exchange broadening that can be differentially suppressed with the applied fields. Either there is no broadening, or the broadening is effectively suppressed by all fields, or the broadening cannot be suppressed by either of the fields. While initially this seems to be a disappointing result, we feel that this work establishes that the HSQC-ROESY experiment is very robust. It can indeed be utilized for proteated proteins upto about 30 kDa. This could be opening the study the milli-microsecond conformational dynamics as reported by 1HN exchange broadening for many more proteins.
Collapse
Affiliation(s)
- Erik R P Zuiderweg
- Radboud University, Institute for Molecules and Materials, Nijmegen, XZ 6525, The Netherlands; University of Michigan Medical School, Department of Biological Chemistry, Ann Arbor, MI 41109, USA.
| |
Collapse
|
8
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
9
|
Deng J, Yuan Y, Cui Q. Modulation of Allostery with Multiple Mechanisms by Hotspot Mutations in TetR. J Am Chem Soc 2024; 146:2757-2768. [PMID: 38231868 PMCID: PMC10843641 DOI: 10.1021/jacs.3c12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Modulating allosteric coupling offers unique opportunities for biomedical applications. Such efforts can benefit from efficient prediction and evaluation of allostery hotspot residues that dictate the degree of cooperativity between distant sites. We demonstrate that effects of allostery hotspot mutations can be evaluated qualitatively and semiquantitatively by molecular dynamics simulations in a bacterial tetracycline repressor (TetR). The simulations recapitulate the effects of these mutations on abolishing the induction function of TetR and provide a rationale for the different rescuabilities observed to restore allosteric coupling of the hotspot mutations. We demonstrate that the same noninducible phenotype could be the result of perturbations in distinct structural and energetic properties of TetR. Our work underscores the value of explicitly computing the functional free energy landscapes to effectively evaluate and rank hotspot mutations despite the prevalence of compensatory interactions and therefore provides quantitative guidance to allostery modulation for therapeutic and engineering applications.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuchen Yuan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Patil H, Cho KI, Ferreira PA. Proteostatic remodeling of small heat shock chaperones - crystallins by Ran-binding protein 2 and the peptidyl-prolyl cis-trans isomerase and chaperone activities of its cyclophilin domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577462. [PMID: 38352504 PMCID: PMC10862737 DOI: 10.1101/2024.01.26.577462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Disturbances in phase transitions and intracellular partitions of nucleocytoplasmic shuttling substrates promote protein aggregation - a hallmark of neurodegenerative diseases. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of disassembly and phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also play central roles in phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against photo-oxidative stress by proteostatic regulations of Ranbp2 substrates and by countering the build-up of poly-ubiquitylated substrates. Further, the peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 modulate the proteostasis of selective neuroprotective substrates, such as hnRNPA2B1, STAT3, HDAC4 or L/M-opsin, while promoting a decline of ubiquitylated substrates. However, links between CY PPIase activity on client substrates and its effect(s) on ubiquitylated substrates are unclear. Here, proteomics of genetically modified mice with deficits of Ranbp2 uncovered the regulation of the small heat shock chaperones - crystallins by Ranbp2 in the chorioretina. Loss of CY PPIase of Ranbp2 up-regulates αA-crystallin proteostasis, which is repressed in non-lenticular tissues. Conversely, the αA-crystallin's substrates, γ-crystallins, are down-regulated by impairment of CY's C-terminal chaperone activity. These CY-dependent effects cause the age-dependent decline of ubiquitylated substrates without overt chorioretinal morphological changes. A model emerges whereby the Ranbp2 CY-dependent remodeling of crystallins' proteostasis subdues molecular aging and preordains chorioretinal neuroprotection by augmenting the chaperone buffering capacity and the decline of ubiquitylated substrates against proteostatic impairments. Further, CY's moonlighting activity holds pan -therapeutic potential against neurodegeneration.
Collapse
|
11
|
Deng J, Yuan Y, Cui Q. Modulation of Allostery with Multiple Mechanisms by Hotspot Mutations in TetR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555381. [PMID: 37905112 PMCID: PMC10614727 DOI: 10.1101/2023.08.29.555381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Modulating allosteric coupling offers unique opportunities for biomedical applications. Such efforts can benefit from efficient prediction and evaluation of allostery hotspot residues that dictate the degree of co-operativity between distant sites. We demonstrate that effects of allostery hotspot mutations can be evaluated qualitatively and semi-quantitatively by molecular dynamics simulations in a bacterial tetracycline repressor (TetR). The simulations recapitulate the effects of these mutations on abolishing the induction function of TetR and provide a rationale for the different degrees of rescuability observed to restore allosteric coupling of the hotspot mutations. We demonstrate that the same non-inducible phenotype could be the result of perturbations in distinct structural and energetic properties of TetR. Our work underscore the value of explicitly computing the functional free energy landscapes to effectively evaluate and rank hotspot mutations despite the prevalence of compensatory interactions, and therefore provide quantitative guidance to allostery modulation for therapeutic and engineering applications.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuchen Yuan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
12
|
Amirian R, Azadi Badrbani M, Izadi Z, Samadian H, Bahrami G, Sarvari S, Abdolmaleki S, Nabavi SM, Derakhshankhah H, Jaymand M. Targeted protein modification as a paradigm shift in drug discovery. Eur J Med Chem 2023; 260:115765. [PMID: 37659194 DOI: 10.1016/j.ejmech.2023.115765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Targeted Protein Modification (TPM) is an umbrella term encompassing numerous tools and approaches that use bifunctional agents to induce a desired modification over the POI. The most well-known TPM mechanism is PROTAC-directed protein ubiquitination. PROTAC-based targeted degradation offers several advantages over conventional small-molecule inhibitors, has shifted the drug discovery paradigm, and is acquiring increasing interest as over ten PROTACs have entered clinical trials in the past few years. Targeting the protein of interest for proteasomal degradation by PROTACS was the pioneer of various toolboxes for selective protein degradation. Nowadays, the ever-increasing number of tools and strategies for modulating and modifying the POI has expanded far beyond protein degradation, which phosphorylation and de-phosphorylation of the protein of interest, targeted acetylation, and selective modification of protein O-GlcNAcylation are among them. These novel strategies have opened new avenues for achieving more precise outcomes while remaining feasible and minimizing side effects. This field, however, is still in its infancy and has a long way to precede widespread use and translation into clinical practice. Herein, we investigate the pros and cons of these novel strategies by exploring the latest advancements in this field. Ultimately, we briefly discuss the emerging potential applications of these innovations in cancer therapy, neurodegeneration, viral infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Azadi Badrbani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Sarvari
- Department of Pharmaceutical Science, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Sara Abdolmaleki
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | - Seyed Mohammad Nabavi
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy.
