1
|
Puagsopa J, Tongviseskul N, Jaroentomeechai T, Meksiriporn B. Recent Progress in Developing Extracellular Vesicles as Nanovehicles to Deliver Carbohydrate-Based Therapeutics and Vaccines. Vaccines (Basel) 2025; 13:285. [PMID: 40266147 PMCID: PMC11946770 DOI: 10.3390/vaccines13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Cell-derived, nanoscale extracellular vesicles (EVs) have emerged as promising tools in diagnostic, therapeutic, and vaccine applications. Their unique properties including the capability to encapsulate diverse molecular cargo as well as the versatility in surface functionalization make them ideal candidates for safe and effective vehicles to deliver a range of biomolecules including gene editing cassettes, therapeutic proteins, glycans, and glycoconjugate vaccines. In this review, we discuss recent advances in the development of EVs derived from mammalian and bacterial cells for use in a delivery of carbohydrate-based protein therapeutics and vaccines. We highlight key innovations in EVs' molecular design, characterization, and deployment for treating diseases including Alzheimer's disease, infectious diseases, and cancers. We discuss challenges for their clinical translation and provide perspectives for future development of EVs within biopharmaceutical research and the clinical translation landscape.
Collapse
Affiliation(s)
- Japigorn Puagsopa
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Niksa Tongviseskul
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Bunyarit Meksiriporn
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| |
Collapse
|
2
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Hadi MI, Laksmi FA, Helbert, Amalia AR, Muhammad AD, Violando WA. An efficient approach for overproduction of DNA polymerase from Pyrococcus furiosus using an optimized autoinduction system in Escherichia coli. World J Microbiol Biotechnol 2024; 40:324. [PMID: 39294482 DOI: 10.1007/s11274-024-04127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/31/2024] [Indexed: 09/20/2024]
Abstract
High fidelity DNA polymerase from Pyrococcus furiosus (Pfupol) is an attractive alternative to the highly popular DNA polymerase from Thermus aquaticus. Because this enzyme is in great demand for biotechnological applications, optimizing Pfupol production is essential to supplying the industry's expanding demand. T7-induced promoter expression in Escherichia coli expression systems is used to express recombinant Pfupol; however, this method is not cost-effective. Here, we have effectively developed an optimized process for the autoinduction approach of Pfupol expression in a defined medium. To better examine Pfupol's activities, its purified fraction was used. A 71 mg/L of pure Pfupol was effectively produced, resulting in a 2.6-fold increase in protein yield when glucose, glycerol, and lactose were added in a defined medium at concentrations of 0.05%, 1%, and 0.6%, respectively, and the condition for production in a 5 L bioreactor was as follow: 200 rpm, 3 vvm, and 10% inoculant. Furthermore, the protein exhibited 1445 U/mg of specific activity when synthesized in its active state. This work presents a high level of Pfupol production, which makes it an economically viable and practically useful approach.
Collapse
Affiliation(s)
- Moch Irfan Hadi
- Faculty of Science and Technology, UIN Sunan Ampel, Surabaya, Indonesia
| | - Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia.
| | - Helbert
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia
| | - Arfena Rizqi Amalia
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia
| | - Azriel Dafa Muhammad
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia
| | | |
Collapse
|
4
|
Kamoshida G, Yamaguchi D, Kaya Y, Yamakado T, Yamashita K, Aoyagi M, Nagai S, Yamada N, Kawagishi Y, Sugano M, Sakairi Y, Ueno M, Takemoto N, Morita Y, Ishizaka Y, Yahiro K. Development of a novel bacterial production system for recombinant bioactive proteins completely free from endotoxin contamination. PNAS NEXUS 2024; 3:pgae328. [PMID: 39161731 PMCID: PMC11331542 DOI: 10.1093/pnasnexus/pgae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Endotoxins, or lipopolysaccharides (LPS), are potent immunostimulatory molecules of critical concern in bacterial recombinant protein expression systems. The gram-negative bacterium Acinetobacter baumannii exhibits an interesting and unique phenotype characterized by the complete loss of LPS. In this study, we developed a novel system for producing recombinant proteins completely devoid of endotoxin contamination using LPS-deficient A. baumannii. We purified endotoxin-free functional green fluorescent protein, which reduced endotoxin contamination by approximately three orders of magnitude, and also purified the functional cytokine tumor necrosis factor (TNF)-α. Additionally, utilization of the Omp38 signal peptide of A. baumannii enabled the extracellular production of variable domain of heavy chain of heavy chain (VHH) antibodies. With these advantages, mNb6-tri-20aa, a multivalent VHH that specifically binds to the spike protein of severe acute respiratory syndrome coronavirus 2, was purified from the culture supernatant, and endotoxin contamination was reduced by a factor of approximately 2 × 105 compared with that in conventional expression systems. A virus neutralization assay demonstrated the functionality of the purified antibody in suppressing viral infections. Moreover, we applied our system to produce ozoralizumab, a multispecific VHH that binds to human TNF-α and albumin and are marketed as a rheumatoid arthritis drug. We successfully purified a functional antibody from endotoxin contamination. This system establishes a new, completely endotoxin-free platform for the expression of recombinant proteins, which distinguishes it from other bacterial expression systems, and holds promise for future applications.