1
|
Castelli M, Petroni G. An Evolutionary-Focused Review of the Holosporales (Alphaproteobacteria): Diversity, Host Interactions, and Taxonomic Re-ranking as Holosporineae Subord. Nov. MICROBIAL ECOLOGY 2025; 88:15. [PMID: 40085262 PMCID: PMC11909080 DOI: 10.1007/s00248-025-02509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The order Holosporales is a broad and ancient lineage of bacteria obligatorily associated with eukaryotic hosts, mostly protists. Significantly, this is similar to other evolutionary distinct bacterial lineages (e.g. Rickettsiales and Chlamydiae). Here, we provide a detailed and comprehensive account on the current knowledge on the Holosporales. First, acknowledging the up-to-date phylogenetic reconstructions and recent nomenclatural proposals, we reevaluate their taxonomy, thus re-ranking them as a suborder, i.e. Holosporineae, within the order Rhodospirillales. Then, we examine the phylogenetic diversity of the Holosporineae, presenting the 20 described genera and many yet undescribed sub-lineages, as well as the variety of the respective environments of provenance and hosts, which belong to several different eukaryotic supergroups. Noteworthy representatives of the Holosporineae are the infectious intranuclear Holospora, the host manipulator 'Caedimonas', and the farmed shrimp pathogen 'Candidatus Hepatobacter'. Next, we put these bacteria in the broad context of the whole Holosporineae, by comparing with the available data on the least studied representatives, including genome sequences. Accordingly, we reason on the most probable evolutionary trajectories for host interactions, host specificity, and emergence of potential pathogens in aquaculture and possibly humans, as well as on future research directions to investigate those many open points on the Holosporineae.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
2
|
Castelli M, Gammuto L, Podushkina D, Vecchi M, Altiero T, Clementi E, Guidetti R, Rebecchi L, Sassera D. Hepatincolaceae (Alphaproteobacteria) are Distinct From Holosporales and Independently Evolved to Associate With Ecdysozoa. Environ Microbiol 2025; 27:e70028. [PMID: 39797518 PMCID: PMC11724238 DOI: 10.1111/1462-2920.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/13/2025]
Abstract
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages. In this study, the number of available Hepatincolaceae genomes was increased to examine their evolutionary and functional characteristics. It was found that the previous phylogenetic grouping with Holosporales was incorrect due to sequence compositional biases and that Hepatincolaceae form an independent branch within the Hepatincolaceae. This led to a reinterpretation of their features, proposing a new evolutionary scenario that involves an independent adaptation to host association compared to the Holosporales, with distinct specificities. The Hepatincolaceae exhibit greater nutritional flexibility, utilising various molecules available in the host gut and thriving in anaerobic conditions. However, they have a less complex mechanism for modulating host interactions, which are likely less direct than those of intracellular bacteria. In addition, representatives of Hepatincolaceae show several lineage-specific traits related to differences in host species and life conditions.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Leandro Gammuto
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Diona Podushkina
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Matteo Vecchi
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakowPoland
| | - Tiziana Altiero
- Dipartimento Educazione e Scienze UmaneUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Emanuela Clementi
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Roberto Guidetti
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Lorena Rebecchi
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Davide Sassera
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Fondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
3
|
Castelli M, Nardi T, Giovannini M, Sassera D. Addictive manipulation: a perspective on the role of reproductive parasitism in the evolution of bacteria-eukaryote symbioses. Biol Lett 2024; 20:20240310. [PMID: 39288812 PMCID: PMC11496725 DOI: 10.1098/rsbl.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Giovannini
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
4
|
Bontemps Z, Paranjape K, Guy L. Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts. FEMS Microbiol Rev 2024; 48:fuae021. [PMID: 39081075 PMCID: PMC11338181 DOI: 10.1093/femsre/fuae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by-among others-Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally at very low abundance, and are mainly identified in aquatic biomes. Most DIGs harbour a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIGs as a group from an ecological, molecular, and evolutionary perspective.
Collapse
Affiliation(s)
- Zélia Bontemps
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Kiran Paranjape
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
5
|
Lanzoni O, Szokoli F, Schrallhammer M, Sabaneyeva E, Krenek S, Doak TG, Verni F, Berendonk TU, Castelli M, Petroni G. "Candidatus Intestinibacterium parameciiphilum"-member of the "Candidatus Paracaedibacteraceae" family (Alphaproteobacteria, Holosporales) inhabiting the ciliated protist Paramecium. Int Microbiol 2024; 27:659-671. [PMID: 37615902 PMCID: PMC11144129 DOI: 10.1007/s10123-023-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Protists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family "Candidatus Paracaedibacteraceae" (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of "Candidatus Intestinibacterium parameciiphilum" within the family "Candidatus Paracaedibacteraceae", inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative "Candidatus Intestinibacterium nucleariae" from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of "Candidatus Intestinibacterium" species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the "Candidatus Intestinibacterium" genus.
Collapse
Affiliation(s)
| | - Franziska Szokoli
- Department of Biology, University of Pisa, Pisa, Italy
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Martina Schrallhammer
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Elena Sabaneyeva
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sascha Krenek
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | | | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy
| | - Thomas U Berendonk
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
6
|
Zhang B, Xiao L, Lyu L, Zhao F, Miao M. Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists. MICROBIOME 2024; 12:96. [PMID: 38790063 PMCID: PMC11127453 DOI: 10.1186/s40168-024-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The eukaryotic-bacterial symbiotic system plays an important role in various physiological, developmental, and evolutionary processes. However, our current understanding is largely limited to multicellular eukaryotes without adequate consideration of diverse unicellular protists, including ciliates. RESULTS To investigate the bacterial profiles associated with unicellular organisms, we collected 246 ciliate samples spanning the entire Ciliophora phylum and conducted single-cell based metagenome sequencing. This effort has yielded the most extensive collection of bacteria linked to unicellular protists to date. From this dataset, we identified 883 bacterial species capable of cohabiting with ciliates, unveiling the genomes of 116 novel bacterial cohabitants along with 7 novel archaeal cohabitants. Highlighting the intimate relationship between ciliates and their cohabitants, our study unveiled that over 90% of ciliates coexist with bacteria, with individual hosts fostering symbiotic relationships with multiple bacteria concurrently, resulting in the observation of seven distinct symbiotic patterns among bacteria. Our exploration of symbiotic mechanisms revealed the impact of host digestion on the intracellular diversity of cohabitants. Additionally, we identified the presence of eukaryotic-like proteins in bacteria as a potential contributing factor to their resistance against host digestion, thereby expanding their potential host range. CONCLUSIONS As the first large-scale analysis of prokaryotic associations with ciliate protists, this study provides a valuable resource for future research on eukaryotic-bacterial symbioses. Video Abstract.
