1
|
Benchimol E, Ebbert KE, Walther A, Holstein JJ, Clever GH. Ligand Conformation Controls Assembly of a Helicate/Mesocate, Heteroleptic [Pd 2L 2L' 2] Cages and a Six-Jagged [Pd 6L 12] Ring. Chemistry 2024; 30:e202401850. [PMID: 38853595 DOI: 10.1002/chem.202401850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Molecular building blocks, capable of adopting several strongly deviating conformations, are of particular interest in the development of stimuli-responsive self-assemblies. The pronounced structural flexibility of a short acridone-based bridging ligand, equipped with two monodentate isoquinoline donors, is herein exploited to assemble a surprisingly diverse series of coordination-driven Pd(II) architectures. First, it can form a highly twisted Pd2L4 helicate, transformable into the corresponding mesocate, controlled by temperature, counter anion and choice of solvent. Second, it also allows the formation of heteroleptic cages, either from a mix of ligands with Pd(II) cations or by cage-to-cage transformation from homoleptic assemblies. Here, the acridone-based ligand tolerates counter ligands that carry their donors either in a diverging or converging arrangement, as it can rotate its own coordination sites by 90° and structurally adapt to both situations via shape complementarity. Third, by a near 180° rotation of only one of its arms, the ligand can adopt an S-shape conformation and form an unprecedented C6h-symmetric Pd6L12 saw-toothed six-membered ring.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kristina E Ebbert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexandre Walther
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
2
|
Wu H, Cao R, Wei S, Pathan-Chhatbar S, Wen M, Wu B, Schamel WW, Wang S, OuYang B. Cholesterol Binds in a Reversed Orientation to TCRβ-TM in Which Its OH Group is Localized to the Center of the Lipid Bilayer. J Mol Biol 2021; 433:167328. [PMID: 34688686 DOI: 10.1016/j.jmb.2021.167328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
T cell receptor (TCR) signaling in response to antigen recognition is essential for the adaptive immune response. Cholesterol keeps TCRs in the resting conformation and mediates TCR clustering by directly binding to the transmembrane domain of the TCRβ subunit (TCRβ-TM), while cholesterol sulfate (CS) displaces cholesterol from TCRβ. However, the atomic interaction of cholesterol or CS with TCRβ remains elusive. Here, we determined the cholesterol and CS binding site of TCRβ-TM in phospholipid bilayers using solution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulation. Cholesterol binds to the transmembrane residues within a CARC-like cholesterol recognition motif. Surprisingly, the polar OH group of cholesterol is placed in the hydrophobic center of the lipid bilayer stabilized by its polar interaction with K154 of TCRβ-TM. An aromatic interaction with Y158 and hydrophobic interactions with V160 and L161 stabilize this reverse orientation. CS binds to the same site, explaining how it competes with cholesterol. Site-directed mutagenesis of the CARC-like motif disrupted the cholesterol/CS binding to TCRβ-TM, validating the NMR and MD results.
Collapse
Affiliation(s)
- Hongyi Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyu Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shukun Wei
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Salma Pathan-Chhatbar
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), University Clinics and University of Freiburg, Freiburg, Germany
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), University Clinics and University of Freiburg, Freiburg, Germany.
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
4
|
Lv F, Qi F, Zhang Z, Wen M, Kale J, Piai A, Du L, Wang S, Zhou L, Yang Y, Wu B, Liu Z, Del Rosario J, Pogmore J, Chou JJ, Andrews DW, Lin J, OuYang B. An amphipathic Bax core dimer forms part of the apoptotic pore wall in the mitochondrial␣membrane. EMBO J 2021; 40:e106438. [PMID: 34101209 PMCID: PMC8280806 DOI: 10.15252/embj.2020106438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high-resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure-guided mutations demonstrate the importance of both types of protein-lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.