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuki Kaya
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiki Yamakado
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kenta Yamashita
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Moe Aoyagi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Saaya Nagai
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yu Kawagishi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mizuki Sugano
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yoshiaki Sakairi
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Mikako Ueno
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
5
|
Melinek BJ, Tuck J, Probert P, Branton H, Bracewell DG. Designing of an extract production protocol for industrial application of cell-free protein synthesis technology: Building from a current best practice to a quality by design approach. ENGINEERING BIOLOGY 2023; 7:1-17. [PMID: 38094242 PMCID: PMC10715128 DOI: 10.1049/enb2.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Cell-Free Protein Synthesis (CFPS) has, over the past decade, seen a substantial increase in interest from both academia and industry. Applications range from fundamental research, through high-throughput screening to niche manufacture of therapeutic products. This review/perspective focuses on Quality Control in CFPS. The importance and difficulty of measuring the Raw Material Attributes (RMAs) of whole cell extract, such as constituent protein and metabolite concentrations, and of understanding and controlling these complicated enzymatic reactions is explored, for both centralised and distributed industrial production of biotherapeutics. It is suggested that a robust cell-free extract production process should produce cell extract of consistent quality; however, demonstrating this is challenging without a full understanding of the RMAs and their interaction with reaction conditions and product. Lack of technology transfer and knowledge sharing is identified as a key limiting factor in the development of CFPS. The article draws upon the experiences of industrial process specialists, discussions within the Future Targeted Healthcare Manufacturing Hub Specialist Working Groups and evidence drawn from various sources to identify sources of process variation and to propose an initial guide towards systematisation of CFPS process development and reporting. These proposals include the development of small scale screening tools, consistent reporting of selected process parameters and analytics and application of industrial thinking and manufacturability to protocol development.
Collapse
Affiliation(s)
| | - Jade Tuck
- CPIDarlingtonUK
- Merck KGaADarmstadtGermany
| | | | | | | |
Collapse
|
6
|
Singpant P, Tubsuwan A, Sakdee S, Ketterman AJ, Jearawiriyapaisarn N, Kurita R, Nakamura Y, Songdej D, Tangprasittipap A, Bhukhai K, Chiangjong W, Hongeng S, Saisawang C. Recombinant Cas9 protein production in an endotoxin-free system and evaluation with editing the BCL11A gene in human cells. Protein Expr Purif 2023:106313. [PMID: 37276914 DOI: 10.1016/j.pep.2023.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Many therapeutic proteins are expressed in Escherichia coli bacteria for the low cost and high yield obtained. However, these gram-negative bacteria also generate undesirable endotoxin byproducts such as lipopolysaccharides (LPS). These endotoxins can induce a human immune response and cause severe inflammation. To mitigate this problem, we have employed the ClearColi BL21 (DE3) endotoxin-free cells as an expression host for Cas9 protein production. Cas9 is an endonuclease enzyme that plays a key role in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein 9 (CRISPR/Cas9) genome editing technique. This technology is very promising for use in diagnostics as well as treatment of diseases, especially for genetic diseases such as thalassemia. The potential uses for this technology thus generate a considerable interest for Cas9 utilization as a therapeutic protein in clinical treatment. Therefore, special care in protein production should be a major concern. Accordingly, we expressed the Cas9 protein in endotoxin-free bacterial cells achieving 99% purity with activity comparable to commercially available Cas9. Our protocol therefore yields a cost-effective product suitable for invitro experiments with stem cells.