Collapse
Affiliation(s)
- Bing Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Liwen Xiao
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Miao Miao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Giovannini M, Petroni G, Castelli M. Novel evolutionary insights on the interactions of the Holosporales (Alphaproteobacteria) with eukaryotic hosts from comparative genomics. Environ Microbiol 2024; 26:e16562. [PMID: 38173299 DOI: 10.1111/1462-2920.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Holosporales are an alphaproteobacterial order engaging in obligate and complex associations with eukaryotes, in particular protists. The functional and evolutionary features of those interactions are still largely undisclosed. Here, we sequenced the genomes of two members of the species Bealeia paramacronuclearis (Holosporales, Holosporaceae) intracellularly associated with the ciliate protist Paramecium, which resulted in high correspondence. Consistent with the short-branched early-divergent phylogenetic position, Bealeia presents a larger functional repertoire than other Holosporaceae, comparable to those of other Holosporales families, particularly for energy metabolism and motility. Our analyses indicate that different Holosporales likely experienced at least partly autonomous genome reduction and adaptation to host interactions, for example regarding dependence on host biotin driven by multiple independent horizontal acquisitions of transporters. Among Alphaproteobacteria, this is reminiscent of the convergently evolved Rickettsiales, which however appear more diverse, possibly due to a probably more ancient origin. We identified in Bealeia and other Holosporales the plasmid-encoded putative genetic determinants of R-bodies, which may be involved in a killer trait towards symbiont-free hosts. While it is not clear whether these genes are ancestral or recently horizontally acquired, an intriguing and peculiar role of R-bodies is suggested in the evolution of the interactions of multiple Holosporales with their hosts.
Collapse
Affiliation(s)
| | | | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Zumkeller S, Polsakiewicz M, Knoop V. Rickettsial DNA and a trans-splicing rRNA group I intron in the unorthodox mitogenome of the fern Haplopteris ensiformis. Commun Biol 2023; 6:296. [PMID: 36941328 PMCID: PMC10027690 DOI: 10.1038/s42003-023-04659-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Plant mitochondrial genomes can be complex owing to highly recombinant structures, lack of gene syntenies, heavy RNA editing and invasion of chloroplast, nuclear or even foreign DNA by horizontal gene transfer (HGT). Leptosporangiate ferns remained the last major plant clade without an assembled mitogenome, likely owing to a demanding combination of the above. We here present both organelle genomes now for Haplopteris ensiformis. More than 1,400 events of C-to-U RNA editing and over 500 events of reverse U-to-C edits affect its organelle transcriptomes. The Haplopteris mtDNA is gene-rich, lacking only the ccm gene suite present in ancestral land plant mitogenomes, but is highly unorthodox, indicating extraordinary recombinogenic activity. Although eleven group II introns known in disrupted trans-splicing states in seed plants exist in conventional cis-arrangements, a particularly complex structure is found for the mitochondrial rrnL gene, which is split into two parts needing reassembly on RNA level by a trans-splicing group I intron. Aside from ca. 80 chloroplast DNA inserts that complicated the mitogenome assembly, the Haplopteris mtDNA features as an idiosyncrasy 30 variably degenerated protein coding regions from Rickettiales bacteria indicative of heavy bacterial HGT on top of tRNA genes of chlamydial origin.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
9
|
Dittmer J, Bredon M, Moumen B, Raimond M, Grève P, Bouchon D. The terrestrial isopod symbiont 'Candidatus Hepatincola porcellionum' is a potential nutrient scavenger related to Holosporales symbionts of protists. ISME COMMUNICATIONS 2023; 3:18. [PMID: 36882494 PMCID: PMC9992710 DOI: 10.1038/s43705-023-00224-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
The order Holosporales (Alphaproteobacteria) encompasses obligate intracellular bacterial symbionts of diverse Eukaryotes. These bacteria have highly streamlined genomes and can have negative fitness effects on the host. Herein, we present a comparative analysis of the first genome sequences of 'Ca. Hepatincola porcellionum', a facultative symbiont occurring extracellularly in the midgut glands of terrestrial isopods. Using a combination of long-read and short-read sequencing, we obtained the complete circular genomes of two Hepatincola strains and an additional metagenome-assembled draft genome. Phylogenomic analysis validated its phylogenetic position as an early-branching family-level clade relative to all other established Holosporales families associated with protists. A 16S rRNA gene survey revealed that this new family encompasses diverse bacteria associated with both marine and terrestrial host species, which expands the host range of Holosporales bacteria from protists to several phyla of the Ecdysozoa (Arthropoda and Priapulida). Hepatincola has a highly streamlined genome with reduced metabolic and biosynthetic capacities as well as a large repertoire of transmembrane transporters. This suggests that this symbiont is rather a nutrient scavenger than a nutrient provider for the host, likely benefitting from a nutrient-rich environment to import all necessary metabolites and precursors. Hepatincola further possesses a different set of bacterial secretion systems compared to protist-associated Holosporales, suggesting different host-symbiont interactions depending on the host organism.
