1
|
Chen Q, Xu Z, Dai H, Shen Y, Zhang J, Liu Z, Pei Y, Yu J. A large-scale curated and filterable dataset for cryo-EM foundation model pre-training. Sci Data 2025; 12:960. [PMID: 40483273 PMCID: PMC12145456 DOI: 10.1038/s41597-025-05179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a transformative imaging technology that enables near-atomic resolution 3D reconstruction of target biomolecule, playing a critical role in structural biology and drug discovery. Cryo-EM faces significant challenges due to its extremely low signal-to-noise ratio (SNR) where the complexity of data processing becomes particularly pronounced. To address this challenge, foundation models have shown great potential in other biological imaging domains. However, their application in cryo-EM has been limited by the lack of large-scale, high-quality datasets. To fill this gap, we introduce CryoCRAB, the first large-scale dataset for cryo-EM foundation models. CryoCRAB includes 746 proteins, comprising 152,385 sets of raw movie frames (116.8 TB in total). To tackle the high-noise nature of cryo-EM data, each movie is split into odd and even frames to generate paired micrographs for denoising tasks. The dataset is stored in HDF5 chunked format, significantly improving random sampling efficiency and training speed. CryoCRAB offers diverse data support for cryo-EM foundation models, enabling advancements in image denoising and general-purpose feature extraction for downstream tasks.
Collapse
Affiliation(s)
- Qihe Chen
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Zhenyang Xu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Haizhao Dai
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Yingjun Shen
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Jiakai Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| | - Jingyi Yu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
2
|
Wei J, Cao Z, Li Q, Li X, Wang Q, Zhang Y, Zhang R, Wu X, Dai Q, Li X, Zhou Z, Sun F, Jiao S, Zhao B. Nuclear ubiquitination permits Hippo-YAP signal for liver development and tumorigenesis. Nat Chem Biol 2025:10.1038/s41589-025-01901-8. [PMID: 40379800 DOI: 10.1038/s41589-025-01901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/03/2025] [Indexed: 05/19/2025]
Abstract
Hippo-YAP signaling is crucial to organ development and tumorigenesis. VGLL4, which occupies TEAD to prevent YAP binding, is the main transcriptional repressor of Hippo-YAP activity. Here we identified the nuclear E3 ligase ubiquitin protein ligase E3 component n-recognin 5 (UBR5) poly-ubiquitinated VGLL4 at Lys61 for its degradation, which permits Hippo-YAP signaling for the development of the liver biliary system in mice and multiple cancers in humans. In mouse liver development, Ubr5 and Vgll4 exhibited reciprocal expression patterns spatiotemporally. Ubr5 deletion impaired cholangiocyte development and hepatocyte reprogramming, which could be efficiently rescued by restoring Hippo-YAP through ablating Vgll4. We also found that the UBR5-VGLL4-YAP axis is associated with the progression of human pan-cancers. Targeting nuclear E3 ligases in multiple types of patient-derived tumor organoids suppressed their expansion. Our identification of UBR5 as the bona fide E3 ligase of VGLL4 offers a molecular framework of nuclear Hippo-YAP regulation and suggests nuclear ubiquitination as a potential therapeutic target for YAP-dependent malignancies.
Collapse
Affiliation(s)
- Jinsong Wei
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhifa Cao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Li
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingzhe Wang
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiming Zhang
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Run Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xingru Wu
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Quanhui Dai
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinyang Li
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Bing Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Organoid Technology, Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Kim B, Lee S, Kim BH, Kim L, Song HK. Revisiting the structure of UBR box from human UBR6. Protein Sci 2025; 34:e70092. [PMID: 40099808 PMCID: PMC11915344 DOI: 10.1002/pro.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Eukaryotic N-degron pathways are proteolytic systems with the ability to recognize specific N-terminal residues of substrate proteins, which are essential parts of their degradation signals. Domains, referred to as UBR boxes, of several E3 ubiquitin ligases can recognize basic N-terminal residues as N-degrons. UBR6 is among the seven mammalian UBR family proteins containing the UBR box domain. However, the recognition of basic type-1 N-degrons by UBR6 is still not well understood. The crystal structure of the UBR box from human UBR6 revealed zinc-mediated dimerization, a structural feature distinct from other monomeric UBR boxes. Furthermore, its folding pattern differed from that of the UBR fold, although the sequences aligned well with those of other UBR boxes. In this study, we re-determined the structure of the UBR box from human UBR6 to investigate whether the unusual domain-swapped dimer was structurally relevant. The newly determined UBR box of UBR6 at 1.5 Å resolution was a monomer with a classical UBR fold. Our structure was compared with previously reported structures of UBR boxes, and its structural features were further analyzed using N-degron binding assays.