Collapse
Affiliation(s)
- Passanan Singpant
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Alisa Tubsuwan
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Somsri Sakdee
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Albert J Ketterman
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Duantida Songdej
- Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Amornrat Tangprasittipap
- Office of Research, Academic Affairs and Innovations, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonticha Saisawang
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
7
|
Soltani M, Hunt JP, Smith AK, Zhao EL, Knotts TA, Bundy BC. Assessing the predictive capabilities of design heuristics and coarse-grain simulation toward understanding and optimizing site-specific covalent immobilization of β-lactamase. Biotechnol J 2022; 17:e2100535. [PMID: 35189031 DOI: 10.1002/biot.202100535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/12/2022]
Abstract
For industrial applications, covalent immobilization of enzymes provides minimum leakage, recoverability, reusability, and high stability. Yet, the suitability of a given site on the enzyme for immobilization remains a trial-and-error procedure. Here, we investigate the reliability of design heuristics and a coarse-grain molecular simulation in predicting the optimum sites for covalent immobilization of TEM-1 β-lactamase. We utilized E. coli-lysate-based cell-free protein synthesis (CFPS) to produce variants containing a site-specific incorporated unnatural amino acid with a unique moiety to facilitate site directed covalent immobilization. To constrain the number of potential immobilization sites, we investigated the predictive capability of several design heuristics. The suitability of immobilization sites was determined by analyzing expression yields, specific activity, immobilization efficiency, and stability of variants. These experimental findings are compared with coarse-grain simulation of TEM-1 domain stability and thermal stability and analyzed for a priori predictive capabilities. This work demonstrates that the design heuristics successfully identify a subset of locations for experimental validation. Specifically, the nucleotide following amber stop codon and domain stability correlate well with the expression yield and specific activity of the variants, respectively. Our approach highlights the advantages of combining coarse-grain simulation and high-throughput experimentation using CFPS to identify optimal enzyme immobilization sites. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Addison K Smith
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Emily Long Zhao
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Thomas A Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
8
|
ClearColi as a platform for untagged pneumococcal surface protein A production: cultivation strategy, bioreactor culture, and purification. Appl Microbiol Biotechnol 2022; 106:1011-1029. [PMID: 35024919 PMCID: PMC8755982 DOI: 10.1007/s00253-022-11758-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
Abstract
Several studies have searched for new antigens to produce pneumococcal vaccines that are more effective and could provide broader coverage, given the great number of serotypes causing pneumococcal diseases. One of the promising subunit vaccine candidates is untagged recombinant pneumococcal surface protein A (PspA4Pro), obtainable in high quantities using recombinant Escherichia coli as a microbial factory. However, lipopolysaccharides (LPS) present in E. coli cell extracts must be removed, in order to obtain the target protein at the required purity, which makes the downstream process more complex and expensive. Endotoxin-free E. coli strains, which synthesize a nontoxic mutant LPS, may offer a cost-effective alternative way to produce recombinant proteins for application as therapeutics. This paper presents an investigation of PspA4Pro production employing the endotoxin-free recombinant strain ClearColi® BL21(DE3) with different media (defined, auto-induction, and other complex media), temperatures (27, 32, and 37 °C), and inducers. In comparison to conventional E. coli cells in a defined medium, ClearColi presented similar PspA4Pro yields, with lower productivities. Complex medium formulations supplemented with salts favored PspA4Pro yields, titers, and ClearColi growth rates. Induction with isopropyl-β-d-thiogalactopyranoside (0.5 mM) and lactose (2.5 g/L) together in a defined medium at 32 °C, which appeared to be a promising cultivation strategy, was reproduced in 5 L bioreactor culture, leading to a yield of 146.0 mg PspA4Pro/g dry cell weight. After purification, the cell extract generated from ClearColi led to 98% purity PspA4Pro, which maintained secondary structure and biological function. ClearColi is a potential host for industrial recombinant protein production. Key points • ClearColi can produce as much PspA4Pro as conventional E. coli BL21(DE3) cells. • 10.5 g PspA4Pro produced in ClearColi bioreactor culture using a defined medium. • Functional PspA4Pro (98% of purity) was obtained in ClearColi bioreactor culture.Graphical abstract ![]() Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11758-9.
Collapse
|
9
|
Assessing Site-specific PEGylation of TEM-1 β-lactamase with Cell-free Protein Synthesis and Coarse-grained Simulation. J Biotechnol 2022; 345:55-63. [PMID: 34995558 DOI: 10.1016/j.jbiotec.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022]
Abstract
PEGylation is a broadly used strategy to enhance the pharmacokinetic properties of therapeutic proteins. It is well established that the location and extent of PEGylation have a significant impact on protein properties. However, conventional PEGylation techniques have limited control over PEGylation sites. Emerging site-specific PEGylation technology provides control of PEG placement by conjugating PEG polymers via click chemistry reaction to genetically encoded non-canonical amino acids. Unfortunately, a method to rapidly determine the optimal PEGylation location has yet to be established. Here we seek to address this challenge. In this work, coarse-grained molecular dynamic simulations are paired with high-throughput experimental screening utilizing cell-free protein synthesis to investigate the effect of site-specific PEGylation on the two-state folder protein TEM-1 β-lactamase. Specifically, the conjugation efficiency, thermal stability, and enzymatic activity are studied for the enzyme PEGylated at several different locations. The results of this analysis confirm that the physical properties of the PEGylated protein vary considerably with PEGylation site and that traditional design recommendations are insufficient to predict favorable PEGylation sites. In this study, the best predictor of the most favorable conjugation site is coarse-grained simulation. Thus, we propose a dual combinatorial screening approach in which coarse-grained molecular simulation informs site selection for high-throughput experimental verification.
