1
|
Watanabe Y, Kumeta H, Watanabe S. Structural basis for phosphatidylcholine synthesis by bacterial phospholipid N-methyltransferases. J Biol Chem 2025; 301:108507. [PMID: 40222548 DOI: 10.1016/j.jbc.2025.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
In phosphatidylcholine (PC)-containing bacteria, PC is synthesized by phospholipid N-methyltransferases (Pmts) and plays an important role in the interactions between symbiotic and pathogenic bacteria and their eukaryotic host cells. Pmts catalyze the SAM-dependent three methylation reactions of the head group of phosphatidylethanolamine (PE) to form PC through monomethyl PE and dimethyl PE. However, the precise molecular mechanisms underlying PC biosynthesis by PmtA remain largely unclear, owing to the lack of structural information. Here, we determined the crystal structures of Agrobacterium tumefaciens Pmt (AtPmtA) in complex with SAH or 5'-methylthioadenosine. Crystal structures and NMR analysis revealed the binding mode of AtPmtA to SAH in solution. Structure-based mutational analyses showed that a conserved tyrosine residue in the substrate-binding groove is involved in methylation. Furthermore, we showed that differences in substrate specificity among Pmt homologs were determined by whether the amino acid residues comprising the substrate-binding groove were isoleucine or phenylalanine. These findings provide a structural basis for understanding the mechanisms underlying Pmts-mediated PC biosynthesis.
Collapse
Affiliation(s)
| | - Hiroyuki Kumeta
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Seiya Watanabe
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
2
|
Meng C, Guo W, Xiao C, Wen Y, Zhu X, Zhang Q, Liang Y, Li H, Xu S, Qiu Y, Chen H, Lin WJ, Wu B. Structural basis for psilocybin biosynthesis. Nat Commun 2025; 16:2827. [PMID: 40121242 PMCID: PMC11929908 DOI: 10.1038/s41467-025-58239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Psilocybin shows significant therapeutic potential for psilocybin-assisted psychotherapy in addressing various psychiatric conditions. The biosynthetic approach promises rapid and efficient production of psilocybin. Understanding the enzymes that contribute to the biosynthesis of psilocybin can enhance its production process. In this study, we elucidate the crystal structures of L-tryptophan-specific decarboxylase PsiD in both its apo and tryptamine-bound states, the 4-hydroxytryptamine kinase PsiK bound to its substrate, and several forms of the methyltransferase PsiM in either apo or substrate-bound forms derived from the psychedelic mushroom. Structure-based evaluations reveal the mechanisms of self-cleavage and self-inhibition in PsiD, along with the sequential catalytic steps from 4-hydroxytryptamine to the final compound, psilocybin. Additionally, we showcase the antidepressant properties of biosynthetic intermediates of psilocybin on female mice experiencing depression-like behaviors induced by sub-chronic variable stress. Our studies establish a structural basis for the future biosynthetic production of psilocybin using these enzymes and emphasize the clinical potential of norbaeocystin.
Collapse
Affiliation(s)
- Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuan Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xudong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yuxuan Liang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Hongwei Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.
