1
|
Sheldon N, Dhandapani G, Kim J, Spangler CJ, Fang C, Park J, Rao P, Gouaux E. Generation of Conformation-Specific Monoclonal Antibodies for Integral Membrane Proteins. Curr Protoc 2025; 5:e70142. [PMID: 40418540 DOI: 10.1002/cpz1.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Antibodies and their antigen-binding fragments, including fragment antigen-binding domains (Fabs) and single-chain variable fragments (scFvs), are extraordinary tools in all fields of biology, particularly in neuroscience, where they have been utilized for imaging, detection, and quantification studies. Most antibodies bind to unstructured or linear epitopes. Conformation-specific antibodies, by contrast, bind to 3D epitopes, recognizing native conformations of the target antigen, and have proven highly useful in X-ray crystallography as crystallization chaperones and in cryo-electron microscopy as fiducial markers. Moreover, because conformation-specific antibodies recognize 3D shapes of the antigen, they often have exquisite specificity and are useful in immunofluorescence studies and in isolation of antigen from native tissues. Over the past decade, our group has devoted effort to developing murine monoclonal antibodies (mAbs) against important synaptic receptors, particularly ionotropic glutamate receptors (iGluRs) and their auxiliary proteins. We have developed reproducible methods for generating high-quality mAbs for structural, biochemical, and imaging studies. In this article, we show how to prepare proteoliposomes (PLs), carry out immunization and track the immune response, perform hybridoma generation, and analyze the specificity, cross-reactivity, and competition of mAb binding via enzyme-linked immunosorbent assay and fluorescence-detection size-exclusion chromatography. Our PL-based method produces high-affinity, conformation-specific antibodies targeting diverse synaptic membrane receptors in 4 months. Here, we describe the relevant protocols in detail and document the mAbs, Fabs, and scFvs that we have produced against iGluRs and their auxiliary subunits. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of conformation-specific antibodies for integral membrane proteins Support Protocol 1: Detection of conformational antibodies using ELISA Basic Protocol 2: Expression and purification of monoclonal antibodies and their derivatives Support Protocol 2: Concentration and clarification of insect cell supernatant for Fab purification Support Protocol 3: Measurement of ionotropic glutamate receptor binding kinetics using Octet BLI System.
Collapse
Affiliation(s)
- Natalie Sheldon
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon
- These authors contributed equally to this work
| | - Gunasekaran Dhandapani
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
- These authors contributed equally to this work
| | - Junhoe Kim
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
- These authors contributed equally to this work
| | - Cathy J Spangler
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Chengli Fang
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Jumi Park
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Prashant Rao
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
- Present address: Calico Life Sciences LLC, South San Francisco, California
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
2
|
Sanchez JM, Favaro MTP, López-Laguna H, Parladé E, Di Somma A, Casanova I, Unzueta U, Mangues R, Vazquez E, Voltà-Durán E, Villaverde A. Trans-Mediated, Cis-Inhibited Paradoxal Activity of Clostridium perfringens Enterotoxin (c-CPE) in Modulating Epithelial Permeability. Mol Pharm 2025; 22:1973-1982. [PMID: 40067325 PMCID: PMC12123672 DOI: 10.1021/acs.molpharmaceut.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 04/08/2025]
Abstract
In the context of transdermal delivery, favoring the drug permeability of epithelia through convenient formulations would open new opportunities for local versus systemic drug delivery, envisaging higher patient comfort and an enhanced therapeutic effect. Ligands of tight junctions are interesting agents that enhance epithelial permeability by relaxing the protein complexes that form them. The C-terminal domain of Clostridium perfringens enterotoxin (c-CPE), which binds claudins, one of the tight junction (TJ) components, has been explored here as a functional domain in modular recombinant proteins, to evaluate its ability to self-promote its paracellular epithelial passage in a Caco-2 cell monolayer model. c-CPE-containing fusion proteins bind cells in the absence of internalization and cytotoxicity and support the passage, in trans, of other fusion proteins devoid of c-CPE. However, c-CPE-carrying proteins fail to cross the epithelia by themselves, probably because their affinity for TJs immobilizes them in the intercellular space. Therefore, while recombinant c-CPE versions have been here confirmed as convenient epithelial-permeabilizing agents, a paradoxical behavior has been observed where this effect is only successful when applied in trans, specifically on entities that lack c-CPE. Then, c-CPE itself inhibits the paracellular mobility of carrier molecules, not being suited as a self-driver (in c-CPE-drug complexes) for drug delivery through epithelia.