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Knight AL, Widjaja V, Lisi GP. Temperature as a modulator of allosteric motions and crosstalk in mesophilic and thermophilic enzymes. Front Mol Biosci 2023; 10:1281062. [PMID: 37877120 PMCID: PMC10591084 DOI: 10.3389/fmolb.2023.1281062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Mesophilic and thermophilic enzyme counterparts are often studied to understand how proteins function under harsh conditions. To function well outside of standard temperature ranges, thermophiles often tightly regulate their structural ensemble through intra-protein communication (via allostery) and altered interactions with ligands. It has also become apparent in recent years that the enhancement or diminution of allosteric crosstalk can be temperature-dependent and distinguish thermophilic enzymes from their mesophilic paralogs. Since most studies of allostery utilize chemical modifications from pH, mutations, or ligands, the impact of temperature on allosteric function is comparatively understudied. Here, we discuss the biophysical methods, as well as critical case studies, that dissect temperature-dependent function of mesophilic-thermophilic enzyme pairs and their allosteric regulation across a range of temperatures.
Collapse
Affiliation(s)
| | | | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
14
|
Li W, Kohne M, Warncke K. Reactivity Tracking of an Enzyme Progress Coordinate. J Phys Chem Lett 2023; 14:7157-7164. [PMID: 37540029 PMCID: PMC10440813 DOI: 10.1021/acs.jpclett.3c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The reactivity of individual solvent-coupled protein configurations is used to track and resolve the progress coordinate for the core reaction sequence of substrate radical rearrangement and hydrogen atom transfer in the ethanolamine ammonia-lyase (EAL) enzyme from Salmonella enterica. The first-order decay of the substrate radical intermediate is the monitored reaction. Heterogeneous confinement from sucrose hydrates in the mesophase solvent surrounding the cryotrapped protein introduces distributed kinetics in the non-native decay of the substrate radical pair capture substate, which arise from an ensemble of configurational microstates. Reaction rates increase by >103-fold across the distribution to approach that for the native enabled substate for radical rearrangement, which reacts with monotonic kinetics. The native progress coordinate thus involves a collapse of the configuration space to generate optimized reactivity. Reactivity tracking reveals fundamental features of solvent-protein-reaction configurational coupling and leads to a model that refines the ensemble paradigm of enzyme catalysis for strongly adiabatic chemical steps.
Collapse
Affiliation(s)
- Wei Li
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Meghan Kohne
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt Warncke
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Lee E, McLeod MJ, Redzic JS, Marcolin B, Thorne RE, Agarwal P, Eisenmesser EZ. Identifying structural and dynamic changes during the Biliverdin Reductase B catalytic cycle. Front Mol Biosci 2023; 10:1244587. [PMID: 37645217 PMCID: PMC10461185 DOI: 10.3389/fmolb.2023.1244587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Biliverdin Reductase B (BLVRB) is an NADPH-dependent reductase that catalyzes the reduction of multiple substrates and is therefore considered a critical cellular redox regulator. In this study, we sought to address whether both structural and dynamics changes occur between different intermediates of the catalytic cycle and whether these were relegated to just the active site or the entirety of the enzyme. Through X-ray crystallography, we determined the apo BLVRB structure for the first time, revealing subtle global changes compared to the holo structure and identifying the loss of a critical hydrogen bond that "clamps" the R78-loop over the coenzyme. Amide and Cα chemical shift perturbations were used to identify environmental and secondary structural changes between intermediates, with more distant global changes observed upon coenzyme binding compared to substrate interactions. NMR relaxation rate measurements provided insights into the dynamic behavior of BLVRB during the catalytic cycle. Specifically, the inherently dynamic R78-loop that becomes ordered upon coenzyme binding persists through the catalytic cycle while similar regions experience dynamic exchange. However, the dynamic exchange processes were found to differ through the catalytic cycle with several groups of residues exhibiting similar dynamic responses. Finally, both local and distal structural and dynamic changes occur within BLVRB that are dependent solely on the oxidative state of the coenzyme. Thus, through a comprehensive analysis here, this study revealed structural and dynamic alterations in BLVRB through its catalytic cycle that are not simply relegated to the active site, but instead, are allosterically coupled throughout the enzyme.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Matthew J. McLeod
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Barbara Marcolin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Robert E. Thorne
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Pratul Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, Stillwater, OK, United States
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
16
|
Lee E, Redzic JS, Zohar Eisenmesser E. Relaxation and single site multiple mutations to identify and control allosteric networks. Methods 2023; 216:51-57. [PMID: 37302521 PMCID: PMC11066977 DOI: 10.1016/j.ymeth.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Advances in Nuclear Magnetic Resonance (NMR) spectroscopy have allowed for the identification and characterization of movements in enzymes over the last 20 years that has also revealed the complexities of allosteric coupling. For example, many of the inherent movements of enzymes, and proteins in general, have been shown to be highly localized but nonetheless still coupled over long distances. Such partial couplings provide challenges to both identifying allosteric networks of dynamic communication and determining their roles in catalytic function. We have developed an approach to help identify and engineer enzyme function, called Relaxation And Single Site Multiple Mutations (RASSMM). This approach is a powerful extension of mutagenesis and NMR that is based on the observation that multiple mutations to a single site distal to the active site allosterically induces different effects to networks. Such an approach generates a panel of mutations that can also be subjected to functional studies in order to match catalytic effects with changes to coupled networks. In this review, the RASSMM approach is briefly outlined together with two applications that include cyclophilin-A and Biliverdin Reductase B.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Nakhaei-Rad S, Janatifard F, Dvorsky R, Ahmadian MR, Housaindokht MR. Molecular analyses of the C-terminal CRAF variants associated with cardiomyopathy reveal their opposing impacts on the active conformation of the kinase domain. J Biomol Struct Dyn 2023; 41:15328-15338. [PMID: 36927384 DOI: 10.1080/07391102.2023.2187221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The germline mutations in the C-terminus of CRAF kinase, particularly L603, and S612T/L613V, are associated with congenital heart disorders, for example, dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). The experimental data suggest that genetic alternation at position 603 impairs, while those at positions 612/613 enhance the CRAF kinase activity. However, the underlying mechanistic details by which these mutations increase or decrease kinase activity remain elusive. Therefore, we applied molecular dynamic simulation to investigate the impacts of these point mutations on the conformation of the CRAF kinase domain. The results revealed that the substitution of Leucine 603 for proline transits the kinase domain to a state that exhibits the molecular hallmarks of an inactive kinase, for example, a closed activation loop, 'αC-helix out' conformation and a distorted regulatory hydrophobic spine. However, two HCM-associated variants (S612T and L613V) show features of an active conformation, such as an open activation loop conformation, 'αC-helix in', the assembly of the hydrophobic spine, and more surface-exposed catalytic residues of phosphoryl transfer reaction. Overall, our study provides a mechanistic basis for the contradictory effects of the CRAF variants associated with HCM and DCM.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Janatifard
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
18
|
Ouedraogo D, Souffrant M, Yao XQ, Hamelberg D, Gadda G. Non-active Site Residue in Loop L4 Alters Substrate Capture and Product Release in d-Arginine Dehydrogenase. Biochemistry 2023; 62:1070-1081. [PMID: 36795942 PMCID: PMC9996824 DOI: 10.1021/acs.biochem.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Numerous studies demonstrate that enzymes undergo multiple conformational changes during catalysis. The malleability of enzymes forms the basis for allosteric regulation: residues located far from the active site can exert long-range dynamical effects on the active site residues to modulate catalysis. The structure of Pseudomonas aeruginosa d-arginine dehydrogenase (PaDADH) shows four loops (L1, L2, L3, and L4) that span the substrate and the FAD-binding domains. Loop L4 comprises residues 329-336, spanning over the flavin cofactor. The I335 residue on loop L4 is ∼10 Å away from the active site and ∼3.8 Å from N(1)-C(2)═O atoms of the flavin. In this study, we used molecular dynamics and biochemical techniques to investigate the effect of the mutation of I335 to histidine on the catalytic function of PaDADH. Molecular dynamics showed that the conformational dynamics of PaDADH are shifted to a more closed conformation in the I335H variant. In agreement with an enzyme that samples more in a closed conformation, the kinetic data of the I335H variant showed a 40-fold decrease in the rate constant of substrate association (k1), a 340-fold reduction in the rate constant of substrate dissociation from the enzyme-substrate complex (k2), and a 24-fold decrease in the rate constant of product release (k5), compared to that of the wild-type. Surprisingly, the kinetic data are consistent with the mutation having a negligible effect on the reactivity of the flavin. Altogether, the data indicate that the residue at position 335 has a long-range dynamical effect on the catalytic function in PaDADH.