Collapse
Affiliation(s)
- Fujiao Lv
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Qi
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Justin Kale
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lingyu Du
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Liujuan Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Juan Del Rosario
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Justin Pogmore
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jialing Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wei S, Hu X, Du L, Zhao L, Xue H, Liu C, Chou JJ, Zhong J, Tong Y, Wang S, OuYang B. Inhibitor Development against p7 Channel in Hepatitis C Virus. Molecules 2021; 26:1350. [PMID: 33802584 PMCID: PMC7961618 DOI: 10.3390/molecules26051350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatitis C Virus (HCV) is the key cause of chronic and severe liver diseases. The recent direct-acting antiviral agents have shown the clinical success on HCV-related diseases, but the rapid HCV mutations of the virus highlight the sustaining necessity to develop new drugs. p7, the viroporin protein from HCV, has been sought after as a potential anti-HCV drug target. Several classes of compounds, such as amantadine and rimantadine have been testified for p7 inhibition. However, the efficacies of these compounds are not high. Here, we screened some novel p7 inhibitors with amantadine scaffold for the inhibitor development. The dissociation constant (Kd) of 42 ARD-series compounds were determined by nuclear magnetic resonance (NMR) titrations. The efficacies of the two best inhibitors, ARD87 and ARD112, were further confirmed using viral production assay. The binding mode analysis and binding stability for the strongest inhibitor were deciphered by molecular dynamics (MD) simulation. These ARD-series compounds together with 49 previously published compounds were further analyzed by molecular docking. Key pharmacophores were identified among the structure-similar compounds. Our studies suggest that different functional groups are highly correlated with the efficacy for inhibiting p7 of HCV, in which hydrophobic interactions are the dominant forces for the inhibition potency. Our findings provide guiding principles for designing higher affinity inhibitors of p7 as potential anti-HCV drug candidates.
Collapse
Affiliation(s)
- Shukun Wei
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; (S.W.); (L.D.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China; (X.H.); (J.Z.)
| | - Xiaoyou Hu
- University of Chinese Academy of Sciences, Beijing 100049, China; (X.H.); (J.Z.)
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingyu Du
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; (S.W.); (L.D.); (L.Z.)
| | - Linlin Zhao
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; (S.W.); (L.D.); (L.Z.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Chaolun Liu
- ShanghaiTech University, Shanghai 201210, China;
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| | - Jin Zhong
- University of Chinese Academy of Sciences, Beijing 100049, China; (X.H.); (J.Z.)
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- ShanghaiTech University, Shanghai 201210, China;
| | - Yimin Tong
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; (S.W.); (L.D.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China; (X.H.); (J.Z.)
| |
Collapse
|
6
|
Yeh V, Goode A, Bonev BB. Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR. BIOLOGY 2020; 9:E396. [PMID: 33198410 PMCID: PMC7697852 DOI: 10.3390/biology9110396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics. NMR is uniquely suited to resolving atomic environments within complex molecular assemblies and reporting on membrane organisation, protein structure, lipid and polysaccharide composition, conformational variations and molecular interactions. The main challenge in membrane protein studies at the atomic level remains the need for a membrane environment to support their fold. NMR studies in membrane mimetics and membranes of increasing complexity offer close to native environments for structural and molecular studies of membrane proteins. Solution NMR inherits high resolution from small molecule analysis, providing insights from detergent solubilised proteins and small molecular assemblies. Solid-state NMR achieves high resolution in membrane samples through fast sample spinning or sample alignment. Recent developments in dynamic nuclear polarisation NMR allow signal enhancement by orders of magnitude opening new opportunities for expanding the applications of NMR to studies of native membranes and whole cells.
Collapse
Affiliation(s)
| | | | - Boyan B. Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (V.Y.); (A.G.)
| |
Collapse
|
7
|
Piai A, Fu Q, Cai Y, Ghantous F, Xiao T, Shaik MM, Peng H, Rits-Volloch S, Chen W, Seaman MS, Chen B, Chou JJ. Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nat Commun 2020; 11:2317. [PMID: 32385256 PMCID: PMC7210310 DOI: 10.1038/s41467-020-16165-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The prefusion conformation of HIV-1 envelope protein (Env) is recognized by most broadly neutralizing antibodies (bnAbs). Studies showed that alterations of its membrane-related components, including the transmembrane domain (TMD) and cytoplasmic tail (CT), can reshape the antigenic structure of the Env ectodomain. Using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of an Env segment encompassing the TMD and a large portion of the CT in bicelles. The structure reveals that the CT folds into amphipathic helices that wrap around the C-terminal end of the TMD, thereby forming a support baseplate for the rest of Env. NMR dynamics measurements provide evidences of dynamic coupling across the TMD between the ectodomain and CT. Pseudovirus-based neutralization assays suggest that CT-TMD interaction preferentially affects antigenic structure near the apex of the Env trimer. These results explain why the CT can modulate the Env antigenic properties and may facilitate HIV-1 Env-based vaccine design.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Md Munan Shaik
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Comprehensive Multi-Omics Analysis Reveals Aberrant Metabolism of Epstein-Barr-Virus-Associated Gastric Carcinoma. Cells 2019; 8:cells8101220. [PMID: 31597357 PMCID: PMC6829863 DOI: 10.3390/cells8101220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
The metabolic landscape of Epstein–Barr-virus-associated gastric cancer (EBVaGC) remains to be elucidated. In this study, we used transcriptomics, metabolomics, and lipidomics to comprehensively investigate aberrant metabolism in EBVaGC. Specifically, we conducted gene expression analyses using microarray-based data from gastric adenocarcinoma epithelial cell lines and tissue samples from patients with clinically advanced gastric carcinoma. We also conducted complementary metabolomics and lipidomics using various mass spectrometry platforms. We found a significant downregulation of genes related to metabolic pathways, especially the metabolism of amino acids, lipids, and carbohydrates. The effect of dysregulated metabolic genes was confirmed in a survival analysis of 3951 gastric cancer patients. We found 57 upregulated metabolites and 31 metabolites that were downregulated in EBVaGC compared with EBV-negative gastric cancer. Sixty-nine lipids, mainly ether-linked phospholipids and triacylglycerols, were downregulated, whereas 45 lipids, mainly phospholipids, were upregulated. In total, 15 metabolisms related to polar metabolites and 15 lipid-associated pathways were involved in alteration of metabolites by EBV in gastric cancer. In this work, we have described the metabolic landscape of EBVaGC at the multi-omics level. These findings could help elucidate the mechanism of EBVaGC oncogenesis.