Collapse
Affiliation(s)
- Bokyung Kim
- Department of Life SciencesKorea UniversitySeoulSouth Korea
- Present address:
Department of Integrative Structural and Computational BiologyThe Scripps Research Institute and Howard Hughes Medical InstituteLa JollaCaliforniaUSA
| | - Sohae Lee
- Department of Life SciencesKorea UniversitySeoulSouth Korea
| | - Bong Heon Kim
- Department of Life SciencesKorea UniversitySeoulSouth Korea
| | - Leehyeon Kim
- Department of Life SciencesKorea UniversitySeoulSouth Korea
- Present address:
Cell Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Hyun Kyu Song
- Department of Life SciencesKorea UniversitySeoulSouth Korea
| |
Collapse
|
4
|
Odhiambo DA, Fan S, Hirbe AC. UBR5 in Tumor Biology: Exploring Mechanisms of Immune Regulation and Possible Therapeutic Implications in MPNST. Cancers (Basel) 2025; 17:161. [PMID: 39857943 PMCID: PMC11764400 DOI: 10.3390/cancers17020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare but aggressive soft-tissue sarcoma characterized by poor response to therapy. The primary treatment remains surgical resection with negative margins. Nonetheless, in the setting of neurofibromatosis type 1 (NF1), the five-year survival rate is at 20-50%, with recurrence occurring in up to 50% of individuals. For patients with metastatic and unresectable disease, current treatment options include cytotoxic chemotherapy, which offers minimal benefit, and most patients die within five years of diagnosis. Despite advances in targeted therapy focusing on inhibiting Ras signaling and its downstream effectors, clinical trials report minimal clinical benefit, highlighting the need to explore alternative pathways in MPNST pathogenesis. Here, we discuss the role of the E3 ubiquitin ligase, UBR5, in cancer progression and immune modulation across various malignancies, including breast, lung, and ovarian cancer. We focus on mechanisms by which UBR5 contributes to tumorigenesis, focusing on its influence on tumor microenvironment and immune modulation. Additionally, we explore UBR5's roles in normal tissue function, DNA damage response, metastasis, and therapeutic resistance, illustrating its multifaceted contribution to cancer biology. We discuss evidence implicating UBR5 in immune evasion and highlight its potential as a therapeutic target to enhance the efficacy of immune checkpoint blockade (ICB) therapy in MPNST, a tumor typically characterized by an immune cold microenvironment. We outline current immune-based strategies and challenges in MPNST management, ongoing efforts to shift the immune landscape in MPNST, and ultimately, we suggest that targeting UBR5 could be a novel strategy to potentiate ICB therapy-mediated anti-tumor immune response and clinical outcomes, particularly in MPNST patients with inoperable or metastatic disease.
Collapse
Affiliation(s)
| | | | - Angela C. Hirbe
- Division of Oncology, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; (D.A.O.); (S.F.)
| |
Collapse
|
5
|
Mattoo S, Arora M, Sharma P, Pore SK. Targeting mammalian N-end rule pathway for cancer therapy. Biochem Pharmacol 2025; 231:116684. [PMID: 39613115 DOI: 10.1016/j.bcp.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Regulated protein degradation plays a crucial role in maintaining proteostasis along with protein refolding and compartmentalisation which collectively control biological functions. The N-end rule pathway is a major ubiquitin-dependent protein degradation system. The short-lived protein substrates containing destabilizing amino acid residues (N-degrons) are recognized by E3 ubiquitin ligases containing UBR box domains (N-recognin) for degradation. The dysregulated pathway fails to maintain the metabolic stability of the substrate proteins which leads to diseases. The mammalian substrates of this pathway are involved in many hallmarks of cancer such as resisting cell death, evading growth suppression, chromosomal instability, angiogenesis, and deregulation of cellular metabolism. Besides, mutations in E3 N-recognin have been detected in human cancers. In this review, we discuss the mammalian N-end rule pathway components, functions, and mechanism of degradation of substrates, and their implications in cancer pathogenesis. We also discuss the impact of pharmacological and genetic inhibition of this pathway component on cancer cells and chemoresistance. We further highlight how this pathway can be manipulated for selective protein degradation; for instance, using PROTAC technique. The challenges and future perspectives to utilize this pathway as a drug target for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Muskaan Arora
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Priyanka Sharma
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
6
|
Devan SK, Shanmugasundaram S, Müntjes K, Postma J, Smits SHJ, Altegoer F, Feldbrügge M. Deciphering the RNA-binding protein network during endosomal mRNA transport. Proc Natl Acad Sci U S A 2024; 121:e2404091121. [PMID: 39499630 PMCID: PMC11572963 DOI: 10.1073/pnas.2404091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/17/2024] [Indexed: 11/07/2024] Open
Abstract
Microtubule-dependent endosomal transport is crucial for polar growth, ensuring the precise distribution of cellular cargos such as proteins and mRNAs. However, the molecular mechanism linking mRNAs to the endosomal surface remains poorly understood. Here, we present a structural analysis of the key RNA-binding protein Rrm4 from Ustilago maydis. Our findings reveal a different type of MademoiseLLE domain (MLLE) featuring a seven-helical bundle that provides a distinct binding interface. A comparative analysis with the canonical MademoiseLLE domain of the poly(A)-binding protein Pab1 disclosed unique characteristics of both domains. Deciphering the MLLE binding code enabled prediction and verification of previously unknown Rrm4 interactors containing short linear motifs. Importantly, we demonstrated that the human MLLE domains, such as those of PABPC1 and UBR5, employed a similar principle to distinguish among interaction partners. Thus, our study provides detailed mechanistic insights into how structural variations in the widely distributed MLLE domain facilitate mRNA attachment during endosomal transport.