Collapse
Affiliation(s)
- Jessica Dittmer
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
- UMR 1345, Université d'Angers, Institut Agro, INRAE, IRHS, SFR Quasav, 42 Rue Georges Morel, 49070, Beaucouzé, France.
| | - Marius Bredon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
- Université Paris-Sorbonne, Centre de Recherche Saint-Antoine, Equipe Microbiote, Intestin et Inflammation, 27 Rue Chaligny, 75012, Paris, France
| | - Bouziane Moumen
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Maryline Raimond
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Pierre Grève
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Didier Bouchon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France.
| |
Collapse
|
10
|
Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, Melekhin M, Potekhin A, Fokin S, Petroni G. 'Candidatus Gromoviella agglomerans', a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:34-49. [PMID: 34766443 DOI: 10.1111/1758-2229.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Holosporales are an alphaproteobacterial lineage encompassing bacteria obligatorily associated with multiple diverse eukaryotes. For most representatives, little is known on the interactions with their hosts. In this study, we characterized a novel Holosporales symbiont of the ciliate Paramecium polycaryum. This bacterium inhabits the host cytoplasm, frequently forming quite large aggregates. Possibly due to such aggregates, host cells sometimes displayed lethal division defects. The symbiont was also able to experimentally stably infect another Paramecium polycaryum strain. The bacterium is phylogenetically related with symbionts of other ciliates and diplonemids, forming a putatively fast-evolving clade within the family Holosporaceae. Similarly to many close relatives, it presents a very small genome (<600 kbp), and, accordingly, a limited predicted metabolism, implying a heavy dependence on Paramecium, thanks also to some specialized membrane transporters. Characterized features, including the presence of specific secretion systems, are overall suggestive of a mild parasitic effect on the host. From an evolutionary perspective, a potential ancestral trend towards pronounced genome reduction and possibly linked to parasitism could be inferred, at least among fast-evolving Holosporaceae, with some lineage-specific traits. Interestingly, similar convergent features could be observed in other host-associated lineages, in particular Rickettsiales among Alphaproteobacteria.
Collapse
Affiliation(s)
- Michele Castelli
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Olivia Lanzoni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | | | - Natalia Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Maksim Melekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Sergei Fokin
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
11
|
Flemming FE, Grosser K, Schrallhammer M. Natural Shifts in Endosymbionts' Occurrence and Relative Frequency in Their Ciliate Host Population. Front Microbiol 2022; 12:791615. [PMID: 35087493 PMCID: PMC8787144 DOI: 10.3389/fmicb.2021.791615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
The role of bacterial endosymbionts harbored by heterotrophic Paramecium species is complex. Obligate intracellular bacteria supposedly always inflict costs as the host is the only possible provider of resources. However, several experimental studies have shown that paramecia carrying bacterial endosymbionts can benefit from their infection. Here, we address the question which endosymbionts occur in natural paramecia populations isolated from a small lake over a period of 5 years and which factors might explain observed shifts and persistence in the symbionts occurrence. One hundred and nineteen monoclonal strains were investigated and approximately two-third harbored intracellular bacteria. The majority of infected paramecia carried the obligate endosymbiotic "Candidatus Megaira polyxenophila", followed by Caedimonas varicaedens, and Holospora undulata. The latter was only detected in a single strain. While "Ca. M. polyxenophila" was observed in seven out of 13 samplings, C. varicaedens presence was limited to a single sampling occasion. After the appearance of C. varicaedens, "Ca. M. polyxenophila" prevalence dramatically dropped with some delay but recovered to original levels at the end of our study. Potential mechanisms explaining these observations include differences in infectivity, host range, and impact on host fitness as well as host competitive capacities. Growth experiments revealed fitness advantages for infected paramecia harboring "Ca. M. polyxenophila" as well as C. varicaedens. Furthermore, we showed that cells carrying C. varicaedens gain a competitive advantage from the symbiosis-derived killer trait. Other characteristics like infectivity and overlapping host range were taken into consideration, but the observed temporal persistence of "Ca. M. polyxenophila" is most likely explained by the positive effect this symbiont provides to its host.
Collapse
Affiliation(s)
- Felicitas E. Flemming
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
12
|
Oren A, Garrity GM. CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35100104 DOI: 10.1099/ijsem.0.005186] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
13
|
Wang S, Luo H. Dating Alphaproteobacteria evolution with eukaryotic fossils. Nat Commun 2021; 12:3324. [PMID: 34083540 PMCID: PMC8175736 DOI: 10.1038/s41467-021-23645-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
Elucidating the timescale of the evolution of Alphaproteobacteria, one of the most prevalent microbial lineages in marine and terrestrial ecosystems, is key to testing hypotheses on their co-evolution with eukaryotic hosts and Earth's systems, which, however, is largely limited by the scarcity of bacterial fossils. Here, we incorporate eukaryotic fossils to date the divergence times of Alphaproteobacteria, based on the mitochondrial endosymbiosis that mitochondria evolved from an alphaproteobacterial lineage. We estimate that Alphaproteobacteria arose ~1900 million years (Ma) ago, followed by rapid divergence of their major clades. We show that the origin of Rickettsiales, an order of obligate intracellular bacteria whose hosts are mostly animals, predates the emergence of animals for ~700 Ma but coincides with that of eukaryotes. This, together with reconstruction of ancestral hosts, strongly suggests that early Rickettsiales lineages had established previously underappreciated interactions with unicellular eukaryotes. Moreover, the mitochondria-based approach displays higher robustness to uncertainties in calibrations compared with the traditional strategy using cyanobacterial fossils. Further, our analyses imply the potential of dating the (bacterial) tree of life based on endosymbiosis events, and suggest that previous applications using divergence times of the modern hosts of symbiotic bacteria to date bacterial evolution might need to be revisited.