| |
Collapse
|
3
|
Jiang Y, Wan ZQ, Zhang XY, Du HZ, Yang YM, Pan H, Hu Y. Clinical manifestations and pathogenesis of mitochondrial dysfunction in short stature. World J Pediatr 2025; 21:223-251. [PMID: 40009295 DOI: 10.1007/s12519-025-00881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Mitochondria plays a pivotal role in cellular energy production, and their dysfunction can lead to a spectrum of mitochondrial diseases, affecting various organs with a wide range of clinical symptoms. Among these, short stature is a notable manifestation, yet its pathogenesis related to mitochondrial dysfunction remains underexplored. DATA SOURCES A comprehensive literature search was conducted in the PubMed, Medline, and EMBASE databases from inception to November 2024. Patient demographics, genetic confirmation type, clinical features associated with short stature or growth abnormalities, and any interventions or treatments alongside treatment outcomes were extracted. RESULTS Our article provides a comprehensive review of the clinical manifestations and delves into the molecular mechanisms of mitochondrial dysfunction that are associated with short stature. A total of 134 genetically confirmed cases with primary mitochondrial disease (PMD) associated with short stature with mtDNA (e.g., m.3243A>G, large-scale deletions) and nDNA mutations (e.g., NDUFB3, SURF1). Median age at short stature detection was 8 years, with 40% presenting earlier. Growth hormone deficiency (GHD) occurred in 15% of cases, showing variable responses to therapy. Pathogenesis involves mitochondrial dysfunction, growth plate impairment, and endocrine disorders. Early diagnosis relies on timely genetic testing. Management of PMD includes tailored dietary strategies, supplementation, and cautious GH therapy due to potential risks. Emerging gene therapy and multidisciplinary care are emphasized to address disease complexity and optimize outcomes. CONCLUSIONS Previous reviews have described the endocrine aspects of mitochondrial diseases. Although the list of endocrine diseases is comprehensive, it is not specific for short stature. This review focuses on short stature, and it is more specific than previous reviews in terms of etiology, pathogenesis, diagnosis, treatment, and prospects.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhi-Qiang Wan
- State Key Laboratory of Complex, Severe, and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xin-Yue Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Han-Ze Du
- Department of Endocrinology, Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yun-Meng Yang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui Pan
- Department of Endocrinology, Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yi Hu
- State Key Laboratory of Complex, Severe, and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Zhang F, Liu Q, Wang Y, Yin J, Meng X, Wang J, Zhao W, Liu H, Zhang L. Effects of surfactin stress on gene expression and pathological changes in Spodoptera litura. Sci Rep 2024; 14:30357. [PMID: 39638883 PMCID: PMC11621121 DOI: 10.1038/s41598-024-81946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Spodoptera litura (S. litura) is a polyphagous pest of the family Lepidoptera, which causes damage and yields losses to many crops. The long-term use of chemical pesticides for control not only seriously threatens environmental health, but also causes S. litura to develop drug resistance. Therefore, there is an urgent need to develop environmentally safe and friendly biogenic pesticides. However, the mechanism of action of the secondary metabolite (surfactin) of Bacillus Vélezensis (B. vélezensis) on lepidopteran pests (S. litura) has not been reported yet. We found that several metabolites and genes in S. litura were affected by surfactin exposure. The expressions of the metabolites (protoporphyrinogen (PPO), gluconolactone (GDL), and L-cysteate) were significantly down-regulated while glutamate and hydroxychloroquine were significantly up-regulated. The expression levels of genes related to drug metabolism and detoxification, include the glutathione s-transferase (GST) gene family and acetaldehyde dehydrogenase (ALDH), and apoptosis-inhibiting genes (seven in absentia homolog 1(SIAH1)) were significantly decreased. In addition, pathological changes occurred in intestinal wall cells, Malpighian tubule cells, and nerve cells of S. litura under surfactin stress. Conclusively, our results suggest that surfactin induces an increase in reactive oxygen species (ROS) and damages S. litura cells. Furthermore, based on the integrated analysis of transcriptomic and metabolomic data, it is hypothesized that surfactin may also trigger neurotoxicity and cardiotoxicity in S. litura while hindering the insect's detoxification processes. This study lays a foundation for further exploration of surfactin as a potential biopesticide.
Collapse
Affiliation(s)
- Feiyan Zhang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Qiuyue Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Yana Wang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Jialu Yin
- Hebei University of Science and Technology, Shijiazhuang, 050000, People's Republic of China
| | - Xianghe Meng
- Hebei General Hospital, Shijiazhuang, 050000, People's Republic of China
| | - Jiangping Wang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Wenya Zhao
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China.
| | - Liping Zhang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China.