Collapse
Affiliation(s)
- Senthil-Kumar Devan
- Department of Biology, Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40204, Germany
| | - Sainath Shanmugasundaram
- Department of Biology, Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40204, Germany
| | - Kira Müntjes
- Department of Biology, Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40204, Germany
| | - Johannes Postma
- Department of Biology, Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40204, Germany
| | - Sander H. J. Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf40204, Germany
- Department of Chemistry, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf40204, Germany
| | - Florian Altegoer
- Department of Biology, Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40204, Germany
| | - Michael Feldbrügge
- Department of Biology, Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40204, Germany
| |
Collapse
|
7
|
Zhang S, Valenzuela LF, Zatulovskiy E, Mangiante L, Curtis C, Skotheim JM. The G 1-S transition is promoted by Rb degradation via the E3 ligase UBR5. SCIENCE ADVANCES 2024; 10:eadq6858. [PMID: 39441926 PMCID: PMC11498223 DOI: 10.1126/sciadv.adq6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Mammalian cells make the decision to divide at the G1-S transition in response to diverse signals impinging on the retinoblastoma protein Rb, a cell cycle inhibitor and tumor suppressor. Passage through the G1-S transition is initially driven by Rb inactivation via phosphorylation and by Rb's decreasing concentration in G1. While many studies have identified the mechanisms of Rb phosphorylation, the mechanism underlying Rb's decreasing concentration in G1 was unknown. Here, we found that Rb's concentration decrease in G1 requires the E3 ubiquitin ligase UBR5. UBR5 knockout cells have increased Rb concentration in early G1, exhibited a lower G1-S transition rate, and are more sensitive to inhibition of cyclin-dependent kinase 4/6 (Cdk4/6). This last observation suggests that UBR5 inhibition can strengthen the efficacy of Cdk4/6 inhibitor-based cancer therapies.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Evgeny Zatulovskiy
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Calva Moreno JF, Jose G, Weaver YM, Weaver BP. UBR-5 and UBE2D mediate timely exit from stem fate via destabilization of poly(A)-binding protein PABP-2 in cell state transition. Proc Natl Acad Sci U S A 2024; 121:e2407561121. [PMID: 39405353 PMCID: PMC11513905 DOI: 10.1073/pnas.2407561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
UBR5 E3 ligase has been associated with cancer susceptibility and neuronal integrity, with functions in chromatin regulation and proteostasis. However, the functions of ubr5 within animals remain unclear due to lethality in both mammals and flies when disrupted. Using Caenorhabditis elegans, we show that UBR-5 E3 ligase is required for timely exit of stem fate and complete transition into multiple cell type descendants in an ectodermal blast lineage. Animals lacking intact UBR-5 function simultaneously exhibit both stem fate and differentiated fate in the same descendant cells. A functional screen of UBR-5 physical interactors allowed us to identify the UBE2D2/3 E2 conjugase LET-70 working with UBR-5 to exit stem fate. Strikingly, we revealed that another UBR-5 physical interactor, namely the nuclear poly(A)-binding protein PABPN1 ortholog PABP-2, worked antagonistically to UBR-5 and LET-70. Lowering pabp-2 levels restored normal transition of cell state out of stemness and promoted normal cell fusion when either ubr-5 or let-70 UBE2D function was compromised. The UBR-5-LET-70 and PABP-2 switch works independently of the stem pool size determined by pluripotency factors like lin-28. UBR-5 limits PABP-2 protein and reverses the PABP-2-dependent gene expression program including developmental, proteostasis, and innate immunity genes. Loss of ubr-5 rescues the developmental stall when pabp-2 is compromised. Disruption of ubr-5 elevates PABP-2 levels and prolongs expression of ectodermal and muscle stem markers at the transition to adulthood. Additionally, ubr-5 mutants exhibit an extended period of motility during aging and suppress pabp-2-dependent early onset of immobility.
