1
|
Aguila A, Salah S, Kulasekaran G, Shweiki M, Shaul-Lotan N, Mor-Shaked H, Daana M, Harel T, McPherson PS. A neurodevelopmental disorder associated with a loss-of-function missense mutation in RAB35. J Biol Chem 2024; 300:107124. [PMID: 38432637 PMCID: PMC10966776 DOI: 10.1016/j.jbc.2024.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Moatasem Shweiki
- Neurosurgery Department, Hadassah Medical Center, Jerusalem, Israel
| | - Nava Shaul-Lotan
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Yokne'am Illit, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
3
|
Qiu X, Li Y, Wang Y, Gong X, Wang Y, Pan L. Mechanistic Insights into the Interactions of Arl8b with the RUN Domains of PLEKHM1 and SKIP. J Mol Biol 2023; 435:168293. [PMID: 37775038 DOI: 10.1016/j.jmb.2023.168293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Arl8b, a specific Arf-like family GTPase present on lysosome, and plays critical roles in many lysosome-related cellular processes such as autophagy. The active Arl8b can be specifically recognized by the RUN domains of two Arl8b-effectors PLEKHM1 and SKIP, thereby regulating the autophagosome/lysosome membrane fusion and the intracellular lysosome positioning, respectively. However, the mechanistic bases underlying the interactions of Arl8b with the RUN domains of PLEKHM1 and SKIP remain elusive. Here, we report the two high-resolution crystal structures of the active Arl8b in complex with the RUN domains of PLEKHM1 and SKIP. In addition to elucidating the detailed molecular mechanism governing the specific interactions of the active Arl8b with the RUN domains of PLEKHM1 and SKIP, the determined complex structures also reveal a general binding mode shared by the PLEKHM1 and SKIP RUN domains for interacting with the active Arl8b. Furthermore, we uncovered a competitive relationship between the RUN domains of PLEKHM1 and SKIP in binding to the active Arl8b as well as a unique small GTPase-binding mode adopted by the PLEKHM1 and SKIP RUN domains, thereby enriching the repertoire of the RUN domain/small GTPase interaction modes. In all, our findings provide new mechanistic insights into the interactions of the active Arl8b with PLEKHM1 and SKIP, and are valuable for further understanding the working modes of these proteins in relevant cellular processes.
Collapse
Affiliation(s)
- Xiaohui Qiu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaru Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Lifeng Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
4
|
Cason SE, Holzbaur EL. Axonal transport of autophagosomes is regulated by dynein activators JIP3/JIP4 and ARF/RAB GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526044. [PMID: 36747648 PMCID: PMC9901177 DOI: 10.1101/2023.01.28.526044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuronal autophagosomes, "self-eating" degradative organelles, form at presynaptic sites in the distal axon and are transported to the soma to recycle their cargo. During transit, autophagic vacuoles (AVs) mature through fusion with lysosomes to acquire the enzymes necessary to breakdown their cargo. AV transport is driven primarily by the microtubule motor cytoplasmic dynein in concert with dynactin and a series of activating adaptors that change depending on organelle maturation state. The transport of mature AVs is regulated by the scaffolding proteins JIP3 and JIP4, both of which activate dynein motility in vitro. AV transport is also regulated by ARF6 in a GTP-dependent fashion. While GTP-bound ARF6 promotes the formation of the JIP3/4-dynein-dynactin complex, RAB10 competes with the activity of this complex by increasing kinesin recruitment to axonal AVs and lysosomes. These interactions highlight the complex coordination of motors regulating organelle transport in neurons.
Collapse
Affiliation(s)
- Sydney E. Cason
- Department of Physiology, University of Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania
- Pennsylvania Muscle Institute, University of Pennsylvania
| | - Erika L.F. Holzbaur
- Department of Physiology, University of Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania
- Pennsylvania Muscle Institute, University of Pennsylvania
| |
Collapse
|
5
|
Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol Psychiatry 2023; 28:810-821. [PMID: 36253443 PMCID: PMC9908544 DOI: 10.1038/s41380-022-01822-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2 knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes. Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.