Collapse
Affiliation(s)
- Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Souffrant
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
19
|
Arantes PR, Patel AC, Palermo G. Emerging Methods and Applications to Decrypt Allostery in Proteins and Nucleic Acids. J Mol Biol 2022; 434:167518. [PMID: 35240127 PMCID: PMC9398933 DOI: 10.1016/j.jmb.2022.167518] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
Many large protein-nucleic acid complexes exhibit allosteric regulation. In these systems, the propagation of the allosteric signaling is strongly coupled to conformational dynamics and catalytic function, challenging state-of-the-art analytical methods. Here, we review established and innovative approaches used to elucidate allosteric mechanisms in these complexes. Specifically, we report network models derived from graph theory and centrality analyses in combination with molecular dynamics (MD) simulations, introducing novel schemes that implement the synergistic use of graph theory with enhanced simulations methods and ab-initio MD. Accelerated MD simulations are used to construct "enhanced network models", describing the allosteric response over long timescales and capturing the relation between allostery and conformational changes. "Ab-initio network models" combine graph theory with ab-initio MD and quantum mechanics/molecular mechanics (QM/MM) simulations to describe the allosteric regulation of catalysis by following the step-by-step dynamics of biochemical reactions. This approach characterizes how the allosteric regulation changes from reactants to products and how it affects the transition state, revealing a tense-to-relaxed allosteric regulation along the chemical step. Allosteric models and applications are showcased for three paradigmatic examples of allostery in protein-nucleic acid complexes: (i) the nucleosome core particle, (ii) the CRISPR-Cas9 genome editing system and (iii) the spliceosome. These methods and applications create innovative protocols to determine allosteric mechanisms in protein-nucleic acid complexes that show tremendous promise for medicine and bioengineering.
Collapse
Affiliation(s)
- Pablo R Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States. https://twitter.com/pablitoarantes
| | - Amun C Patel
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States.
| |
Collapse
|
20
|
Maschietto F, Zavala E, Allen B, Loria JP, Batista V. MptpA Kinetics Enhanced by Allosteric Control of an Active Conformation. J Mol Biol 2022; 434:167540. [PMID: 35339563 PMCID: PMC10623291 DOI: 10.1016/j.jmb.2022.167540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Understanding allostery in the Mycobacterium tuberculosis low molecular weight protein tyrosine phosphatase (MptpA) is a subject of great interest since MptpA is one of two protein tyrosine phosphatases (PTPs) from the pathogenic organism Mycobacterium tuberculosis expressed during host cell infection. Here, we combine computational modeling with solution NMR spectroscopy and we find that Q75 is an allosteric site. Removal of the polar side chain of Q75 by mutation to leucine results in a cascade of events that reposition the acid loop over the active site and relocates the catalytic aspartic acid (D126) at an optimal position for proton donation to the leaving aryl group of the substrate and for subsequent hydrolysis of the thiophosphoryl intermediate. The computational analysis is consistent with kinetic data, and NMR spectroscopy, showing that the Q75L mutant exhibits enhanced reaction kinetics with similar substrate binding affinity. We anticipate that our findings will motivate further studies on the possibility that MptpA remains passivated during the chronic state of infection and increases its activity as part of the pathogenic life cycle of M. tuberculosis possibly via allosteric means.
Collapse
Affiliation(s)
- Federica Maschietto
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, United States
| | - Erik Zavala
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, United States
| | - Brandon Allen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, United States; Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, United States.
| | - Victor Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, United States.
| |
Collapse
|
21
|
Wang P, Leontyev I, Stuchebrukhov AA. Mechanical Allosteric Couplings of Redox-Induced Conformational Changes in Respiratory Complex I. J Phys Chem B 2022; 126:4080-4088. [PMID: 35612955 DOI: 10.1021/acs.jpcb.2c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We apply linear response theory to calculate mechanical allosteric couplings in respiratory complex I between the iron sulfur cluster N2, located in the catalytic cavity, and the membrane part of the enzyme, separated from it by more than 50 Å. According to our hypothesis, the redox reaction of ubiquinone in the catalytic cavity of the enzyme generates an unbalanced charge that via repulsion of the charged redox center N2 produces local mechanical stress that transmits into the membrane part of the enzyme where it induces proton pumping. Using coarse-grained simulations of the enzyme, we calculated mechanistic allosteric couplings that reveal the pathways of the mechanical transmission of the stress along the enzyme. The results shed light on the recent experimental studies where a stabilization of the enzyme with an introduced disulfide bridge resulted in the abolishing of proton pumping. Simulation of the disulfide bond action indicates a dramatic change of the mechanistic coupling pathways in line with experimental findings.