Collapse
Affiliation(s)
| | - George Jose
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yi M. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin P. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
9
|
Duan CY, Li Y, Zhi HY, Tian Y, Huang ZY, Chen SP, Zhang Y, Liu Q, Zhou L, Jiang XG, Ullah K, Guo Q, Liu ZH, Xu Y, Han JH, Hou J, O'Connor DP, Xu G. E3 ubiquitin ligase UBR5 modulates circadian rhythm by facilitating the ubiquitination and degradation of the key clock transcription factor BMAL1. Acta Pharmacol Sin 2024; 45:1793-1808. [PMID: 38740904 PMCID: PMC11336169 DOI: 10.1038/s41401-024-01290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The circadian clock is the inner rhythm of life activities and is controlled by a self-sustained and endogenous molecular clock, which maintains a ~ 24 h internal oscillation. As the core element of the circadian clock, BMAL1 is susceptible to degradation through the ubiquitin-proteasome system (UPS). Nevertheless, scant information is available regarding the UPS enzymes that intricately modulate both the stability and transcriptional activity of BMAL1, affecting the cellular circadian rhythm. In this work, we identify and validate UBR5 as a new E3 ubiquitin ligase that interacts with BMAL1 by using affinity purification, mass spectrometry, and biochemical experiments. UBR5 overexpression induced BMAL1 ubiquitination, leading to diminished stability and reduced protein level of BMAL1, thereby attenuating its transcriptional activity. Consistent with this, UBR5 knockdown increases the BMAL1 protein. Domain mapping discloses that the C-terminus of BMAL1 interacts with the N-terminal domains of UBR5. Similarly, cell-line-based experiments discover that HYD, the UBR5 homolog in Drosophila, could interact with and downregulate CYCLE, the BMAL1 homolog in Drosophila. PER2-luciferase bioluminescence real-time reporting assay in a mammalian cell line and behavioral experiments in Drosophila reveal that UBR5 or hyd knockdown significantly reduces the period of the circadian clock. Therefore, our work discovers a new ubiquitin ligase UBR5 that regulates BMAL1 stability and circadian rhythm and elucidates the underlying molecular mechanism. This work provides an additional layer of complexity to the regulatory network of the circadian clock at the post-translational modification level, offering potential insights into the modulation of the dysregulated circadian rhythm.
Collapse
Affiliation(s)
- Chun-Yan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Dublin, Ireland
| | - Yue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Hao-Yu Zhi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Yao Tian
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Zheng-Yun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Su-Ping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Xiao-Gang Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Qing Guo
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, 215123, China
| | - Zhao-Hui Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Jun-Hai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Darran P O'Connor
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Dublin, Ireland
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Wang Y, Niu K, Shi Y, Zhou F, Li X, Li Y, Chen T, Zhang Y. A review: targeting UBR5 domains to mediate emerging roles and mechanisms - chance or necessity? Int J Surg 2024; 110:4947-4964. [PMID: 38701508 PMCID: PMC11326040 DOI: 10.1097/js9.0000000000001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Ubiquitinases are known to catalyze ubiquitin chains on target proteins to regulate various physiological functions like cell proliferation, autophagy, apoptosis, and cell cycle progression. As a member of E3 ligase, ubiquitin protein ligase E3 component n-recognin 5 (UBR5) belongs to the HECT E3 ligase and has been reported to be correlated with various pathophysiological processes. In this review, the authors give a comprehensive insight into the structure and function of UBR5. The authors discuss the specific domains of UBR5 and explore their biological functions separately. Furthermore, the authors describe the involvement of UBR5 in different pathophysiological conditions, including immune response, virus infection, DNA damage response, and protein quality control. Moreover, the authors provide a thorough summary of the important roles and regulatory mechanisms of UBR5 in cancers and other diseases. On the whole, investigating the domains and functions of UBR5, elucidating the underlying mechanisms of UBR5 with various substrates in detail may provide new theoretical basis for the treatment of diseases, including cancers, which could improve future studies to construct novel UBR5-targeted therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
11
|
Horn-Ghetko D, Hopf LVM, Tripathi-Giesgen I, Du J, Kostrhon S, Vu DT, Beier V, Steigenberger B, Prabu JR, Stier L, Bruss EM, Mann M, Xiong Y, Schulman BA. Noncanonical assembly, neddylation and chimeric cullin-RING/RBR ubiquitylation by the 1.8 MDa CUL9 E3 ligase complex. Nat Struct Mol Biol 2024; 31:1083-1094. [PMID: 38605244 PMCID: PMC11257990 DOI: 10.1038/s41594-024-01257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
Ubiquitin ligation is typically executed by hallmark E3 catalytic domains. Two such domains, 'cullin-RING' and 'RBR', are individually found in several hundred human E3 ligases, and collaborate with E2 enzymes to catalyze ubiquitylation. However, the vertebrate-specific CUL9 complex with RBX1 (also called ROC1), of interest due to its tumor suppressive interaction with TP53, uniquely encompasses both cullin-RING and RBR domains. Here, cryo-EM, biochemistry and cellular assays elucidate a 1.8-MDa hexameric human CUL9-RBX1 assembly. Within one dimeric subcomplex, an E2-bound RBR domain is activated by neddylation of its own cullin domain and positioning from the adjacent CUL9-RBX1 in trans. Our data show CUL9 as unique among RBX1-bound cullins in dependence on the metazoan-specific UBE2F neddylation enzyme, while the RBR domain protects it from deneddylation. Substrates are recruited to various upstream domains, while ubiquitylation relies on both CUL9's neddylated cullin and RBR domains achieving self-assembled and chimeric cullin-RING/RBR E3 ligase activity.