| |
Collapse
|
5
|
Odagaki Y, Murakami Y, Takita T, Mizutani K, Mikami B, Fujiwara S, Yasukawa K. Unveiling the reaction mechanism of arginine decarboxylase in Aspergillus oryzae: Insights from crystal structure analysis. Biochem Biophys Res Commun 2024; 733:150728. [PMID: 39321488 DOI: 10.1016/j.bbrc.2024.150728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Agmatine, a natural polyamine also known as 4-aminobutyl-guanidine, is biosynthesized from arginine by decarboxylation. Aspergillus oryzae contains high amounts of agmatine, suggesting highly active arginine decarboxylase (ADC) in this organism. However, genome analysis revealed no ADC homolog in A. oryzae. A. oryzae strain RIB40 has six homologs of phosphatidylserine decarboxylase (PSD), an enzyme that synthesizes phosphatidyl ethanolamine from phosphatidylserine. We previously discovered that one of these homologs, AO090102000327, encodes arginine decarboxylase, which we named ADC1. In the present study, we determined the crystal structures of ligand-free, arginine-treated, and agmatine-treated ADC1 each at 1.9-2.15 Å resolution. Each structure contained four ADC1 molecules (chains A-D) in the asymmetric unit of the cell. Each ADC1 molecule is a heterodimer consisting of the N-terminal region (Asn60-Gly441) and C-terminal region (Ser442-Thr482). In the ligand-free ADC1, the N-terminus of Ser442 was modified to form a pyruvoyl group. In the arginine-treated ADC1, arginine was converted to agmatine, with the pyruvoyl group covalently bound to agmatine by forming a Schiff base. The same structure was observed in agmatine-treated ADC1. These results indicate that ADC1 is a pyruvoyl-dependent decarboxylase and unveils the reaction mechanism of ADC from A. oryzae.
Collapse
Affiliation(s)
- Yuki Odagaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yui Murakami
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo, 669-1330, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kimihiko Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan; Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo, 669-1330, Japan.
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
6
|
Aagaard Nolting L, Holling T, Nishimura G, Ek J, Bak M, Ljungberg M, Kutsche K, Hove H. Novel biallelic PISD missense variants cause spondyloepimetaphyseal dysplasia with disproportionate short stature and fragmented mitochondrial morphology. Clin Genet 2024; 106:360-366. [PMID: 38801004 DOI: 10.1111/cge.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Biallelic variants in PISD cause a phenotypic spectrum ranging from short stature with spondyloepimetaphyseal dysplasia (SEMD) to a multisystem disorder affecting eyes, ears, bones, and brain. PISD encodes the mitochondrial-localized enzyme phosphatidylserine decarboxylase. The PISD precursor is self-cleaved to generate a heteromeric mature enzyme that converts phosphatidylserine to the phospholipid phosphatidylethanolamine. We describe a 17-year-old male patient, born to unrelated healthy parents, with disproportionate short stature and SEMD, featuring platyspondyly, prominent epiphyses, and metaphyseal dysplasia. Trio genome sequencing revealed compound heterozygous PISD variants c.569C>T; p.(Ser190Leu) and c.799C>T; p.(His267Tyr) in the patient. Investigation of fibroblasts showed similar levels of the PISD precursor protein in both patient and control cells. However, patient cells had a significantly higher proportion of fragmented mitochondria compared to control cells cultured under basal condition and after treatment with 2-deoxyglucose that represses glycolysis and stimulates respiration. Structural data from the PISD orthologue in Escherichia coli suggest that the amino acid substitutions Ser190Leu and His267Tyr likely impair PISD's autoprocessing activity and/or phosphatidylethanolamine biosynthesis. Based on the data, we propose that the novel PISD p.(Ser190Leu) and p.(His267Tyr) variants likely act as hypomorphs and underlie the pure skeletal phenotype in the patient.
Collapse
Affiliation(s)
- Line Aagaard Nolting
- Department of Pediatrics, Center for Rare Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Jakob Ek
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Merete Ljungberg
- Department of Pediatrics, Center for Rare Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanne Hove
- Department of Pediatrics, Center for Rare Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Murakami Y, Ikuta S, Fukuda W, Akasaka N, Maruyama JI, Shinma S, Fukusaki E, Fujiwara S. Identification and enzymatic properties of arginine decarboxylase from Aspergillus oryzae. Appl Environ Microbiol 2024; 90:e0029424. [PMID: 38624200 PMCID: PMC11107147 DOI: 10.1128/aem.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.