Collapse
Affiliation(s)
- Panyue Wang
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Igor Leontyev
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexei A Stuchebrukhov
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
22
|
Bhattacharya S, Xu L, Thompson D. Characterization of Amyloidogenic Peptide Aggregability in Helical Subspace. Methods Mol Biol 2022; 2340:401-448. [PMID: 35167084 DOI: 10.1007/978-1-0716-1546-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prototypical amyloidogenic peptides amyloid-β (Aβ) and α-synuclein (αS) can undergo helix-helix associations via partially folded helical conformers, which may influence pathological progression to Alzheimer's (AD) and Parkinson's disease (PD), respectively. At the other extreme, stable folded helical conformers have been reported to resist self-assembly and amyloid formation. Experimental characterisation of such disparities in aggregation profiles due to subtle differences in peptide stabilities is precluded by the conformational heterogeneity of helical subspace. The diverse physical models used in molecular simulations allow sampling distinct regions of the phase space and are extensive in capturing the ensemble of rich helical subspace. Robust and powerful computational predictive methods utilizing network theory and free energy mapping can model the origin of helical population shifts in amyloidogenic peptides, which highlight their inherent aggregability. In this chapter, we discuss computational models, methods, design rules, and strategies to identify the driving force behind helical self-assembly and the molecular origin of aggregation resistance in helical intermediates of Aβ42 and αS. By extensive multiscale mapping of intrapeptide interactions, we show that the computational models can capture features that are otherwise imperceptible to experiments. Our models predict that targeting terminal residues may allow modulation and control of initial pathogenic aggregability of amyloidogenic peptides.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
23
|
Naganathan AN, Kannan A. A hierarchy of coupling free energies underlie the thermodynamic and functional architecture of protein structures. Curr Res Struct Biol 2021; 3:257-267. [PMID: 34704074 PMCID: PMC8526763 DOI: 10.1016/j.crstbi.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Protein sequences and structures evolve by satisfying varied physical and biochemical constraints. This multi-level selection is enabled not just by the patterning of amino acids on the sequence, but also via coupling between residues in the native structure. Here, we employ an energetically detailed statistical mechanical model with millions of microstates to extract such long-range structural correlations, i.e. thermodynamic coupling free energies, from a diverse family of protein structures. We find that despite the intricate and anisotropic distribution of coupling patterns, the majority of residues (>70%) are only marginally coupled contributing to functional motions and catalysis. Physical origins of ‘sectors’, determinants of native ensemble heterogeneity in extant, ancient and designed proteins, and the basis for allostery emerge naturally from coupling free energies. The statistical framework highlights how evolutionary selection and optimization occur at the level of global interaction network for a given protein fold impacting folding, function, and allosteric outputs. Evolution of protein structures occurs at the level of global interaction network. More than 70% of the protein residues are weakly or marginally coupled. Functional ‘sector’ regions are a manifestation of marginal coupling. Coupling indices vary across the entire proteins in extant-ancient and natural-designed pairs. The proposed methodology can be used to understand allostery and epistasis.
Collapse
Affiliation(s)
- Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
24
|
Becker D, Bharatam PV, Gohlke H. F/G Region Rigidity is Inversely Correlated to Substrate Promiscuity of Human CYP Isoforms Involved in Metabolism. J Chem Inf Model 2021; 61:4023-4030. [PMID: 34370479 DOI: 10.1021/acs.jcim.1c00558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Of 57 human cytochrome P450 (CYP) enzymes, 12 metabolize 90% of xenobiotics. To our knowledge, no study has addressed the relation between enzyme dynamics and substrate promiscuity for more than three CYPs. Here, we show by constraint dilution simulations with the Constraint Network Analysis for the 12 isoforms that structural rigidity of the F/G region is significantly inversely correlated to the enzymes' substrate promiscuity. This highlights the functional importance of structural dynamics of the substrate tunnel.
Collapse
Affiliation(s)
- Daniel Becker
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Sahibzada Ajit Singh Nagar, Mohali 160062, Punjab, India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
25
|
Motono C, Yanagida S, Sato M, Hirokawa T. MDContactCom: a tool to identify differences of protein molecular dynamics from two MD simulation trajectories in terms of interresidue contacts. Bioinformatics 2021; 38:273-274. [PMID: 34289011 PMCID: PMC8696114 DOI: 10.1093/bioinformatics/btab538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Comparing results from multiple MD simulations performed under different conditions is essential during the initial stages of analysis. We propose a tool called MD Contact Comparison (MDContactCom) that compares residue-residue contact fluctuations of two MD trajectories, quantifies the differences, identifies sites that exhibit large differences and visualizes those sites on the protein structure. Using this method, it is possible to identify sites affected by varying simulation conditions and reveal the path of propagation of the effect even when differences between the 3D structure of the molecule and the fluctuation RMSF of each residue is unclear. MDContactCom can monitor differences in complex protein dynamics between two MD trajectories and identify candidate sites to be analyzed in more detail. As such, MDContactCom is a versatile software package for analyzing most MD simulations. AVAILABILITY AND IMPLEMENTATION MDContactCom is freely available for download on GitLab. The software is implemented in Python3. https://gitlab.com/chiemotono/mdcontactcom. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chie Motono
- To whom correspondence should be addressed. or
| | - Shunsuke Yanagida
- Bioscience & Healthcare Engineering Division, DX Infrastructure Engineering Unit 1, Mitsui Knowledge Industry Co., Ltd, Tokyo 164-0003, Japan
| | - Miwa Sato
- Bioscience & Healthcare Engineering Division, DX Infrastructure Engineering Unit 1, Mitsui Knowledge Industry Co., Ltd, Tokyo 164-0003, Japan
| | | |
Collapse
|
26
|
Nutschel C, Coscolín C, David B, Mulnaes D, Ferrer M, Jaeger KE, Gohlke H. Promiscuous Esterases Counterintuitively Are Less Flexible than Specific Ones. J Chem Inf Model 2021; 61:2383-2395. [PMID: 33949194 DOI: 10.1021/acs.jcim.1c00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding mechanisms of promiscuity is increasingly important from a fundamental and application point of view. As to enzyme structural dynamics, more promiscuous enzymes generally have been recognized to also be more flexible. However, examples for the opposite received much less attention. Here, we exploit comprehensive experimental information on the substrate promiscuity of 147 esterases tested against 96 esters together with computationally efficient rigidity analyses to understand the molecular origin of the observed promiscuity range. Unexpectedly, our data reveal that promiscuous esterases are significantly less flexible than specific ones, are significantly more thermostable, and have a significantly increased specific activity. These results may be reconciled with a model according to which structural flexibility in the case of specific esterases serves for conformational proofreading. Our results signify that an esterase sequence space can be screened by rigidity analyses for promiscuous esterases as starting points for further exploration in biotechnology and synthetic chemistry.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Cristina Coscolín
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Benoit David
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Mulnaes
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Duff MR, Redzic JS, Ryan LP, Paukovich N, Zhao R, Nix JC, Pitts TM, Agarwal P, Eisenmesser EZ. Structure, dynamics and function of the evolutionarily changing biliverdin reductase B family. J Biochem 2021; 168:191-202. [PMID: 32246827 DOI: 10.1093/jb/mvaa039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 11/14/2022] Open
Abstract
Biliverdin reductase B (BLVRB) family members are general flavin reductases critical in maintaining cellular redox with recent findings revealing that BLVRB alone can dictate cellular fate. However, as opposed to most enzymes, the BLVRB family remains enigmatic with an evolutionarily changing active site and unknown structural and functional consequences. Here, we applied a multi-faceted approach that combines X-ray crystallography, NMR and kinetics methods to elucidate the structural and functional basis of the evolutionarily changing BLVRB active site. Using a panel of three BLVRB isoforms (human, lemur and hyrax) and multiple human BLVRB mutants, our studies reveal a novel evolutionary mechanism where coenzyme 'clamps' formed by arginine side chains at two co-evolving positions within the active site serve to slow coenzyme release (Positions 14 and 78). We find that coenzyme release is further slowed by the weaker binding substrate, resulting in relatively slow turnover numbers. However, different BLVRB active sites imposed by either evolution or mutagenesis exhibit a surprising inverse relationship between coenzyme release and substrate turnover that is independent of the faster chemical step of hydride transfer also measured here. Collectively, our studies have elucidated the role of the evolutionarily changing BLVRB active site that serves to modulate coenzyme release and has revealed that coenzyme release is coupled to substrate turnover.