Collapse
|
9
|
Puthenveetil R, Vinogradova O. Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments. J Biol Chem 2019; 294:15914-15931. [PMID: 31551353 DOI: 10.1074/jbc.rev119.009178] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A third of the genes in prokaryotic and eukaryotic genomes encode membrane proteins that are either essential for signal transduction and solute transport or function as scaffold structures. Unlike many of their soluble counterparts, the overall structural and functional organization of membrane proteins is sparingly understood. Recent advances in X-ray crystallography, cryo-EM, and nuclear magnetic resonance (NMR) are closing this gap by enabling an in-depth view of these ever-elusive proteins at atomic resolution. Despite substantial technological advancements, however, the overall proportion of membrane protein entries in the Protein Data Bank (PDB) remains <4%. This paucity is mainly attributed to difficulties associated with their expression and purification, propensity to form large multisubunit complexes, and challenges pertinent to identification of an ideal detergent, lipid, or detergent/lipid mixture that closely mimic their native environment. NMR is a powerful technique to obtain atomic-resolution and dynamic details of a protein in solution. This is accomplished through an assortment of isotopic labeling schemes designed to acquire multiple spectra that facilitate deduction of the final protein structure. In this review, we discuss current approaches and technological developments in the determination of membrane protein structures by solution NMR and highlight recent structural and mechanistic insights gained with this technique. We also discuss strategies for overcoming size limitations in NMR applications, and we explore a plethora of membrane mimetics available for the structural and mechanistic understanding of these essential cellular proteins.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Department of Molecular and Cell Biology, college of liberal arts and sciences, University of Connecticut at Storrs, Storrs, Connecticut 06269
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, Connecticut 06269
| |
Collapse
|
10
|
Chen W, OuYang B, Chou JJ. Critical Effect of the Detergent:Protein Ratio on the Formation of the Hepatitis C Virus p7 Channel. Biochemistry 2019; 58:3834-3837. [PMID: 31468972 DOI: 10.1021/acs.biochem.9b00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The p7 protein encoded by the hepatitis C virus forms a cation-selective viroporin in the membrane. One of the most intriguing findings about the p7 viroporin is its unique hexameric structure in dodecylphosphocholine (DPC) micelles determined by nuclear magnetic resonance (NMR), but the hexameric structure was recently challenged by another NMR study of p7, also in DPC detergent, which claimed that the p7 in this detergent is monomeric. Here, we show that p7 oligomerization is highly sensitive to the detergent:protein ratio used in protein reconstitution and that the 40-fold difference in this ratio between the two studies was the cause of their different conclusions. In addition, we have performed extensive measurements of interchain paramagnetic relaxation enhancements (PREs) for p7 hexamers reconstituted in DPC micelles and in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dihexanoyl-sn-glycero-3-phosphocholine bicelles. In both cases, interchain PREs are overall consistent with the hexameric structure determined in micelles. Our data validate the overall architecture of the p7 hexamer while highlighting the importance of the detergent:protein ratio in membrane protein sample preparation.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science , Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201203 , China
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
11
|
Fu Q, Piai A, Chen W, Xia K, Chou JJ. Structure determination protocol for transmembrane domain oligomers. Nat Protoc 2019; 14:2483-2520. [PMID: 31270510 DOI: 10.1038/s41596-019-0188-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
Abstract
The transmembrane (TM) anchors of cell surface proteins have been one of the 'blind spots' in structural biology because they are generally very hydrophobic, sometimes dynamic, and thus difficult targets for structural characterization. A plethora of examples show these membrane anchors are not merely anchors but can multimerize specifically to activate signaling receptors on the cell surface or to stabilize envelope proteins in viruses. Through a series of studies of the TM domains (TMDs) of immune receptors and viral membrane proteins, we have established a robust protocol for determining atomic-resolution structures of TM oligomers by NMR in bicelles that closely mimic a lipid bilayer. Our protocol overcomes hurdles typically encountered by structural biology techniques such as X-ray crystallography and cryo-electron microscopy (cryo-EM) when studying small TMDs. Here, we provide the details of the