Collapse
Affiliation(s)
- Yui Murakami
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Soichiro Ikuta
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Wakao Fukuda
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Naoki Akasaka
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Laboratory for Circular Bioeconomy Development, Office of Society-Academia Collaboration for Innovation, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shuichi Shinma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita,, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita,, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| |
Collapse
|
8
|
Zhou Y, Reynolds TB. Innovations in Antifungal Drug Discovery among Cell Envelope Synthesis Enzymes through Structural Insights. J Fungi (Basel) 2024; 10:171. [PMID: 38535180 PMCID: PMC10970773 DOI: 10.3390/jof10030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 11/11/2024] Open
Abstract
Life-threatening systemic fungal infections occur in immunocompromised patients at an alarming rate. Current antifungal therapies face challenges like drug resistance and patient toxicity, emphasizing the need for new treatments. Membrane-bound enzymes account for a large proportion of current and potential antifungal targets, especially ones that contribute to cell wall and cell membrane biosynthesis. Moreover, structural biology has led to a better understanding of the mechanisms by which these enzymes synthesize their products, as well as the mechanism of action for some antifungals. This review summarizes the structures of several current and potential membrane-bound antifungal targets involved in cell wall and cell membrane biosynthesis and their interactions with known inhibitors or drugs. The proposed mechanisms of action for some molecules, gleaned from detailed inhibitor-protein studeis, are also described, which aids in further rational drug design. Furthermore, some potential membrane-bound antifungal targets with known inhibitors that lack solved structures are discussed, as these might be good enzymes for future structure interrogation.
Collapse
Affiliation(s)
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
9
|
Irvine W, Tyler M, Delgoda R. In silico characterization of the psilocybin biosynthesis pathway. Comput Biol Chem 2023; 104:107854. [PMID: 36990027 DOI: 10.1016/j.compbiolchem.2023.107854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Nearly all mushrooms of the Psilocybe genus contain the natural product psilocybin, which is a psychoactive alkaloid derived from l-tryptophan. Considering their use in ancient times, as well as their psychedelic properties, these mushrooms have re-emerged with psychotherapeutic potential for treating depression, which has triggered increased pharmaceutical interest. However, the psilocybin biosynthesis pathway was only recently defined and, as such, little exists in the way of structural data. Accordingly, the aim of this study was to structurally characterize this pathway by generating homology models for the four Psilocybe cubensis enzymes involved in psilocybin biosynthesis (PsiD, a decarboxylase; PsiH, a monooxygenase; PsiK, a phosphotransferase; PsiM, a methyltransferase). Following initial model generation and alignment with the identified structural templates, repeated refinement of the models was carried out using secondary structure prediction, geometry evaluation, energy minimization, and molecular dynamics simulations in water. The final models were then evaluated using molecular docking interactions with their substrates, i.e., psilocybin precursors (l-tryptophan, tryptamine, 4-hydroxytryptamine, and norbaeocystin/baeocystin), all of which generated feasible binding modes for the expected biotransformation. Further plausibility of the psilocybin → aeruginascin, 4-hydroxytryptamine → norpsilocin, and tryptamine → N,N-dimethyltryptamine conversions, all mediated by the generated model for PsiM, suggests valid routes of formation for these key secondary metabolites. The structural characterization of these enzymes and their binding modes which emerged from this study can lead to a better understanding of psilocybin synthesis, thereby paving the way for the development of novel substrates and selective inhibitors, as well as improved biotechnological manipulation and production of psilocybin in vitro.
Collapse
|
10
|
Choi JY, Lopes L, Ben Mamoun C, Voelker DR. Maturation of the malarial phosphatidylserine decarboxylase is mediated by high affinity binding to anionic phospholipids. J Biol Chem 2023; 299:104659. [PMID: 36997087 PMCID: PMC10172927 DOI: 10.1016/j.jbc.2023.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA; Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lauren Lopes
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA.