Collapse
Affiliation(s)
- Michael R Duff
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, 1311 Cumberland Ave., Knoxville, TN 37996, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Lucas P Ryan
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Pratul Agarwal
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, 1311 Cumberland Ave., Knoxville, TN 37996, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| |
Collapse
|
28
|
Redzic JS, Duff MR, Blue A, Pitts TM, Agarwal P, Eisenmesser EZ. Modulating Enzyme Function via Dynamic Allostery within Biliverdin Reductase B. Front Mol Biosci 2021; 8:691208. [PMID: 34095235 PMCID: PMC8173106 DOI: 10.3389/fmolb.2021.691208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
The biliverdin reductase B (BLVRB) class of enzymes catalyze the NADPH-dependent reduction of multiple flavin substrates and are emerging as critical players in cellular redox regulation. However, the role of dynamics and allostery have not been addressed, prompting studies here that have revealed a position 15 Å away from the active site within human BLVRB (T164) that is inherently dynamic and can be mutated to control global micro-millisecond motions and function. By comparing the inherent dynamics through nuclear magnetic resonance (NMR) relaxation approaches of evolutionarily distinct BLVRB homologues and by applying our previously developed Relaxation And Single Site Multiple Mutations (RASSMM) approach that monitors both the functional and dynamic effects of multiple mutations to the single T164 site, we have discovered that the most dramatic mutagenic effects coincide with evolutionary changes and these modulate coenzyme binding. Thus, evolutionarily changing sites distal to the active site serve as dynamic "dials" to globally modulate motions and function. Despite the distal dynamic and functional coupling modulated by this site, micro-millisecond motions span an order of magnitude in their apparent kinetic rates of motions. Thus, global dynamics within BLVRB are a collection of partially coupled motions tied to catalytic function.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Denver, CO, United States
| | - Michael R Duff
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, United States
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Pratul Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, Stillwater, OK, United States
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
29
|
Tandon H, de Brevern AG, Srinivasan N. Transient association between proteins elicits alteration of dynamics at sites far away from interfaces. Structure 2020; 29:371-384.e3. [PMID: 33306961 DOI: 10.1016/j.str.2020.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
Proteins are known to undergo structural changes upon binding to partner proteins. However, the prevalence, extent, location, and function of change in protein dynamics due to transient protein-protein interactions is not well documented. Here, we have analyzed a dataset of 58 protein-protein complexes of known three-dimensional structure and structures of their corresponding unbound forms to evaluate dynamics changes induced by binding. Fifty-five percent of cases showed significant dynamics change away from the interfaces. This change is not always accompanied by an observed structural change. Binding of protein partner is found to alter inter-residue communication within the tertiary structure in about 90% of cases. Also, residue motions accessible to proteins in unbound form were not always maintained in the bound form. Further analyses revealed functional roles for the distant site where dynamics change was observed. Overall, the results presented here strongly suggest that alteration of protein dynamics due to binding of a partner protein commonly occurs.
Collapse
Affiliation(s)
- Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, 75739 Paris, France; Univ Paris, UMR_S 1134, 75739 Paris, France; Institut National de la Transfusion Sanguine (INTS), 75739 Paris, France; Laboratoire d'Excellence GR-Ex, 75739 Paris, France
| | | |
Collapse
|
30
|
Sowińska A, Vasquez L, Żaczek S, Manna RN, Tuñón I, Dybala-Defratyka A. Seeking the Source of Catalytic Efficiency of Lindane Dehydrochlorinase, LinA. J Phys Chem B 2020; 124:10353-10364. [PMID: 33146535 PMCID: PMC7681783 DOI: 10.1021/acs.jpcb.0c08976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we present the results of an in-depth simulation study of LinA and its two variants. In our analysis, we combined the exploration of protein conformational dynamics with and without bound substrates (hexachlorocyclohexane (HCH) isomers) performed using molecular dynamics simulation followed by the extraction of the most frequently visited conformations and their characteristics with a detailed description of the interactions taking place in the active site between the respective HCH molecule and the first shell residues by using symmetry-adapted perturbation theory (SAPT) calculations. A detailed investigation of the conformational space of LinA substates has been accompanied by description of enzymatic catalytic steps carried out using a hybrid quantum mechanics/molecular mechanics (QM/MM) potential along with the computation of the potential of mean force (PMF) to estimate the free energy barriers for the studied transformations: dehydrochlorination of γ-, (-)-α-, and (+)-α-HCH by LinA-type I and -type II variants. The applied combination of computational techniques allowed us not only to characterize two LinA types but also to point to the most important differences between them and link their features to catalytic efficiency each of them possesses toward the respective ligand. More importantly it has been demonstrated that type I protein is more mobile, its active site has a larger volume, and the dehydrochlorination products are stabilized more strongly than in the case of type II enzyme, due to differences in the residues present in the active sites. Additionally, interaction energy calculations revealed very interesting patterns not predicted before but having the potential to be utilized in any attempts of improving LinA catalytic efficiency. On the basis of all these observations, LinA-type I protein seems to be more preorganized for the dehydrochlorination reaction it catalyzes than the type II variant.
Collapse
Affiliation(s)
- Agata Sowińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Luis Vasquez
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Szymon Żaczek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Rabindra Nath Manna
- School Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Iñaki Tuñón
- Departamento de Quı́mica Fı́sica, Universitat de Valencia, 46100 Burjassot, Valencia Spain
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
31
|
Melo MCR, Bernardi RC, de la Fuente-Nunez C, Luthey-Schulten Z. Generalized correlation-based dynamical network analysis: a new high-performance approach for identifying allosteric communications in molecular dynamics trajectories. J Chem Phys 2020; 153:134104. [DOI: 10.1063/5.0018980] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marcelo C. R. Melo
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rafael C. Bernardi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Department of Physics, Auburn University, Auburn, Alabama 36849, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zaida Luthey-Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
32
|
Functional plasticity and evolutionary adaptation of allosteric regulation. Proc Natl Acad Sci U S A 2020; 117:25445-25454. [PMID: 32999067 DOI: 10.1073/pnas.2002613117] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Allostery is a fundamental regulatory mechanism of protein function. Despite notable advances, understanding the molecular determinants of allostery remains an elusive goal. Our current knowledge of allostery is principally shaped by a structure-centric view, which makes it difficult to understand the decentralized character of allostery. We present a function-centric approach using deep mutational scanning to elucidate the molecular basis and underlying functional landscape of allostery. We show that allosteric signaling exhibits a high degree of functional plasticity and redundancy through myriad mutational pathways. Residues critical for allosteric signaling are surprisingly poorly conserved while those required for structural integrity are highly conserved, suggesting evolutionary pressure to preserve fold over function. Our results suggest multiple solutions to the thermodynamic conditions of cooperativity, in contrast to the common view of a finely tuned allosteric residue network maintained under selection.