Collapse
Affiliation(s)
- Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, SAR, Hong Kong.
| |
Collapse
|
14
|
Midha S, Rigden DJ, Siozios S, Hurst GDD, Jackson AP. Bodo saltans (Kinetoplastida) is dependent on a novel Paracaedibacter-like endosymbiont that possesses multiple putative toxin-antitoxin systems. THE ISME JOURNAL 2021; 15:1680-1694. [PMID: 33452479 PMCID: PMC8163844 DOI: 10.1038/s41396-020-00879-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
Bacterial endosymbiosis has been instrumental in eukaryotic evolution, and includes both mutualistic, dependent and parasitic associations. Here we characterize an intracellular bacterium inhabiting the flagellated protist Bodo saltans (Kinetoplastida). We present a complete bacterial genome comprising a 1.39 Mb circular chromosome with 40.6% GC content. Fluorescent in situ hybridisation confirms that the endosymbiont is located adjacent to the nuclear membrane, and a detailed model of its intracellular niche is generated using serial block-face scanning electron microscopy. Phylogenomic analysis shows that the endosymbiont belongs to the Holosporales, most closely related to other α-proteobacterial endosymbionts of ciliates and amoebae. Comparative genomics indicates that it has a limited metabolism and is nutritionally host-dependent. However, the endosymbiont genome does encode diverse symbiont-specific secretory proteins, including a type VI secretion system and three separate toxin-antitoxin systems. We show that these systems are actively transcribed and hypothesize they represent a mechanism by which B. saltans becomes addicted to its endosymbiont. Consistent with this idea, attempts to cure Bodo of endosymbionts led to rapid and uniform cell death. This study adds kinetoplastid flagellates to ciliates and amoebae as hosts of Paracaedibacter-like bacteria, suggesting that these antagonistic endosymbioses became established very early in Eukaryotic evolution.
Collapse
Affiliation(s)
- Samriti Midha
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool, L69 7ZB, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
15
|
Pasqualetti C, Szokoli F, Rindi L, Petroni G, Schrallhammer M. The Obligate Symbiont " Candidatus Megaira polyxenophila" Has Variable Effects on the Growth of Different Host Species. Front Microbiol 2020; 11:1425. [PMID: 32733401 PMCID: PMC7360802 DOI: 10.3389/fmicb.2020.01425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
"Candidatus Megaira polyxenophila" is a recently described member of Rickettsiaceae which comprises exclusively obligate intracellular bacteria. Interestingly, these bacteria can be found in a huge diversity of eukaryotic hosts (protist, green algae, metazoa) living in marine, brackish or freshwater habitats. Screening of amplicon datasets revealed a high frequency of these bacteria especially in freshwater environments, most likely associated to eukaryotic hosts. The relationship of "Ca. Megaira polyxenophila" with their hosts and their impact on host fitness have not been studied so far. Even less is known regarding the responses of these intracellular bacteria to potential stressors. In this study, we used two phylogenetically close species of the freshwater ciliate Paramecium, Paramecium primaurelia and Paramecium pentaurelia (Ciliophora, Oligohymenophorea) naturally infected by "Ca. Megaira polyxenophila". In order to analyze the effect of the symbiont on the fitness of these two species, we compared the growth performance of both infected and aposymbiotic paramecia at different salinity levels in the range of freshwater and oligohaline brackish water i.e., at 0, 2, and 4.5 ppt. For the elimination of "Ca. Megaira polyxenophila" we established an antibiotic treatment to obtain symbiont-free lines and confirmed its success by fluorescence in situ hybridization (FISH). The population and infection dynamics during the growth experiment were observed by cell density counts and FISH. Paramecia fitness was compared applying generalized additive mixed models. Surprisingly, both infected Paramecium species showed higher densities under all salinity concentrations. The tested salinity concentrations did not significantly affect the growth of any of the two species directly, but we observed the loss of the endosymbiont after prolonged exposure to higher salinity levels. This experimental data might explain the higher frequency of "Ca. M. polyxenophila" in freshwater habitats as observed from amplicon data.
Collapse
Affiliation(s)
- Chiara Pasqualetti
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Franziska Szokoli
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Luca Rindi
- Dipartimento di Biologia, CoNISMa, Università di Pisa, Pisa, Italy
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Martina Schrallhammer
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Pirritano M, Zaburannyi N, Grosser K, Gasparoni G, Müller R, Simon M, Schrallhammer M. Dual-Seq reveals genome and transcriptome of Caedibacter taeniospiralis, obligate endosymbiont of Paramecium. Sci Rep 2020; 10:9727. [PMID: 32546745 PMCID: PMC7297999 DOI: 10.1038/s41598-020-65894-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Interest in host-symbiont interactions is continuously increasing, not only due to the growing recognition of the importance of microbiomes. Starting with the detection and description of novel symbionts, attention moves to the molecular consequences and innovations of symbioses. However, molecular analysis requires genomic data which is difficult to obtain from obligate intracellular and uncultivated bacteria. We report the identification of the Caedibacter genome, an obligate symbiont of the ciliate Paramecium. The infection does not only confer the host with the ability to kill other cells but also renders them immune against this effect. We obtained the C. taeniospiralis genome and transcriptome by dual-Seq of DNA and RNA from infected paramecia. Comparison of codon usage and expression level indicates that genes necessary for a specific trait of this symbiosis, i.e. the delivery of an unknown toxin, result from horizontal gene transfer hinting to the relevance of DNA transfer for acquiring new characters. Prediction of secreted proteins of Caedibacter as major agents of contact with the host implies, next to several toxin candidates, a rather uncharacterized secretome which appears to be highly adapted to this symbiosis. Our data provides new insights into the molecular establishment and evolution of this obligate symbiosis and for the pathway characterization of toxicity and immunity.