| |
Collapse
|
11
|
Sassano ML, van Vliet AR, Vervoort E, Van Eygen S, Van den Haute C, Pavie B, Roels J, Swinnen JV, Spinazzi M, Moens L, Casteels K, Meyts I, Pinton P, Marchi S, Rochin L, Giordano F, Felipe-Abrio B, Agostinis P. PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. J Cell Biol 2023; 222:e202206008. [PMID: 36821088 PMCID: PMC9998969 DOI: 10.1083/jcb.202206008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Sofie Van Eygen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Chris Van den Haute
- Research Group for Neurobiology and Gene Therapy, Department of Neuroscience, Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | | | - Joris Roels
- VIB-bioimaging Center UGent, Ghent, Belgium
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marco Spinazzi
- Neuromuscular Reference Center, CHU Angers, Angers, France
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department for Development and Regeneration, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | | | - Blanca Felipe-Abrio
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
12
|
Stereoselective effects of chiral epoxiconazole on the metabolomic and lipidomic profiling of leek. Food Chem 2022; 405:134962. [DOI: 10.1016/j.foodchem.2022.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
13
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
14
|
Dowhan W, Bogdanov M. Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Front Mol Biosci 2021; 8:666203. [PMID: 33842554 PMCID: PMC8027125 DOI: 10.3389/fmolb.2021.666203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the 1950's and 1960's Eugene P. Kennedy laid out the blueprint for phospholipid biosynthesis in somatic cells and Escherichia coli, which have been coined the Kennedy Pathways for phospholipid biosynthesis. His research group continued to make seminal contributions in the area of phospholipids until his retirement in the early 1990's. During these years he mentored many young scientists that continued to build on his early discoveries and who also mentored additional scientists that continue to make important contributions in areas related to phospholipids and membrane biogenesis. This review will focus on the initial E. coli Kennedy Pathways and how his early contributions have laid the foundation for our current understanding of bacterial phospholipid genetics, biochemistry and function as carried on by his scientific progeny and others who have been inspired to study microbial phospholipids.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
15
|
Sam PN, Calzada E, Acoba MG, Zhao T, Watanabe Y, Nejatfard A, Trinidad JC, Shutt TE, Neal SE, Claypool SM. Impaired phosphatidylethanolamine metabolism activates a reversible stress response that detects and resolves mutant mitochondrial precursors. iScience 2021; 24:102196. [PMID: 33718843 PMCID: PMC7921845 DOI: 10.1016/j.isci.2021.102196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylethanolamine (PE) made in mitochondria has long been recognized as an important precursor for phosphatidylcholine production that occurs in the endoplasmic reticulum (ER). Recently, the strict mitochondrial localization of the enzyme that makes PE in the mitochondrion, phosphatidylserine decarboxylase 1 (Psd1), was questioned. Since a dual localization of Psd1 to the ER would have far-reaching implications, we initiated our study to independently re-assess the subcellular distribution of Psd1. Our results support the unavoidable conclusion that the vast majority, if not all, of functional Psd1 resides in the mitochondrion. Through our efforts, we discovered that mutant forms of Psd1 that impair a self-processing step needed for it to become functional are dually localized to the ER when expressed in a PE-limiting environment. We conclude that severely impaired cellular PE metabolism provokes an ER-assisted adaptive response that is capable of identifying and resolving nonfunctional mitochondrial precursors.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Calzada
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tian Zhao
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Yasunori Watanabe
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Anahita Nejatfard
- Division of Biological Sciences, The Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | | | - Timothy E. Shutt
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Sonya E. Neal
- Division of Biological Sciences, The Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Cho G, Lee E, Kim J. Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis. Sci Rep 2021; 11:5785. [PMID: 33707636 PMCID: PMC7952604 DOI: 10.1038/s41598-021-85195-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylethanolamine (PE), a major component of the cellular membrane across all domains of life, is synthesized exclusively by membrane-anchored phosphatidylserine decarboxylase (PSD) in most bacteria. The enzyme undergoes auto-cleavage for activation and utilizes the pyruvoyl moiety to form a Schiff base intermediate with PS to facilitate decarboxylation. However, the structural basis for self-maturation, PS binding, and decarboxylation processes directed by PSD remain unclear. Here, we present X-ray crystal structures of PSD from Escherichia coli, representing an apo form and a PE-bound complex, in which the phospholipid is chemically conjugated to the essential pyruvoyl residue, mimicking the Schiff base intermediate. The high-resolution structures of PE-complexed PSD clearly illustrate extensive hydrophobic interactions with the fatty acyl chains of the phospholipid, providing insights into the broad specificity of the enzyme over a wide range of cellular PS. Furthermore, these structures strongly advocate the unique topology of the enzyme in a lipid bilayer environment, where the enzyme associates with cell membranes in a monotopic fashion via the N-terminal domain composed of three amphipathic helices. Lastly, mutagenesis analyses reveal that E. coli PSD primarily employs D90/D142-H144-S254 to achieve auto-cleavage for the proenzyme maturation, where D90 and D142 act in complementary to each other.
Collapse
Affiliation(s)
- Gyuhyeok Cho
- grid.61221.360000 0001 1033 9831Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Eunju Lee
- grid.61221.360000 0001 1033 9831Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jungwook Kim
- grid.61221.360000 0001 1033 9831Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|