Collapse
Affiliation(s)
- Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Linus V M Hopf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Kostrhon
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Luca Stier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Elias M Bruss
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cullgen Inc., San Diego, CA, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany.
| |
Collapse
|
12
|
Yu M, Li J, Gao W, Li Z, Zhang W. Multiple E3 ligases act as antiviral factors against SARS-CoV-2 via inducing the ubiquitination and degradation of ORF9b. J Virol 2024; 98:e0162423. [PMID: 38709105 PMCID: PMC11237466 DOI: 10.1128/jvi.01624-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/07/2024] [Indexed: 05/07/2024] Open
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) open reading frame 9b (ORF9b) antagonizes the antiviral type I and III interferon (IFN) responses and is ubiquitinated and degraded via the ubiquitin-proteasome pathway. However, E3 ubiquitin ligases that mediate the polyubiquitination and degradation of ORF9b remain unknown. In this study, we identified 14 E3 ligases that specifically bind to SARS-CoV-2 ORF9b. Specifically, three E3 ligases, HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 (HUWE1), ubiquitin protein ligase E3 component n-recognin 4 (UBR4), and UBR5, induced K48-linked polyubiquitination and degradation of ORF9b, thereby attenuating ORF9b-mediated inhibition of the IFN response and SARS-CoV-2 replication. Moreover, each E3 ligase performed this function independent of the other two E3 ligases. Therefore, the three E3 ligases identified in this study as anti-SARS-CoV-2 host factors provide novel molecular insight into the virus-host interaction.IMPORTANCEUbiquitination is an important post-translational modification that regulates multiple biological processes, including viral replication. Identification of E3 ubiquitin ligases that target viral proteins for degradation can provide novel targets for antagonizing viral infections. Here, we identified multiple E3 ligases, including HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 (HUWE1), ubiquitin protein ligase E3 component n-recognin 4 (UBR4), and UBR5, that ubiquitinated and induced the degradation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) open reading frame 9b (ORF9b), an interferon (IFN) antagonist, thereby enhancing IFN production and attenuating SARS-CoV-2 replication. Our study provides new possibilities for drug development targeting the interaction between E3 ligases and ORF9b.