Collapse
|
6
|
Rep15 interacts with several Rab GTPases and has a distinct fold for a Rab effector. Nat Commun 2022; 13:4262. [PMID: 35871249 PMCID: PMC9308819 DOI: 10.1038/s41467-022-31831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn their GTP-bound (active) form, Rab proteins interact with effector proteins that control downstream signaling. One such Rab15 effector is Rep15, which is known to have a role in receptor recycling from the endocytic recycling compartment but otherwise remains poorly characterized. Here, we report the characterization of the Rep15:Rab15 interaction and identification of Rab3 paralogs and Rab34 as Rep15 interacting partners from a yeast two-hybrid assay. Biochemical validation of the interactions is presented and crystal structures of the Rep15:Rab3B and Rep15:Rab3C complexes provide additional mechanistic insight. We find that Rep15 adopts a globular structure that is distinct from other reported Rab15, Rab3 and Rab34 effectors. Structure-based mutagenesis experiments explain the Rep15:Rab interaction specificity. Rep15 depletion in U138MG glioblastoma cells impairs cell proliferation, cell migration and receptor recycling, underscoring the need for further clarification of the role of Rep15 in cancer.
Collapse
|
7
|
Francis CR, Kincross H, Kushner EJ. Rab35 governs apicobasal polarity through regulation of actin dynamics during sprouting angiogenesis. Nat Commun 2022; 13:5276. [PMID: 36075898 PMCID: PMC9458672 DOI: 10.1038/s41467-022-32853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
In early blood vessel development, trafficking programs, such as those using Rab GTPases, are tasked with delivering vesicular cargo with high spatiotemporal accuracy. However, the function of many Rab trafficking proteins remain ill-defined in endothelial tissue; therefore, their relevance to blood vessel development is unknown. Rab35 has been shown to play an enigmatic role in cellular behaviors which differs greatly between tissue-type and organism. Importantly, Rab35 has never been characterized for its potential contribution in sprouting angiogenesis; thus, our goal was to map Rab35’s primary function in angiogenesis. Our results demonstrate that Rab35 is critical for sprout formation; in its absence, apicobasal polarity is entirely lost in vitro and in vivo. To determine mechanism, we systematically explored established Rab35 effectors and show that none are operative in endothelial cells. However, we find that Rab35 partners with DENNd1c, an evolutionarily divergent guanine exchange factor, to localize to actin. Here, Rab35 regulates actin polymerization through limiting Rac1 and RhoA activity, which is required to set up proper apicobasal polarity during sprout formation. Our findings establish that Rab35 is a potent brake of actin remodeling during blood vessel development. The promiscuous GTPase Rab35 has been shown to be involved in many important cellular functions. In this article, Francis et al. illustrate how Rab35 acts as a critical brake to actin remodeling during sprouting angiogenesis and how it is necessary for proper blood vessel development.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Hayle Kincross
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
8
|
Murata T, Unno Y, Fukuda M, Utsunomiya-Tate N. The dynamic structure of Rab35 is stabilized in the presence of GTP under physiological conditions. Biochem Biophys Rep 2020; 23:100776. [PMID: 32613087 PMCID: PMC7322127 DOI: 10.1016/j.bbrep.2020.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Rab proteins, a family of small guanosine triphosphatases, play key roles in intracellular membrane trafficking and the regulation of various cellular processes. As a Rab isoform, Rab35 is crucial for recycling endosome trafficking, cytokinesis and neurite outgrowth. In this report, we analyzed dynamic structural changes and physicochemical features of Rab35 in response to different external conditions, including temperature, pH, salt concentration and guanosine triphosphate (GTP), by circular dichroism (CD) spectroscopy. CD spectra revealed that the α-helix content of Rab35 varies under different conditions considerably. The addition of GTP increases the α-helix content of Rab35 when the temperature, pH and salt concentration match physiological conditions. The results suggest that the external environment affects the secondary structure of Rab35. In particular, the presence of GTP stabilized the α-helices of Rab35 under physiological conditions. These structural changes may translate to changes in Rab35 function and relate to its role in membrane trafficking.