protocol, covering five major technical aspects: (i) a general method for producing isotopically labeled TM or membrane-proximal (MP) protein fragments that involves expression of the protein (which is fused to TrpLE) into inclusion bodies and releasing the target protein by cyanogen bromide (CNBr) cleavage; (ii) determination of the oligomeric state of TMDs in bicelles; (iii) detection of intermolecular contacts using nuclear Overhauser effect (NOE) experiments; (iv) structure determination; and (v) paramagnetic probe titration (PPT) to characterize the membrane partition of the TM oligomers. This protocol is broadly applicable for filling structural gaps of many type I/II membrane proteins. The procedures may take 3-6 months to complete, depending on the complexity and stability of the protein sample.
Collapse
Affiliation(s)
- Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Oestringer BP, Bolivar JH, Claridge JK, Almanea L, Chipot C, Dehez F, Holzmann N, Schnell JR, Zitzmann N. Hepatitis C virus sequence divergence preserves p7 viroporin structural and dynamic features. Sci Rep 2019; 9:8383. [PMID: 31182749 PMCID: PMC6557816 DOI: 10.1038/s41598-019-44413-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
The hepatitis C virus (HCV) viroporin p7 oligomerizes to form ion channels, which are required for the assembly and secretion of infectious viruses. The 63-amino acid p7 monomer has two putative transmembrane domains connected by a cytosolic loop, and has both N- and C- termini exposed to the endoplasmic reticulum (ER) lumen. NMR studies have indicated differences between p7 structures of distantly related HCV genotypes. A critical question is whether these differences arise from the high sequence variation between the different isolates and if so, how the divergent structures can support similar biological functions. Here, we present a side-by-side characterization of p7 derived from genotype 1b (isolate J4) in the detergent 6-cyclohexyl-1-hexylphosphocholine (Cyclofos-6) and p7 derived from genotype 5a (isolate EUH1480) in n-dodecylphosphocholine (DPC). The 5a isolate p7 in conditions previously associated with a disputed oligomeric form exhibits secondary structure, dynamics, and solvent accessibility broadly like those of the monomeric 1b isolate p7. The largest differences occur at the start of the second transmembrane domain, which is destabilized in the 5a isolate. The results show a broad consensus among the p7 variants that have been studied under a range of different conditions and indicate that distantly related HCVs preserve key features of structure and dynamics.
Collapse
Affiliation(s)
- Benjamin P Oestringer
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RY, United Kingdom
| | - Juan H Bolivar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Jolyon K Claridge
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Latifah Almanea
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Chris Chipot
- Laboratoire International Associé CNRS-University of Illinois at Urbana Champaign, Université de Lorraine, BP 70239, 54506, Vandœuvre-lès-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, 61801, United States
| | - François Dehez
- Laboratoire International Associé CNRS-University of Illinois at Urbana Champaign, Université de Lorraine, BP 70239, 54506, Vandœuvre-lès-Nancy, France
| | - Nicole Holzmann
- Laboratoire International Associé CNRS-University of Illinois at Urbana Champaign, Université de Lorraine, BP 70239, 54506, Vandœuvre-lès-Nancy, France
| | - Jason R Schnell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
13
|
Pan L, Fu TM, Zhao W, Zhao L, Chen W, Qiu C, Liu W, Liu Z, Piai A, Fu Q, Chen S, Wu H, Chou JJ. Higher-Order Clustering of the Transmembrane Anchor of DR5 Drives Signaling. Cell 2019; 176:1477-1489.e14. [PMID: 30827683 DOI: 10.1016/j.cell.2019.02.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 12/18/2022]
Abstract
Receptor clustering on the cell membrane is critical in the signaling of many immunoreceptors, and this mechanism has previously been attributed to the extracellular and/or the intracellular interactions. Here, we report an unexpected finding that for death receptor 5 (DR5), a receptor in the tumor necrosis factor receptor superfamily, the transmembrane helix (TMH) alone in the receptor directly assembles a higher-order structure to drive signaling and that this structure is inhibited by the unliganded ectodomain. Nuclear magnetic resonance structure of the TMH in bicelles shows distinct trimerization and dimerization faces, allowing formation of dimer-trimer interaction networks. Single-TMH mutations that disrupt either trimerization or dimerization abolish ligand-induced receptor activation. Surprisingly, proteolytic removal of the DR5 ectodomain can fully activate downstream signaling in the absence of ligand. Our data suggest a receptor activation mechanism in which binding of ligand or antibodies to overcome the pre-ligand autoinhibition allows TMH clustering and thus signaling.