Collapse
Affiliation(s)
- Marcello Pirritano
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics Saarland University, Saarbrücken, Germany
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmacy, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken and German Centre for Infection Research (DZIF), Hannover, Germany
| | - Katrin Grosser
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany.,Deep Sequencing Unit, Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gilles Gasparoni
- Genetics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmacy, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken and German Centre for Infection Research (DZIF), Hannover, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany. .,Molecular Cell Dynamics Saarland University, Saarbrücken, Germany.
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Paramecium Diversity and a New Member of the Paramecium aurelia Species Complex Described from Mexico. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12050197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paramecium (Ciliophora) is an ideal model organism to study the biogeography of protists. However, many regions of the world, such as Central America, are still neglected in understanding Paramecium diversity. We combined morphological and molecular approaches to identify paramecia isolated from more than 130 samples collected from different waterbodies in several states of Mexico. We found representatives of six Paramecium morphospecies, including the rare species Paramecium jenningsi, and Paramecium putrinum, which is the first report of this species in tropical regions. We also retrieved five species of the Paramecium aurelia complex, and describe one new member of the complex, Paramecium quindecaurelia n. sp., which appears to be a sister species of Paramecium biaurelia. We discuss criteria currently applied for differentiating between sibling species in Paramecium. Additionally, we detected diverse bacterial symbionts in some of the collected ciliates.
Collapse
|
18
|
George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. Highly Reduced Genomes of Protist Endosymbionts Show Evolutionary Convergence. Curr Biol 2020; 30:925-933.e3. [PMID: 31978335 DOI: 10.1016/j.cub.2019.12.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Genome evolution in bacterial endosymbionts is notoriously extreme: the combined effects of strong genetic drift and unique selective pressures result in highly reduced genomes with distinctive adaptations to hosts [1-4]. These processes are mostly known from animal endosymbionts, where nutritional endosymbioses represent the best-studied systems. However, eukaryotic microbes, or protists, also harbor diverse bacterial endosymbionts, but their genome reduction and functional relationships with their hosts are largely unexplored [5-7]. We sequenced the genomes of four bacterial endosymbionts from three species of diplonemids, poorly studied but abundant and diverse heterotrophic protists [8-12]. The endosymbionts come from two bacterial families, Rickettsiaceae and Holosporaceae, that have invaded two families of diplonemids, and their genomes have converged on an extremely small size (605-632 kilobase pairs [kbp]), similar gene content (e.g., metabolite transporters and secretion systems), and reduced metabolic potential (e.g., loss of energy metabolism). These characteristics are generally found in both families, but the diplonemid endosymbionts have evolved greater extremes in parallel. They possess modified type VI secretion systems that could function in manipulating host metabolism or other intracellular interactions. Finally, modified cellular machinery like the ATP synthase without oxidative phosphorylation, and the reduced flagellar apparatus present in some diplonemid endosymbionts and nutritional animal endosymbionts, indicates that intracellular mechanisms have converged in bacterial endosymbionts with various functions and from different eukaryotic hosts across the tree of life.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada.
| | - Filip Husnik
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Waldan K Kwong
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Epidemiology of Nucleus-Dwelling Holospora: Infection, Transmission, Adaptation, and Interaction with Paramecium. Results Probl Cell Differ 2020; 69:105-135. [PMID: 33263870 DOI: 10.1007/978-3-030-51849-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chapter describes the exceptional symbiotic associations formed between the ciliate Paramecium and Holospora, highly infectious bacteria residing in the host nuclei. Holospora and Holospora-like bacteria (Alphaproteobacteria) are characterized by their ability for vertical and horizontal transmission in host populations, a complex biphasic life cycle, and pronounced preference for host species and colonized cell compartment. These bacteria are obligate intracellular parasites; thus, their metabolic repertoire is dramatically reduced. Nevertheless, they perform complex interactions with the host ciliate. We review ongoing efforts to unravel the molecular adaptations of these bacteria to their unusual lifestyle and the host's employment in the symbiosis. Furthermore, we summarize current knowledge on the genetic and genomic background of Paramecium-Holospora symbiosis and provide insights into the ecological and evolutionary consequences of this interaction. The diversity and occurrence of symbioses between ciliates and Holospora-like bacteria in nature is discussed in connection with transmission modes of symbionts, host specificity and compatibility of the partners. We aim to summarize 50 years of research devoted to these symbiotic systems and conclude trying to predict some perspectives for further studies.
Collapse
|
20
|
Bright M, Espada-Hinojosa S, Volland JM, Drexel J, Kesting J, Kolar I, Morchner D, Nussbaumer A, Ott J, Scharhauser F, Schuster L, Zambalos HC, Nemeschkal HL. Thiotrophic bacterial symbiont induces polyphenism in giant ciliate host Zoothamnium niveum. Sci Rep 2019; 9:15081. [PMID: 31636334 PMCID: PMC6803713 DOI: 10.1038/s41598-019-51511-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/02/2019] [Indexed: 11/09/2022] Open
Abstract
Evolutionary theory predicts potential shifts between cooperative and uncooperative behaviour under fluctuating environmental conditions. This leads to unstable benefits to the partners and restricts the evolution of dependence. High dependence is usually found in those hosts in which vertically transmitted symbionts provide nutrients reliably. Here we study host dependence in the marine, giant colonial ciliate Zoothamnium niveum and its vertically transmitted, nutritional, thiotrophic symbiont from an unstable environment of degrading wood. Previously, we have shown that sulphidic conditions lead to high host fitness and oxic conditions to low fitness, but the fate of the symbiont has not been studied. We combine several experimental approaches to provide evidence for a sulphide-tolerant host with striking polyphenism involving two discrete morphs, a symbiotic and an aposymbiotic one. The two differ significantly in colony growth form and fitness. This polyphenism is triggered by chemical conditions and elicited by the symbiont's presence on the dispersing swarmer. We provide evidence of a single aposymbiotic morph found in nature. We propose that despite a high fitness loss when aposymbiotic, the ciliate has retained a facultative life style and may use the option to live without its symbiont to overcome spatial and temporal shortage of sulphide in nature.