Collapse
Affiliation(s)
- Miao Yu
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Geriatrics and Special medical treatment, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jie Li
- Department of Geriatrics and Special medical treatment, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenying Gao
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaolong Li
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Qi H, Yu M, Fan X, Zhou Y, Zhang M, Gao X. Methionine and Leucine Promote mTOR Gene Transcription and Milk Synthesis in Mammary Epithelial Cells through the eEF1Bα-UBR5-ARID1A Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11733-11745. [PMID: 38725145 DOI: 10.1021/acs.jafc.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Amino acids are essential for the activation of the mechanistic target of rapamycin (mTOR), but the corresponding molecular mechanism is not yet fully understood. We previously found that Met stimulated eukaryotic elongation factor α (eEF1Bα) nuclear localization in bovine mammary epithelial cells (MECs). Herein, we explored the role and molecular mechanism of eEF1Bα in methionine (Met)- and leucine (Leu)-stimulated mTOR gene transcription and milk synthesis in MECs. eEF1Bα knockdown decreased milk protein and fat synthesis, cell proliferation, and mTOR mRNA expression and phosphorylation, whereas eEF1Bα overexpression had the opposite effects. QE-MS analysis detected that eEF1Bα was phosphorylated at Ser106 in the nucleus and Met and Leu stimulated p-eEF1Bα nuclear localization. eEF1Bα knockdown abrogated the stimulation of Met and Leu by mTOR mRNA expression and phosphorylation, and this regulatory role was dependent on its phosphorylation. Akt knockdown blocked the stimulation of Met and Leu by eEF1Bα and p-eEF1Bα expression. ChIP-PCR detected that p-eEF1Bα bound only to the -548 to -793 nt site in the mTOR promoter, and ChIP-qPCR further detected that Met and Leu stimulated this binding. eEF1Bα mediated Met and Leu' stimulation on mTOR mRNA expression and phosphorylation through inducing AT-rich interaction domain 1A (ARID1A) ubiquitination degradation, and this process depended on eEF1Bα phosphorylation. p-eEF1Bα interacted with ARID1A and ubiquitin protein ligase E3 module N-recognition 5 (UBR5), and UBR5 knockdown rescued the decrease of the ARID1A protein level by eEF1Bα overexpression. Both eEF1Bα and p-eEF1Bα were highly expressed in mouse mammary gland tissues during the lactating period. In summary, we reveal that Met and Leu stimulate mTOR transcriptional activation and milk protein and fat synthesis in MECs through eEF1Bα-UBR5-ARID1A signaling.
Collapse
Affiliation(s)
- Hao Qi
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Mengmemg Yu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xiuqiang Fan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Yuwen Zhou
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Minghui Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xuejun Gao
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
14
|
Qin R, Fan X, Ding R, Qiu Y, Chen X, Liu Y, Lin M, Wang H. Research advancements on the involvement of E3 ubiquitin ligase UBR5 in gastrointestinal cancers. Heliyon 2024; 10:e30284. [PMID: 38707379 PMCID: PMC11066684 DOI: 10.1016/j.heliyon.2024.e30284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
E3 ubiquitin ligases comprise a family of ubiquitination-catalyzing enzymes that have been extensively researched and are considered crucial components of the ubiquitin-proteasome system involved in various diseases. The ubiquitin-protein ligase E3 component n-recognition 5 (UBR5) is an E3 ubiquitin-protein ligase that has garnered considerable interest of late. Recent studies demonstrate that UBR5 undergoes high-frequency mutations, chromosomal amplification, and/or abnormalities during expression of various malignant tumors. These alterations correlate with the biological behaviors and prognoses of malignancies, such as tumor invasion, metastasis, and resistance to chemotherapeutic agents. This study aimed to comprehensively elucidate the biological functions of UBR5, and its role and relevance in the context of gastrointestinal cancers. Furthermore, this article expounds a scientific basis to explore the molecular mechanisms underlying gastrointestinal cancers and developing targeted therapeutic strategies for their remediation.
Collapse
Affiliation(s)
- Rong Qin
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Xirui Fan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Rui Ding
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Yadan Qiu
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Xujia Chen
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Yanting Liu
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Minjuan Lin
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Hui Wang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| |
Collapse
|
15
|
Hu B, Chen S. The role of UBR5 in tumor proliferation and oncotherapy. Gene 2024; 906:148258. [PMID: 38331119 DOI: 10.1016/j.gene.2024.148258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Ubiquitin (Ub) protein ligase E3 component n-recognin 5 (UBR5), as a crucial Ub ligase, plays a pivotal role in the field of cell biology, attracting significant attention for its functions in regulating protein degradation and signaling pathways. This review delves into the fundamental characteristics and structure of UBR5. UBR5, through ubiquitination, regulates various key proteins, directly or indirectly participating in cell cycle control, thereby exerting a direct impact on the proliferation of tumor cells. Meanwhile, we comprehensively review the expression levels of UBR5 in different types of tumors and its relationship with tumor development, providing key clues for the role of UBR5 in cancer. Furthermore, we summarize the current research status of UBR5 in cancer treatment. Through literature review, we find that UBR5 may play a crucial role in the sensitivity of tumor cells to radiotherapy chemotherapy, and other anti-tumor treatment, providing new insights for optimizing cancer treatment strategies. Finally, we discuss the challenges faced by UBR5 in cancer treatment, and looks forward to the future research directions. With the continuous breakthroughs in technology and in-depth research, we hope to further study the biological functions of UBR5 and lay the foundation for its anti-tumor treatment.