Collapse
Affiliation(s)
- Liqiang Pan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wenbin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Chixiao Qiu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Wenhui Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Henrich E, Löhr F, Mezhyrova J, Laguerre A, Bernhard F, Dötsch V. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments. Methods Enzymol 2018; 614:143-185. [PMID: 30611423 DOI: 10.1016/bs.mie.2018.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although membrane proteins are in the focus of biochemical research for many decades the general knowledge of this important class is far behind soluble proteins. Despite several recent technical developments, the most challenging feature still is the generation of high-quality samples in environments suitable for the selected application. Reconstitution of membrane proteins into lipid bilayers will generate the most native-like environment and is therefore commonly desired. However, it poses tremendous problems to solution-state NMR analysis due to the dramatic increase in particle size resulting in high rotational correlation times. Nevertheless, a few promising strategies for the solution NMR analysis of membrane inserted proteins are emerging and will be discussed in this chapter. We focus on the generation of membrane protein samples in nanodisc membranes by cell-free systems and will describe the characteristic advantages of that platform in providing tailored protein expression and folding environments. We indicate frequent problems that have to be overcome in cell-free synthesis, nanodisc preparation, and customization for samples dedicated for solution-state NMR. Detailed instructions for sample preparation are given, and solution NMR approaches suitable for membrane proteins in bilayers are compiled. We further discuss the current strategies applied for signal detection from such difficult samples and describe the type of information that can be extracted from the various experiments. In summary, a comprehensive guideline for the analysis of membrane proteins in native-like membrane environments by solution-state NMR techniques will be provided.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Julija Mezhyrova
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
|
16
|
Kot EF, Arseniev AS, Mineev KS. Behavior of Most Widely Spread Lipids in Isotropic Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8302-8313. [PMID: 29924628 DOI: 10.1021/acs.langmuir.8b01454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isotropic bicelles are a widely used membrane mimetic for structural studies of membrane proteins and their transmembrane domains. Simple and cheap in preparation, they contain a patch of lipid bilayer that reproduces the native environment of membrane proteins. Despite the obvious power of bicelles in reproducing the various kinds of environments, the vast majority of structural studies employ the single lipid/detergent system. On the other hand, even if the alternative bicelle composition is used, the properties of mixtures are not characterized, and the mere presence of lipid bilayer and discoidal shape of bicelle particles is not confirmed. Here we present an extensive investigation of various bicellar mixtures and describe the behavior of bicelles with lipids other than classical DMPC, namely sphingomyelins (SM), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), phosphatidylserines (PS), and cholesterol. These lipids are rarely used in modern structural biology, but can help a lot in understanding the influence of the membrane composition on the properties of both integral and peripheral membrane proteins. Additionally, the ability of diheptanoylphosphatidylcholine (DH7PC) to serve as a rim-forming agent was investigated. We followed the phase transitions as revealed by 31P NMR and size of particles measured by 1H NMR diffusion as the criteria of the proper morphology and structure of bicelles. As an outcome, we state that SM exclusively, and PG/PS in mixtures with zwitterionic lipids can form small isotropic bicelles, which reproduce the key features of lipid behavior in bilayers. Mixtures, containing exclusively the anionic lipids, fail to reveal the lipid phase transition and do not follow the size predicted for the ideal bicelle particles. PE and DH7PC are the unwanted components of bicellar mixtures, and cholesterol can be added to bicelles, however, with certain precautions. In combination with our several most recent works, this study provides a practical guide for the preparation of small isotropic bicelles.
Collapse
Affiliation(s)
- E F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| | - K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| |
Collapse
|