Collapse
Affiliation(s)
- Monika Bright
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria.
| | | | - Jean-Marie Volland
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | - Judith Drexel
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | - Julia Kesting
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | - Ingrid Kolar
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | - Denny Morchner
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | - Andrea Nussbaumer
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | - Jörg Ott
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | - Florian Scharhauser
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | - Lukas Schuster
- University of Vienna, Department of Limnology and Bio-Oceanography, Vienna, Austria
| | | | | |
Collapse
|
21
|
Plotnikov AO, Balkin AS, Gogoleva NE, Lanzoni O, Khlopko YA, Cherkasov SV, Potekhin AA. High-Throughput Sequencing of the 16S rRNA Gene as a Survey to Analyze the Microbiomes of Free-Living Ciliates Paramecium. MICROBIAL ECOLOGY 2019; 78:286-298. [PMID: 30661111 DOI: 10.1007/s00248-019-01321-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Ciliates are the largest group of ubiquitous aquatic bacterivorous protists, and many species are easily cultivated. However, only few studies reported prokaryotic communities naturally associated with ciliate cells. Herein, we analyzed the microbiome composition of several strains of Paramecium (Ciliophora) originating from different locations and belonging to two morpho-species by high-throughput sequencing (HTS) of the 16S rRNA gene. Possible reasons of HTS results bias were addressed comparing DNA libraries obtained using different primers and different number of ciliate cells. Microbiomes associated with ciliates and their environments were always significantly different by prokaryotic taxonomic composition and bacterial richness. There were also pronounced differences between Paramecium strains. Interestingly, potentially pathogenic bacteria were revealed in Paramecium microbiomes.
Collapse
Affiliation(s)
- Andrey O Plotnikov
- "Persistence of microorganisms" Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia.
| | - Alexander S Balkin
- "Persistence of microorganisms" Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of Russian Academy of Sciences, Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Yuri A Khlopko
- "Persistence of microorganisms" Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia
| | - Sergey V Cherkasov
- Laboratory of biomedical technologies, Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia
| | - Alexey A Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
22
|
Boscaro V, Husnik F, Vannini C, Keeling PJ. Symbionts of the ciliate Euplotes: diversity, patterns and potential as models for bacteria-eukaryote endosymbioses. Proc Biol Sci 2019; 286:20190693. [PMID: 31311477 PMCID: PMC6661354 DOI: 10.1098/rspb.2019.0693] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Endosymbioses between bacteria and eukaryotes are enormously important in ecology and evolution, and as such are intensely studied. Despite this, the range of investigated hosts is narrow in the context of the whole eukaryotic tree of life: most of the information pertains to animal hosts, while most of the diversity is found in unicellular protists. A prominent case study is the ciliate Euplotes, which has repeatedly taken up the bacterium Polynucleobacter from the environment, triggering its transformation into obligate endosymbiont. This multiple origin makes the relationship an excellent model to understand recent symbioses, but Euplotes may host bacteria other than Polynucleobacter, and a more detailed knowledge of these additional interactions is needed in order to correctly interpret the system. Here, we present the first systematic survey of Euplotes endosymbionts, adopting a classical as well as a metagenomic approach, and review the state of knowledge. The emerging picture is indeed quite complex, with some Euplotes harbouring rich, stable prokaryotic communities not unlike those of multicellular animals. We provide insights into the distribution, evolution and diversity of these symbionts (including the establishment of six novel bacterial taxa), and outline differences and similarities with the most well-understood group of eukaryotic hosts: insects.
Collapse
Affiliation(s)
- Vittorio Boscaro
- Department of Botany, University of British Columbia, British Columbia, Canada
| | - Filip Husnik
- Department of Botany, University of British Columbia, British Columbia, Canada
| | | | - Patrick J. Keeling
- Department of Botany, University of British Columbia, British Columbia, Canada
| |
Collapse
|
23
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Potekhin A, Schweikert M, Nekrasova I, Vitali V, Schwarzer S, Anikina A, Kaltz O, Petroni G, Schrallhammer M. Complex life cycle, broad host range and adaptation strategy of the intranuclear Paramecium symbiont Preeria caryophila comb. nov. FEMS Microbiol Ecol 2019; 94:4987202. [PMID: 29718229 DOI: 10.1093/femsec/fiy076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023] Open
Abstract
Holospora and related bacteria are a group of obligate Paramecium symbionts. Characteristic features are their infectivity, the presence of two distinct morphotypes, and usually a strict specialization for a single Paramecium species as host and for a nuclear compartment (either somatic or generative nucleus) for reproduction. Holospora caryophila steps out of line, naturally occurring in Paramecium biaurelia and Paramecium caudatum. This study addresses the phylogenetic relationship among H. caryophila and other Holospora species based on 16S rRNA gene sequence comparison analyzing the type strain and seven new macronuclear symbionts. Key aspects of Holospora physiology such as infectivity, symbiosis establishment and host range were determined by comprehensive infection assays. Detailed morphological investigations and sequence-based phylogeny confirmed a high similarity between the type strain of H. caryophila and the novel strains. Surprisingly, they are only distantly related to other Holospora species suggesting that they belong to a new genus within the family Holosporaceae, here described as Preeria caryophila comb. nov. Adding to this phylogenetic distance, we also observed a much broader host range, comprising at least eleven Paramecium species. As these potential host species exhibit substantial differences in frequency of sexual processes, P. caryophila demonstrates which adaptations are crucial for macronuclear symbionts facing regular destruction of their habitat.