Collapse
|
33
|
The anti-oxidant enzyme, Prdx6 might have cis-acting regulatory sequence(s). Int J Biol Macromol 2020; 149:1139-1150. [PMID: 32018008 DOI: 10.1016/j.ijbiomac.2020.01.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/23/2022]
Abstract
Peroxiredoxin 6 (Prdx6) is a ubiquitously expressed 1-cysteine Peroxiredoxin found throughout all phyla. In mammals, under different physiological conditions, it has evolved from a peroxidase to a multifunctional enzyme. Among the mammalian Prdx6's, human and rat Prdx6's are the most extensively studied. Our study revealed that human and rat Prdx6's exhibit differences in their peroxidase activity. These two Prdx6's have only 8% difference in their primary sequence (with 19 amino acids) with no apparent modification at any of the key conserved residues. In the present communication, we have investigated the roles of thermodynamics, structure and internal flexibility of Prdx6 to account for the difference in their peroxidase activity. We discovered that these amino acid variations have led to structural alterations in human Prdx6 so that it shows enhanced intrinsic dynamics (or flexibility) than the rat protein. We could also identify the gain of intrinsic dynamics of the catalytic site in human Prdx6 due to relocation of an important active site residue (R132) to the loop region as the most plausible reason for high catalytic activity in the human protein as compared to rat variant. Since it is the thioredoxin fold that upholds the peroxidase function, certain structural alteration in the Prdx6 structure might help to regulate the efficiency of thioredoxin folds. Our results hint that Prdx6 might have a cis-acting regulatory sequence(s).
Collapse
|
34
|
Bhat AS, Dustin Schaeffer R, Kinch L, Medvedev KE, Grishin NV. Recent advances suggest increased influence of selective pressure in allostery. Curr Opin Struct Biol 2020; 62:183-188. [PMID: 32302874 DOI: 10.1016/j.sbi.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
Allosteric regulation of protein functions is ubiquitous in organismal biology, but the principles governing its evolution are not well understood. Here we discuss recent studies supporting the large-scale existence of latent allostery in ancestor proteins of superfamilies. As suggested, the evolution of allostery could be driven by the need for specificity in paralogs of slow evolving protein complexes with conserved active sites. The same slow evolution is displayed by purifying selection exhibited in allosteric proteins with somatic mutations involved in cancer, where disease-associated mutations are enriched in both orthosteric and allosteric sites. Consequently, disease-associated variants can be used to identify druggable allosteric sites that are specific for paralogs in protein superfamilies with otherwise similar functions.
Collapse
Affiliation(s)
- Archana S Bhat
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Richard Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States.
| |
Collapse
|
35
|
Jiao W, Fan Y, Blackmore NJ, Parker EJ. A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis. J Biol Chem 2020; 295:6252-6262. [PMID: 32217694 DOI: 10.1074/jbc.ra120.012605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery.
Collapse
Affiliation(s)
- Wanting Jiao
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Yifei Fan
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Nicola J Blackmore
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
| | - Emily J Parker
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand .,Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
36
|
Juárez-Jiménez J, Gupta AA, Karunanithy G, Mey ASJS, Georgiou C, Ioannidis H, De Simone A, Barlow PN, Hulme AN, Walkinshaw MD, Baldwin AJ, Michel J. Dynamic design: manipulation of millisecond timescale motions on the energy landscape of cyclophilin A. Chem Sci 2020; 11:2670-2680. [PMID: 34084326 PMCID: PMC8157532 DOI: 10.1039/c9sc04696h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins need to interconvert between many conformations in order to function, many of which are formed transiently, and sparsely populated. Particularly when the lifetimes of these states approach the millisecond timescale, identifying the relevant structures and the mechanism by which they interconvert remains a tremendous challenge. Here we introduce a novel combination of accelerated MD (aMD) simulations and Markov state modelling (MSM) to explore these 'excited' conformational states. Applying this to the highly dynamic protein CypA, a protein involved in immune response and associated with HIV infection, we identify five principally populated conformational states and the atomistic mechanism by which they interconvert. A rational design strategy predicted that the mutant D66A should stabilise the minor conformations and substantially alter the dynamics, whereas the similar mutant H70A should leave the landscape broadly unchanged. These predictions are confirmed using CPMG and R1ρ solution state NMR measurements. By efficiently exploring functionally relevant, but sparsely populated conformations with millisecond lifetimes in silico, our aMD/MSM method has tremendous promise for the design of dynamic protein free energy landscapes for both protein engineering and drug discovery.
Collapse
Affiliation(s)
- Jordi Juárez-Jiménez
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Arun A Gupta
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Gogulan Karunanithy
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Antonia S J S Mey
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Charis Georgiou
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Harris Ioannidis
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Alessio De Simone
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Paul N Barlow
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Malcolm D Walkinshaw
- School of Biological Sciences Michael Swann Building, Max Born Crescent Edinburgh EH9 3BF UK
| | - Andrew J Baldwin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
37
|
Yao XQ, Hamelberg D. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis. Acc Chem Res 2019; 52:3455-3464. [PMID: 31793290 DOI: 10.1021/acs.accounts.9b00485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent advances have made all-atom molecular dynamics (MD) a powerful tool to sample the conformational energy landscape. There are still however three major challenges in the application of MD to biological systems: accuracy of force field, time scale, and the analysis of simulation trajectories. Significant progress in addressing the first two challenges has been made and extensively reviewed previously. This Account focuses on strategies of analyzing simulation data of biomolecules that also covers ways to properly design simulations and validate simulation results. In particular, we examine an approach named comparative perturbed-ensembles analysis, which we developed to efficiently detect dynamics in protein MD simulations that can be linked to biological functions. In our recent studies, we implemented this approach to understand allosteric regulations in several disease-associated human proteins. The central task of a comparative perturbed-ensembles analysis is to compare two or more conformational ensembles of a system generated by MD simulations under distinct perturbation conditions. Perturbations can be different sequence variations, ligand-binding conditions, and other physical/chemical modifications of the system. Each simulation is long enough (e.g., microsecond-long) to ensure sufficient sampling of the local substate. Then, sophisticated bioinformatic and statistical tools are applied to extract function-related information from the simulation data, including principal component analysis, residue-residue contact analysis, difference contact network analysis (dCNA) based on the graph theory, and statistical analysis of side-chain conformations. Computational findings are further validated with experimental data. By comparing distinct conformational ensembles, functional micro- to millisecond dynamics can be inferred. In contrast, such a time scale is difficult to reach in a single simulation; even when reached for a single condition of a system, it is elusive as to what dynamical motions are related to functions without, for example, comparing free and substrate-bound proteins at the minimum. We illustrate our approach with three examples. First, we discuss using the approach to identify allosteric pathways in cyclophilin A (CypA), a member of a ubiquitous class of peptidyl-prolyl cis-trans isomerase enzymes. By comparing side-chain torsion-angle distributions of CypA in wild-type and mutant forms, we identified three pathways: two are consistent with recent nuclear magnetic resonance experiments, whereas the third is a novel pathway. Second, we show how the approach enables a dynamical-evolution analysis of the human cyclophilin family. In the analysis, both conserved and divergent conformational dynamics across three cyclophilin isoforms (CypA, CypD, and CypE) were summarized. The conserved dynamics led to the discovery of allosteric networks resembling those found in CypA. A residue wise determinant underlying the unique dynamics in CypD was also detected and validated with additional mutational MD simulations. In the third example, we applied the approach to elucidate a peptide sequence-dependent allosteric mechanism in human Pin 1, a phosphorylation-dependent peptidyl-prolyl isomerase. We finally present our outlook of future directions. Especially, we envisage how the approach could help open a new avenue in drug discovery.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
38
|
Zsolyomi F, Ambrus V, Fuxreiter M. Patterns of Dynamics Comprise a Conserved Evolutionary Trait. J Mol Biol 2019; 432:497-507. [PMID: 31783068 DOI: 10.1016/j.jmb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
Abstract
The importance of protein dynamics in function may suggest an evolutionary selection on large-scale protein motions. Here we systematically studied the dynamic characteristics in 2221 protein domains (58477 sequences) of the Pfam database. We defined the patterns of dynamics (PODs) based on the estimated NMR order parameters and the predicted degree of disorder, and found a significant correlation between them in families of both structured and disordered protein domains. We demonstrate that conservation of dynamic patterns frequently exceeds conservation of sequence and is comparable to the patterns of hydropathy and nonspecific interaction potential. Similarity of dynamic patterns is weakly correlated to structure similarity and to the degree of disorder. We illustrate that POD alignments could be applied to sequentially divergent or intrinsically disordered regions. We propose that patterns of dynamics comprise a conserved evolutionary trait, which could be used to infer evolutionary relationships as an alternative to sequence and structure.