Collapse
Affiliation(s)
- Bin Hu
- Department of Geriatrics, Beilun District People's Hospital, Ningbo 315800, China
| | - Shiyuan Chen
- Department of Geriatrics, Beilun District People's Hospital, Ningbo 315800, China.
| |
Collapse
|
16
|
Zhang S, Valenzuela LF, Zatulovskiy E, Mangiante L, Curtis C, Skotheim JM. The G1/S transition is promoted by Rb degradation via the E3 ligase UBR5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560768. [PMID: 37873473 PMCID: PMC10592979 DOI: 10.1101/2023.10.03.560768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mammalian cells make the decision to divide at the G1/S transition in response to diverse signals impinging on the retinoblastoma protein Rb, a cell cycle inhibitor and tumor suppressor. Rb is inhibited by two parallel pathways. In the canonical pathway, Cyclin D-Cdk4/6 kinase complexes phosphorylate and inactivate Rb. In the second, recently discovered pathway, Rb's concentration decreases during G1 to promote cells progressing through the G1/S transition. However, the mechanisms underlying this second pathway are unknown. Here, we found that Rb's concentration drop in G1 and recovery in S/G2 is controlled by phosphorylation-dependent protein degradation. In early G1 phase, un- and hypo-phosphorylated Rb is targeted by the E3 ligase UBR5. UBR5 knockout cells have higher Rb concentrations in early G1, exhibit a lower G1/S transition rate, and are more sensitive to Cdk4/6 inhibition. This last observation suggests that UBR5 inhibition can strengthen the efficacy of Cdk4/6 inhibitor-based cancer therapies.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | | | | | | | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
17
|
Yu Z, Xue D, Song M, Xu A, He Q, Li H, Ouyang W, Chouchane L, Ma X. Targeting UBR5 inhibits postsurgical breast cancer lung metastases by inducing CDC73 and p53 mediated apoptosis. Int J Cancer 2024; 154:723-737. [PMID: 37855385 PMCID: PMC10841427 DOI: 10.1002/ijc.34769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
UBR5 is a HECT domain E3 ubiquitin ligase that is frequently amplified in breast, ovarian and prostate cancers. Heightened UBR5 expression plays a profound role in tumor growth through immune-dependent mechanisms; however, its mode of action in driving tumor metastasis has not been definitively delineated. Herein, we used a tetracycline (Tet)-inducible RNAi-mediated expression silencing cell system to investigate how UBR5 enables postsurgical mammary tumor metastatic growth in mouse lungs without the continuous influence of the primary lesion. In vitro, Ubr5 knockdown induces morphological and molecular changes characteristic of epithelial-mesenchymal transition (EMT). In vivo, UBR5 promotes lung metastasis in an E3 ubiquitin ligase-dependent manner. Moreover, doxycycline-induced UBR5 expression knockdown in metastatic cells in the lungs, following removing the primary tumors, resulted in increased apoptosis, decreased proliferation and prolonged survival, whereas silencing the expression of cell division cycle 73 (CDC73), a tumor suppressor and E3 ligase substrate of UBR5, reversed these effects. Transcriptome analyses revealed a prominent role of the p53 pathway in dovitinib-induced apoptosis of tumor cells differentially regulated by UBR5 and CDC73. In human triple-negative breast cancer (TNBC) patient specimens, a strong inverse correlation was observed between UBR5 and CDC73 protein levels, with reduced CDC73 expression at metastatic sites compared to primary lesions. Furthermore, a xenograft model of human TNBC recapitulated the metastatic properties and characteristics of the unique UBR5-CDC73 functional antagonism. This study reveals the novel and critical roles and intricate relationships of UBR5, CDC73 and p53 in postsurgical breast cancer metastasis and indicates the potential of targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Ziqi Yu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Dong Xue
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Mei Song
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aizhang Xu
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
18
|
Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat Chem Biol 2024; 20:190-200. [PMID: 37620400 PMCID: PMC10830417 DOI: 10.1038/s41589-023-01414-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains. Chains are forged by a UBA domain capturing an acceptor Ub, with its K48 lured into the active site by numerous interactions between the acceptor Ub, manifold UBR5 elements and the donor Ub. The cryo-EM reconstructions allow defining conserved HECT domain conformations catalyzing Ub transfer from E2 to E3 and from E3. Our data show how a full-length E3, ubiquitins to be adjoined, E2 and intermediary products guide a feed-forward HECT domain conformational cycle establishing a highly efficient, broadly targeting, K48-linked Ub chain forging machine.
Collapse
Affiliation(s)
- Laura A Hehl
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David A Pérez Berrocal
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
19
|
Düring J, Wolter M, Toplak JJ, Torres C, Dybkov O, Fokkens TJ, Bohnsack KE, Urlaub H, Steinchen W, Dienemann C, Lorenz S. Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1. Nat Struct Mol Biol 2024; 31:364-377. [PMID: 38332367 PMCID: PMC10873202 DOI: 10.1038/s41594-023-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.