Collapse
Affiliation(s)
- Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, 190020 Saint Petersburg, Russia
| | - Michael Schweikert
- Biobased Materials Group, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Irina Nekrasova
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, 190020 Saint Petersburg, Russia
| | - Valerio Vitali
- Department of Biology, Università di Pisa, 56126 Pisa, Italy
| | - Sabine Schwarzer
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität Freiburg, 79104 Freiburg, Germany
| | - Arina Anikina
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, 190020 Saint Petersburg, Russia
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Giulio Petroni
- Department of Biology, Università di Pisa, 56126 Pisa, Italy
| | - Martina Schrallhammer
- Department of Biology, Università di Pisa, 56126 Pisa, Italy.,Microbiology, Institute of Biology II, Albert-Ludwigs Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
25
|
Fokin SI, Serra V, Ferrantini F, Modeo L, Petroni G. "Candidatus Hafkinia simulans" gen. nov., sp. nov., a Novel Holospora-Like Bacterium from the Macronucleus of the Rare Brackish Water Ciliate Frontonia salmastra (Oligohymenophorea, Ciliophora): Multidisciplinary Characterization of the New Endosymbiont and Its Host. MICROBIAL ECOLOGY 2019; 77:1092-1106. [PMID: 30627761 DOI: 10.1007/s00248-018-1311-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/19/2018] [Indexed: 05/09/2023]
Abstract
We characterized a novel Holospora-like bacterium (HLB) (Alphaproteobacteria, Holosporales) living in the macronucleus of the brackish water ciliate Frontonia salmastra. This bacterium was morphologically and ultrastructurally investigated, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and performed in situ hybridization experiments with a specifically-designed probe. A new taxon, "Candidatus Hafkinia simulans", was established for this HLB. The phylogeny of the family Holosporaceae based on 16S rRNA gene sequences was inferred, adding to the already available data both the sequence of the novel bacterium and those of other Holospora and HLB species recently characterized. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and placed the new endosymbiont as the sister genus of Holospora. Additionally, the host ciliate F. salmastra, recorded in Europe for the first time, was concurrently described through a multidisciplinary study. Frontonia salmastra's phylogenetic position in the subclass Peniculia and the genus Frontonia was assessed according to 18S rRNA gene sequencing. Comments on the biodiversity of this genus were added according to past and recent literature.
Collapse
Affiliation(s)
- Sergei I Fokin
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia, 199034.
- St. Petersburg Branch of the S.I. Vavilov Institute of History of Science and Technology, Russian Academy of Sciences, St. Petersburg, Russia, 199034.
| | - Valentina Serra
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| | | | - Letizia Modeo
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| |
Collapse
|
26
|
Detection of a new bacterium of the family Holosporaceae (Alphaproteobacteria: Holosporales) associated with the oribatid mite Achipteria coleoptrata. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00251-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractWe detected an unknown bacterium in Achipteria coleoptrata (Acari: Oribatida). Its 16S rDNA gene sequence showed 89% identity to the endosymbiont “Candidatus Nucleicultrix amoebiphila” from amoebae and “Candidatus Gortzia sp.” from ciliates. Phylogenetic analysis revealed that the microorganism is a member of the family Holosporaceae, order Holosporales of Alphaproteobacteria. Its occurrence in Oribatida is enigmatic. It cannot be excluded that it is a symbiont of Oribatida as well as it is an endosymbiont of a smaller, even unicellular, organisms living inside the mite. The issue of the occurrence of this microorganism is interesting and further research is needed to gain the knowledge of its role and the nature of bacterium-host interaction.
Collapse
|
27
|
Castelli M, Serra V, Senra MVX, Basuri CK, Soares CAG, Fokin SI, Modeo L, Petroni G. The Hidden World of Rickettsiales Symbionts: "Candidatus Spectririckettsia obscura," a Novel Bacterium Found in Brazilian and Indian Paramecium caudatum. MICROBIAL ECOLOGY 2019; 77:748-758. [PMID: 30105505 DOI: 10.1007/s00248-018-1243-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Symbioses between bacteria and eukaryotes are widespread and may have significant impact on the evolutionary history of symbiotic partners. The order Rickettsiales is a lineage of intracellular Alphaproteobacteria characterized by an obligate association with a wide range of eukaryotic hosts, including several unicellular organisms, such as ciliates and amoebas. In this work, we characterized the Rickettsiales symbionts associated with two different genotypes of the freshwater ciliate Paramecium caudatum originated from freshwater environments in distant geographical areas. Phylogenetic analyses based on 16S rRNA gene showed that the two symbionts are closely related to each other (99.4% identity), belong to the family Rickettsiaceae, but are far-related with respect to previously characterized Rickettsiales. Consequently, they were assigned to a new species of a novel genus, namely "Candidatus Spectririckettsia obscura." Screening on a database of short reads from 16S rRNA gene amplicon-based profiling studies confirmed that bacterial sequences related to the new symbiont are preferentially retrieved from freshwater environments, apparently with extremely scarce occurrence (< 0.1% positive samples). The present work provides new information on the still under-explored biodiversity of Rickettsiales, in particular those associated to ciliate host cells.
Collapse
Affiliation(s)
- Michele Castelli
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biosciences, University of Milan, Milan, Italy.
- Department of Biology, University of Pisa, Pisa, Italy.
| | | | - Marcus V X Senra
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Charan K Basuri
- Department of Zoology, Andhra University, Visakhapatnam, India
| | - Carlos A G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
28
|
Koehler L, Flemming FE, Schrallhammer M. Towards an ecological understanding of the killer trait - A reproducible protocol for testing its impact on freshwater ciliates. Eur J Protistol 2019; 68:108-120. [PMID: 30826731 DOI: 10.1016/j.ejop.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/19/2022]
Abstract
Paramecium strains with the ability to kill other paramecia often harbour intracellular bacteria belonging to the genera Caedibacter or Caedimonas. Central structures of this killer trait are refractile bodies (R-bodies) produced by the endosymbionts. Once ingested by a sensitive Paramecium, R-bodies presumably act as delivery system for an unidentified toxin which causes the death of endosymbiont-free paramecia while those infected gain resistance from their symbionts. The killer trait is therefore considered as competitive advantage for the hosts of R-body producers. While its effectiveness against paramecia is well documented, the effects on other aquatic ciliates are much less studied. In order to address the broadness of the killer trait, a reproducible killer test assay considering the effects on predatory ciliates (Climacostomum virens and Dileptus jonesi) as well as potential bacterivorous Paramecium competitors (Dexiostoma campyla, Euplotes aediculatus, Euplotes woodruffi, and Spirostomum teres) as possibly susceptible species was established. All used organisms were molecularly characterized to increase traceability and reproducibility. The absence of any lethal effects in both predators and competitors after exposure to killer paramecia strongly suggests a narrow action range for the killer trait. Thus, R-body producing bacteria provide their host with a complex, costly strategy to outcompete symbiont-free congeners only.