Collapse
Affiliation(s)
- Takuya Murata
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yuka Unno
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Naoko Utsunomiya-Tate
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
9
|
Sakurai S, Shimizu T, Ohto U. Crystal structure of the FYCO1 RUN domain suggests possible interfaces with small GTPases. Acta Crystallogr F Struct Biol Commun 2020; 76:326-333. [PMID: 32744243 PMCID: PMC7397462 DOI: 10.1107/s2053230x20009012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 01/07/2023] Open
Abstract
FYCO1 is a multidomain adaptor protein that plays an important role in autophagy by mediating the kinesin-dependent microtubule plus-end-directed transport of autophagosomes. FYCO1 contains a RUN domain, which is hypothesized to function as a specific effector for members of the Ras superfamily of small GTPases, but its role has not been well characterized and its interaction partner(s) have not been identified. Here, the crystal structure of the FYCO1 RUN domain was determined at 1.3 Å resolution. The overall structure of the FYCO1 RUN domain was similar to those of previously reported RUN domains. Detailed structural comparisons with other RUN domains and docking studies suggested a possible interaction interface of the FYCO1 RUN domain with small GTPases of the Ras superfamily.
Collapse
Affiliation(s)
- Shunya Sakurai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Sawade L, Grandi F, Mignanelli M, Patiño-López G, Klinkert K, Langa-Vives F, Di Guardo R, Echard A, Bolino A, Haucke V. Rab35-regulated lipid turnover by myotubularins represses mTORC1 activity and controls myelin growth. Nat Commun 2020; 11:2835. [PMID: 32503983 PMCID: PMC7275063 DOI: 10.1038/s41467-020-16696-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
Inherited peripheral neuropathies (IPNs) represent a broad group of disorders including Charcot-Marie-Tooth (CMT) neuropathies characterized by defects primarily arising in myelin, axons, or both. The molecular mechanisms by which mutations in nearly 100 identified IPN/CMT genes lead to neuropathies are poorly understood. Here we show that the Ras-related GTPase Rab35 controls myelin growth via complex formation with the myotubularin-related phosphatidylinositol (PI) 3-phosphatases MTMR13 and MTMR2, encoded by genes responsible for CMT-types 4B2 and B1 in humans, and found that it downregulates lipid-mediated mTORC1 activation, a pathway known to crucially regulate myelin biogenesis. Targeted disruption of Rab35 leads to hyperactivation of mTORC1 signaling caused by elevated levels of PI 3-phosphates and to focal hypermyelination in vivo. Pharmacological inhibition of phosphatidylinositol 3,5-bisphosphate synthesis or mTORC1 signaling ameliorates this phenotype. These findings reveal a crucial role for Rab35-regulated lipid turnover by myotubularins to repress mTORC1 activity and to control myelin growth. Charcot-Marie-Tooth (CMT) is an inherited peripheral neuropathy. Here, the authors show that Rab35 forms a complex with genes implicated in CMT, MTMR13 and MTMR2, which regulates myelin growth by controlling mTORC1 signaling through lipid turnover.
Collapse
Affiliation(s)
- Linda Sawade
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Federica Grandi
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Marianna Mignanelli
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.,San Raffaele Vita-Salute University, Via Olgettina 60, 20132, Milan, Italy
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez. C.P, 06720, Ciudad de México, México
| | - Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, F-75015, Paris, France.,Sorbonne Université, Collège doctoral, F-75005, Paris, France
| | - Francina Langa-Vives
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Roberta Di Guardo
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Alessandra Bolino
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, NeuroCure Cluster of Excellence, 10117, Berlin, Germany.
| |
Collapse
|
11
|
Abstract
The mechanism of GTPase specificity remains incompletely understood. In this issue of Structure, Lin et al. (2019) present crystal structures of Rab35 in complex with two effectors, ACAP2 and RUSC2, respectively, unraveling the molecular basis for the exquisite mutual specificity between Rab35 and these effectors.
Collapse
Affiliation(s)
- Yi-Chun Kuo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390.
| |
Collapse
|