Collapse
Affiliation(s)
- Julieta M. Sanchez
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Departamento
de Química, Cátedra de Química Biológica,
Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield
1611, Córdoba5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba5016, Argentina
| | - Marianna T. P. Favaro
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
| | - Hèctor López-Laguna
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Barcelona08193, Spain
| | - Eloi Parladé
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Barcelona08193, Spain
| | - Angela Di Somma
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Department
of Chemical Sciences, University of Naples
“Federico II”, Vicinale Cupa Cintia 26, Naples80126, Italy
| | - Isolda Casanova
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Institut
de Recerca Sant Pau (IR SANT PAU), Barcelona08041, Spain
- Josep
Carreras Leukaemia Research Institute (IJC), 08916Badalona, Spain
| | - Ugutz Unzueta
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Barcelona08193, Spain
- Institut
de Recerca Sant Pau (IR SANT PAU), Barcelona08041, Spain
- Josep
Carreras Leukaemia Research Institute (IJC), 08916Badalona, Spain
| | - Ramón Mangues
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Institut
de Recerca Sant Pau (IR SANT PAU), Barcelona08041, Spain
- Josep
Carreras Leukaemia Research Institute (IJC), 08916Badalona, Spain
| | - Esther Vazquez
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Barcelona08193, Spain
| | - Eric Voltà-Durán
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Barcelona08193, Spain
| | - Antonio Villaverde
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Barcelona08034, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Barcelona08193, Spain
| |
Collapse
|
3
|
Nicolas WJ, Shiriaeva A, Martynowycz MW, Grey AC, Ruma YN, Donaldson PJ, Gonen T. Structure of the lens MP20 mediated adhesive junction. Nat Commun 2025; 16:2977. [PMID: 40140346 PMCID: PMC11947226 DOI: 10.1038/s41467-025-57903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Human lens fiber membrane intrinsic protein MP20 is the second most abundant membrane protein of the human eye lens. Despite decades of effort its structure and function remained elusive. Here, we determined the MicroED structure of full-length human MP20 in lipidic-cubic phase to a resolution of 3.5 Å. MP20 forms tetramers each of which contain 4 transmembrane α-helices that are packed against one another forming a helical bundle. We find that each MP20 tetramer formed adhesive interactions with an opposing tetramer in a head-to-head fashion. Investigation of MP20 localization in human lenses indicate that in young fiber cells MP20 is initially localized to the cytoplasm in differentiating fiber cells but upon fiber cell maturation is inserted into the plasma membrane, correlating with the restriction of the diffusion of extracellular tracers into the lens. Together these results suggest that MP20 forms lens thin junctions in vivo, confirming its role as a structural protein in the human eye lens essential for its optical transparency.
Collapse
Affiliation(s)
- William J Nicolas
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Yasmeen N Ruma
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tamir Gonen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA.
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Nagarajan SK, Weber J, Roderer D, Piontek J. C. perfringens enterotoxin-claudin pore complex: Models for structure, mechanism of pore assembly and cation permeability. Comput Struct Biotechnol J 2024; 27:287-306. [PMID: 39881828 PMCID: PMC11774686 DOI: 10.1016/j.csbj.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025] Open
Abstract
The pore-forming Clostridium perfringens enterotoxin (CPE), a common cause of foodborne diseases, facilitates Ca2+ influx in enterocytes, leading to cell damage. Upon binding to certain claudins (e.g., claudin-4), CPE forms oligomeric pores in the cell membrane. While the mechanism of CPE-claudin interaction is well understood, the structure and assembly of the pore complex remain elusive. Here, we used AlphaFold2 complex prediction, structure alignment, and molecular dynamics simulations to generate models of prepore and pore states of the CPE/claudin-4 complex. We sequentially addressed CPE-claudin, CPE-CPE, and claudin-claudin interactions, along with CPE conformational changes. The CPE pore is a hexameric variant of the typical heptameric pore stem and cap architecture of aerolysin-like β-barrel pore-forming toxins (β-PFT). The pore is lined with three hexa-glutamate rings, which differ from other β-PFTs and confer CPE-specific cation selectivity. Additionally, the pore center is indicated to be anchored by a dodecameric claudin ring formed by a cis-interaction variant of an interface found in claudin-based tight junction strands. Mutation of an interface residue inhibited CPE-mediated cell damage in vitro. We propose that this claudin ring constitutes an anchor for a twisting mechanism that drives extension and membrane insertion of the CPE β-hairpins. Our pore model agrees with previous key experimental data and provides insights into the structural mechanisms of CPE-mediated cytotoxic cation influx.
Collapse
Affiliation(s)
- Santhosh Kumar Nagarajan
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Joy Weber
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Daniel Roderer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|