Collapse
Affiliation(s)
- F Zsolyomi
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - V Ambrus
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - M Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary.
| |
Collapse
|
39
|
Yao XQ, Momin M, Hamelberg D. Establishing a Framework of Using Residue–Residue Interactions in Protein Difference Network Analysis. J Chem Inf Model 2019; 59:3222-3228. [DOI: 10.1021/acs.jcim.9b00320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Mohamed Momin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
40
|
On the perturbation nature of allostery: sites, mutations, and signal modulation. Curr Opin Struct Biol 2019; 56:18-27. [DOI: 10.1016/j.sbi.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
41
|
Wapeesittipan P, Mey ASJS, Walkinshaw MD, Michel J. Allosteric effects in cyclophilin mutants may be explained by changes in nano-microsecond time scale motions. Commun Chem 2019. [DOI: 10.1038/s42004-019-0136-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
42
|
Gorman SD, D'Amico RN, Winston DS, Boehr DD. Engineering Allostery into Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:359-384. [PMID: 31707711 PMCID: PMC7508002 DOI: 10.1007/978-981-13-8719-7_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our ability to engineer protein structure and function has grown dramatically over recent years. Perhaps the next level in protein design is to develop proteins whose function can be regulated in response to various stimuli, including ligand binding, pH changes, and light. Endeavors toward these goals have tested and expanded on our understanding of protein function and allosteric regulation. In this chapter, we provide examples from different methods for developing new allosterically regulated proteins. These methods range from whole insertion of regulatory domains into new host proteins, to covalent attachment of photoswitches to generate light-responsive proteins, and to targeted changes to specific amino acid residues, especially to residues identified to be important for relaying allosteric information across the protein framework. Many of the examples we discuss have already found practical use in medical and biotechnology applications.
Collapse
Affiliation(s)
- Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Dennis S Winston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
43
|
Abstract
Even after a century of investigation, our understanding of how enzymes work remains far from complete. In particular, several factors that enable enzymes to achieve high catalytic efficiencies remain only poorly understood. A number of theories have been developed, which propose or reaffirm that enzymes work as structural scaffolds, serving to bring together and properly orient the participants so that the reaction can proceed; therefore, leading to enzymes being viewed as only passive participants in the catalyzed reaction. A growing body of evidence shows that enzymes are not rigid structures but are constantly undergoing a wide range of internal motions and conformational fluctuations. In this Perspective, on the basis of studies from our group, we discuss the emerging biophysical model of enzyme catalysis that provides a detailed understanding of the interconnection among internal protein motions, conformational substates, enzyme mechanisms, and the catalytic efficiency of enzymes. For a number of enzymes, networks of conserved residues that extend from the surface of the enzyme all the way to the active site have been discovered. These networks are hypothesized to serve as pathways of energy transfer that enables thermodynamical coupling of the surrounding solvent with enzyme catalysis and play a role in promoting enzyme function. Additionally, the role of enzyme structure and electrostatic effects has been well acknowledged for quite some time. Collectively, the recent knowledge gained about enzyme mechanisms suggests that the conventional paradigm of enzyme structure encoding function is incomplete and needs to be extended to structure encodes dynamics, and together these enzyme features encode function including catalytic rate acceleration.
Collapse
Affiliation(s)
- Pratul K Agarwal
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
44
|
Petrović D, Wang X, Strodel B. How accurately do force fields represent protein side chain ensembles? Proteins 2018; 86:935-944. [DOI: 10.1002/prot.25525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Dušan Petrović
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich; Jülich, 52425 Germany
- Department of Cell and Molecular Biology; Uppsala University, BMC Box 596; Uppsala, 751 24 Sweden
| | - Xue Wang
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich; Jülich, 52425 Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf, Universitätsstraße 1; Düsseldorf, 40225 Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich; Jülich, 52425 Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf, Universitätsstraße 1; Düsseldorf, 40225 Germany
| |
Collapse
|
45
|
Paukovich N, Xue M, Elder JR, Redzic JS, Blue A, Pike H, Miller BG, Pitts TM, Pollock DD, Hansen K, D'Alessandro A, Eisenmesser EZ. Biliverdin Reductase B Dynamics Are Coupled to Coenzyme Binding. J Mol Biol 2018; 430:3234-3250. [PMID: 29932944 DOI: 10.1016/j.jmb.2018.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Biliverdin reductase B (BLVRB) is a newly identified cellular redox regulator that catalyzes the NADPH-dependent reduction of multiple substrates. Through mass spectrometry analysis, we identified high levels of BLVRB in mature red blood cells, highlighting the importance of BLVRB in redox regulation. The BLVRB conformational changes that occur during conezyme/substrate binding and the role of dynamics in BLVRB function, however, remain unknown. Through a combination of NMR, kinetics, and isothermal titration calorimetry studies, we determined that BLVRB binds its coenzyme 500-fold more tightly than its substrate. While the active site of apo BLVRB is highly dynamic on multiple timescales, active site dynamics are largely quenched within holo BLVRB, in which dynamics are redistributed to other regions of the enzyme. We show that a single point mutation of Arg78➔Ala leads to both an increase in active site micro-millisecond motions and an increase in the microscopic rate constants of coenzyme binding. This demonstrates that altering BLVRB active site dynamics can directly cause a change in functional characteristics. Our studies thus address the solution behavior of apo and holo BLVRB and identify a role of enzyme dynamics in coenzyme binding.