Collapse
Affiliation(s)
- Jonas Düring
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Madita Wolter
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Julia J Toplak
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Camilo Torres
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thornton J Fokkens
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- 'Bioanalytics', Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells', University of Göttingen, Göttingen, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja Lorenz
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
20
|
Taherbhoy AM, Daniels DL. Harnessing UBR5 for targeted protein degradation of key transcriptional regulators. Trends Pharmacol Sci 2023; 44:758-761. [PMID: 37770316 DOI: 10.1016/j.tips.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Targeted protein degradation (TPD) has opened the door for drugging transcriptional regulators, yet the number of proteins targeted and E3 ligases utilized remain limited. Here, we highlight UBR5 and propose multiple strategies by which this E3 ligase could be modulated to drive degradation of key transcriptional targets implicated in disease.
Collapse
Affiliation(s)
- Asad M Taherbhoy
- Foghorn Therapeutics, 500 Technology Square Suite 700, Cambridge, MA 02139, USA
| | - Danette L Daniels
- Foghorn Therapeutics, 500 Technology Square Suite 700, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Hodáková Z, Grishkovskaya I, Brunner HL, Bolhuis DL, Belačić K, Schleiffer A, Kotisch H, Brown NG, Haselbach D. Cryo-EM structure of the chain-elongating E3 ubiquitin ligase UBR5. EMBO J 2023; 42:e113348. [PMID: 37409633 PMCID: PMC10425842 DOI: 10.15252/embj.2022113348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
UBR5 is a nuclear E3 ligase that ubiquitinates a vast range of substrates for proteasomal degradation. This HECT domain-containing ubiquitin ligase has recently been identified as an important regulator of oncogenes, e.g., MYC, but little is known about its structure or mechanisms of substrate engagement and ubiquitination. Here, we present the cryo-EM structure of human UBR5, revealing an α-solenoid scaffold with numerous protein-protein interacting motifs, assembled into an antiparallel dimer that adopts further oligomeric states. Using cryo-EM processing tools, we observe the dynamic nature of the UBR5 catalytic domain, which we postulate is important for its enzymatic activity. We characterise the proteasomal nuclear import factor AKIRIN2 as an interacting protein and propose UBR5 as an efficient ubiquitin chain elongator. This preference for ubiquitinated substrates and several distinct domains for protein-protein interactions may explain how UBR5 is linked to several different signalling pathways and cancers. Together, our data expand on the limited knowledge of the structure and function of HECT E3 ligases.
Collapse
Affiliation(s)
- Zuzana Hodáková
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Hanna L Brunner
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Katarina Belačić
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Harald Kotisch
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| |
Collapse
|
22
|
Hehl LA, Schulman BA. To be (in a transcriptional complex) or not to be (promoting UBR5 ubiquitylation): That is an answer to how degradation controls gene expression. Mol Cell 2023; 83:2616-2618. [PMID: 37541216 DOI: 10.1016/j.molcel.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Tsai et al.1 in this issue and Mark et al.2 in Cell reveal how the E3 ligase UBR5 mediates broad regulation by selectively targeting agonist-bound nuclear hormone receptors, MYC, and other transcriptional regulators not incorporated into active gene expression complexes.
Collapse
Affiliation(s)
- Laura A Hehl
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; TUM School of Natural Sciences, Department of Chemistry, 85747 Garching, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; TUM School of Natural Sciences, Department of Chemistry, 85747 Garching, Germany.
| |
Collapse
|
23
|
Mark KG, Kolla S, Aguirre JD, Garshott DM, Schmitt S, Haakonsen DL, Xu C, Kater L, Kempf G, Martínez-González B, Akopian D, See SK, Thomä NH, Rapé M. Orphan quality control shapes network dynamics and gene expression. Cell 2023; 186:3460-3475.e23. [PMID: 37478862 DOI: 10.1016/j.cell.2023.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein. Biochemical and structural analyses show that UBR5 binds motifs that only become available upon complex dissociation. By rapidly turning over unpaired transcription factor subunits, UBR5 establishes dynamic interactions between transcriptional regulators that allow cells to effectively execute gene expression while remaining receptive to environmental signals. We conclude that orphan quality control plays an essential role in establishing dynamic protein networks, which may explain the conserved need for protein degradation during transcription and offers opportunities to modulate gene expression in disease.
Collapse
Affiliation(s)
- Kevin G Mark
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - SriDurgaDevi Kolla
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Danielle M Garshott
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Stefan Schmitt
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christina Xu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Stephanie K See
- Center for Emerging and Neglected Diseases, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|