Collapse
Affiliation(s)
- Lars Koehler
- Institute of Biology II, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany; Institute of Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - Felicitas E Flemming
- Institute of Biology II, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Martina Schrallhammer
- Institute of Biology II, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
29
|
Chan LL, Mak JW, Ambu S, Chong PY. Identification and ultrastructural characterization of Acanthamoeba bacterial endocytobionts belonging to the Alphaproteobacteria class. PLoS One 2018; 13:e0204732. [PMID: 30356282 PMCID: PMC6200196 DOI: 10.1371/journal.pone.0204732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
The detection and identification of two endocytobiotic bacterial strains, one affiliated to the "Candidatus Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba", and another to the endosymbiont of Acanthamoeba UWC8 and "Ca. Jidaibacter acanthamoeba" are described. For endocytobiont screening, we developed a PCR method with a set of broad-range bacterial 16S rRNA primers to substitute the commonly used but technically demanding fluorescent in situ hybridization technique. Our PCR test alone without sequencing failed to discriminate the endocytobiont-containing and endocytobiont-free Acanthamoeba sp. due to the presence of mismatched primers to host mitochondrial DNA. We highlighted the need to perform bacterial primer checking against the Acanthamoeba genome to avoid false positive detection in PCR. Although the genetic aspect of "Ca. Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba" and the endosymbiont of Acanthamoeba UWC8/"Ca. Jidaibacter acanthamoeba" are well studied, knowledge pertaining to their morphologies are quite vague. Hence, we used transmission electron microscopy to examine our endocytobionts which are affiliated to previously described intracellular bacteria of Acanthamoeba sp. We used good-quality TEM images for the localization and the fate of the current endocytobionts inside different life stages of the hosts. Furthermore, to the best of our knowledge, our TEM findings are the first to provide morphological evidence for the clearance of defective Acanthamoeba endocytobionts via an autophagic-like process.
Collapse
Affiliation(s)
- Li Li Chan
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Joon Wah Mak
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Stephen Ambu
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Pei Yee Chong
- Medical Sciences, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Grosser K, Ramasamy P, Amirabad AD, Schulz MH, Gasparoni G, Simon M, Schrallhammer M. More than the "Killer Trait": Infection with the Bacterial Endosymbiont Caedibacter taeniospiralis Causes Transcriptomic Modulation in Paramecium Host. Genome Biol Evol 2018; 10:646-656. [PMID: 29390087 PMCID: PMC5814942 DOI: 10.1093/gbe/evy024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Endosymbiosis is a widespread phenomenon and hosts of bacterial endosymbionts can be found all-over the eukaryotic tree of life. Likely, this evolutionary success is connected to the altered phenotype arising from a symbiotic association. The potential variety of symbiont’s contributions to new characteristics or abilities of host organisms are largely unstudied. Addressing this aspect, we focused on an obligate bacterial endosymbiont that confers an intraspecific killer phenotype to its host. The symbiosis between Paramecium tetraurelia and Caedibacter taeniospiralis, living in the host’s cytoplasm, enables the infected paramecia to release Caedibacter symbionts, which can simultaneously produce a peculiar protein structure and a toxin. The ingestion of bacteria that harbor both components leads to the death of symbiont-free congeners. Thus, the symbiosis provides Caedibacter-infected cells a competitive advantage, the “killer trait.” We characterized the adaptive gene expression patterns in symbiont-harboring Paramecium as a second symbiosis-derived aspect next to the killer phenotype. Comparative transcriptomics of infected P. tetraurelia and genetically identical symbiont-free cells confirmed altered gene expression in the symbiont-bearing line. Our results show up-regulation of specific metabolic and heat shock genes whereas down-regulated genes were involved in signaling pathways and cell cycle regulation. Functional analyses to validate the transcriptomics results demonstrated that the symbiont increases host density hence providing a fitness advantage. Comparative transcriptomics shows gene expression modulation of a ciliate caused by its bacterial endosymbiont thus revealing new adaptive advantages of the symbiosis. Caedibacter taeniospiralis apparently increases its host fitness via manipulation of metabolic pathways and cell cycle control.
Collapse
Affiliation(s)
- Katrin Grosser
- Microbiology, Institute of Biology II, Albert-Ludwigs University of Freiburg, Germany
| | - Pathmanaban Ramasamy
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Azim Dehghani Amirabad
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Computational Biology and Applied Algorithmics, Max-Planck-Institute for Informatics, Saarland Informatics Campus, Saarbruecken, Germany
| | - Marcel H Schulz
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Computational Biology and Applied Algorithmics, Max-Planck-Institute for Informatics, Saarland Informatics Campus, Saarbruecken, Germany
| | - Gilles Gasparoni
- Genetics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Martin Simon
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, Albert-Ludwigs University of Freiburg, Germany
| |
Collapse
|
31
|
Cultivation Conditions Can Cause a Shift from Mutualistic to Parasitic Behavior in the Symbiosis Between Paramecium and Its Bacterial Symbiont Caedibacter taeniospiralis. Curr Microbiol 2018; 75:1099-1102. [DOI: 10.1007/s00284-018-1493-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|