Collapse
Affiliation(s)
- Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Mengjun Xue
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - James R Elder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Hamish Pike
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Brian G Miller
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, Aurora, CO 80045, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
46
|
Maria-Solano MA, Serrano-Hervás E, Romero-Rivera A, Iglesias-Fernández J, Osuna S. Role of conformational dynamics in the evolution of novel enzyme function. Chem Commun (Camb) 2018; 54:6622-6634. [PMID: 29780987 PMCID: PMC6009289 DOI: 10.1039/c8cc02426j] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022]
Abstract
The free energy landscape concept that describes enzymes as an ensemble of differently populated conformational sub-states in dynamic equilibrium is key for evaluating enzyme activity, enantioselectivity, and specificity. Mutations introduced in the enzyme sequence can alter the populations of the pre-existing conformational states, thus strongly modifying the enzyme ability to accommodate alternative substrates, revert its enantiopreferences, and even increase the activity for some residual promiscuous reactions. In this feature article, we present an overview of the current experimental and computational strategies to explore the conformational free energy landscape of enzymes. We provide a series of recent publications that highlight the key role of conformational dynamics for the enzyme evolution towards new functions and substrates, and provide some perspectives on how conformational dynamism should be considered in future computational enzyme design protocols.
Collapse
Affiliation(s)
- Miguel A. Maria-Solano
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Eila Serrano-Hervás
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Adrian Romero-Rivera
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Javier Iglesias-Fernández
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Sílvia Osuna
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
- ICREA
,
Pg. Lluís Companys 23
, 08010 Barcelona
, Spain
| |
Collapse
|
47
|
Narayanan C, Bernard DN, Bafna K, Gagné D, Agarwal PK, Doucet N. Ligand-Induced Variations in Structural and Dynamical Properties Within an Enzyme Superfamily. Front Mol Biosci 2018; 5:54. [PMID: 29946547 PMCID: PMC6005897 DOI: 10.3389/fmolb.2018.00054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/23/2018] [Indexed: 01/28/2023] Open
Abstract
Enzyme catalysis is a complex process involving several steps along the reaction coordinates, including substrate recognition and binding, chemical transformation, and product release. Evidence continues to emerge linking the functional and evolutionary role of conformational exchange processes in optimal catalytic activity. Ligand binding changes the conformational landscape of enzymes, inducing long-range conformational rearrangements. Using functionally distinct members of the pancreatic ribonuclease superfamily as a model system, we characterized the structural and conformational changes associated with the binding of two mononucleotide ligands. By combining NMR chemical shift titration experiments with the chemical shift projection analysis (CHESPA) and relaxation dispersion experiments, we show that biologically distinct members of the RNase superfamily display discrete chemical shift perturbations upon ligand binding that are not conserved even in structurally related members. Amino acid networks exhibiting coordinated chemical shift displacements upon binding of the two ligands are unique to each of the RNases analyzed. Our results reveal the contribution of conformational rearrangements to the observed chemical shift perturbations. These observations provide important insights into the contribution of the different ligand binding specificities and effects of conformational exchange on the observed perturbations associated with ligand binding for functionally diverse members of the pancreatic RNase superfamily.
Collapse
Affiliation(s)
- Chitra Narayanan
- INRS - Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - David N Bernard
- INRS - Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - Khushboo Bafna
- Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - Donald Gagné
- INRS - Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - Pratul K Agarwal
- Computational Biology Institute and Computer Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Nicolas Doucet
- INRS - Institut Armand-Frappier, Université du Québec, Laval, QC, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada
| |
Collapse
|
48
|
Rodriguez-Bussey I, Yao XQ, Shouaib AD, Lopez J, Hamelberg D. Decoding Allosteric Communication Pathways in Cyclophilin A with a Comparative Analysis of Perturbed Conformational Ensembles. J Phys Chem B 2018; 122:6528-6535. [DOI: 10.1021/acs.jpcb.8b03824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isela Rodriguez-Bussey
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Abdullah Danish Shouaib
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Jonathan Lopez
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
49
|
Protein kinase Cα gain-of-function variant in Alzheimer's disease displays enhanced catalysis by a mechanism that evades down-regulation. Proc Natl Acad Sci U S A 2018; 115:E5497-E5505. [PMID: 29844158 DOI: 10.1073/pnas.1805046115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Conventional protein kinase C (PKC) family members are reversibly activated by binding to the second messengers Ca2+ and diacylglycerol, events that break autoinhibitory constraints to allow the enzyme to adopt an active, but degradation-sensitive, conformation. Perturbing these autoinhibitory constraints, resulting in protein destabilization, is one of many mechanisms by which PKC function is lost in cancer. Here, we address how a gain-of-function germline mutation in PKCα in Alzheimer's disease (AD) enhances signaling without increasing vulnerability to down-regulation. Biochemical analyses of purified protein demonstrate that this mutation results in an ∼30% increase in the catalytic rate of the activated enzyme, with no changes in the concentrations of Ca2+ or lipid required for half-maximal activation. Molecular dynamics simulations reveal that this mutation has both localized and allosteric effects, most notably decreasing the dynamics of the C-helix, a key determinant in the catalytic turnover of kinases. Consistent with this mutation not altering autoinhibitory constraints, live-cell imaging studies reveal that the basal signaling output of PKCα-M489V is unchanged. However, the mutant enzyme in cells displays increased sensitivity to an inhibitor that is ineffective toward scaffolded PKC, suggesting the altered dynamics of the kinase domain may influence protein interactions. Finally, we show that phosphorylation of a key PKC substrate, myristoylated alanine-rich C-kinase substrate, is increased in brains of CRISPR-Cas9 genome-edited mice containing the PKCα-M489V mutation. Our results unveil how an AD-associated mutation in PKCα permits enhanced agonist-dependent signaling via a mechanism that evades the cell's homeostatic down-regulation of constitutively active PKCα.
Collapse
|
50
|
Stanton BZ, Chory EJ, Crabtree GR. Chemically induced proximity in biology and medicine. Science 2018; 359:359/6380/eaao5902. [PMID: 29590011 DOI: 10.1126/science.aao5902] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proximity, or the physical closeness of molecules, is a pervasive regulatory mechanism in biology. For example, most posttranslational modifications such as phosphorylation, methylation, and acetylation promote proximity of molecules to play deterministic roles in cellular processes. To understand the role of proximity in biologic mechanisms, chemical inducers of proximity (CIPs) were developed to synthetically model biologically regulated recruitment. Chemically induced proximity allows for precise temporal control of transcription, signaling cascades, chromatin regulation, protein folding, localization, and degradation, as well as a host of other biologic processes. A systematic analysis of CIPs in basic research, coupled with recent technological advances utilizing CRISPR, distinguishes roles of causality from coincidence and allows for mathematical modeling in synthetic biology. Recently, induced proximity has provided new avenues of gene therapy and emerging advances in cancer treatment.
Collapse
Affiliation(s)
- Benjamin Z Stanton
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Emma J Chory
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald R Crabtree
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|