Collapse
|
10
|
Streamlining cell-free protein synthesis biosensors for use in human fluids: In situ RNase inhibitor production during extract preparation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Hunt JP, Galiardi J, Free TJ, Yang SO, Poole D, Zhao EL, Andersen JL, Wood DW, Bundy BC. Mechanistic discoveries and simulation-guided assay optimization of portable hormone biosensors with cell-free protein synthesis. Biotechnol J 2021; 17:e2100152. [PMID: 34761537 DOI: 10.1002/biot.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Nuclear receptors (NRs) influence nearly every system of the body and our lives depend on correct NR signaling. Thus, a key environmental and pharmaceutical quest is to identify and detect chemicals which interact with nuclear hormone receptors, including endocrine disrupting chemicals (EDCs), therapeutic receptor modulators, and natural hormones. Previously reported biosensors of nuclear hormone receptor ligands facilitated rapid detection of NR ligands using cell-free protein synthesis (CFPS). In this work, the advantages of CFPS are further leveraged and combined with kinetic analysis, autoradiography, and western blot to elucidate the molecular mechanism of this biosensor. Additionally, mathematical simulations of enzyme kinetics are used to optimize the biosensor assay, ultimately lengthening its readable window by five-fold and improving sensor signal strength by two-fold. This approach enabled the creation of an on-demand thyroid hormone biosensor with an observable color-change readout. This mathematical and experimental approach provides insight for engineering rapid and field-deployable CFPS biosensors and promises to improve methods for detecting natural hormones, therapeutic receptor modulators, and EDCs.
Collapse
Affiliation(s)
- John Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Jackelyn Galiardi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Tyler J Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Seung Ook Yang
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Daniel Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Emily Long Zhao
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
12
|
|
13
|
Soltani M, Hunt JP, Bundy BC. Rapid RNase inhibitor production to enable low-cost, on-demand cell-free protein synthesis biosensor use in human body fluids. Biotechnol Bioeng 2021; 118:3973-3983. [PMID: 34185319 DOI: 10.1002/bit.27874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Human body fluids contain biomarkers which are used extensively for prognostication, diagnosis, monitoring, and evaluation of different treatments for a variety of diseases and disorders. The application of biosensors based on cell-free protein synthesis (CFPS) offers numerous advantages including on-demand and at-home use for fast, accurate detection of a variety of biomarkers in human fluids at an affordable price. However, current CFPS-based biosensors use commercial RNase inhibitors to inhibit different RNases present in human fluids and this reagent is approximately 90% of the expense of these biosensors. Here the flexible nature of Escherichia coli-lysate-based CFPS was used for the first time to produce murine RNase Inhibitor (m-RI) and to optimize its soluble and active production by tuning reaction temperature, reaction time, reduced potential, and addition of GroEL/ES folding chaperons. Furthermore, RNase inhibition activity of m-RI with the highest activity and stability was determined against increasing amounts of three human fluids of serum, saliva, and urine (0%-100% v/v) in lyophilized CFPS reactions. To further demonstrate the utility of the CFPS-produced m-RI, a lyophilized saliva-based glutamine biosensor was demonstrated to effectively work with saliva samples. Overall, the use of CFPS-produced m-RI reduces the total reagent costs of CFPS-based biosensors used in human body fluids approximately 90%.
Collapse
Affiliation(s)
- Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
14
|
Kim J, Copeland CE, Seki K, Vögeli B, Kwon YC. Tuning the Cell-Free Protein Synthesis System for Biomanufacturing of Monomeric Human Filaggrin. Front Bioeng Biotechnol 2020; 8:590341. [PMID: 33195157 PMCID: PMC7658397 DOI: 10.3389/fbioe.2020.590341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The modern cell-free protein synthesis (CFPS) system is expanding the opportunity of cell-free biomanufacturing as a versatile platform for synthesizing various therapeutic proteins. However, synthesizing human protein in the bacterial CFPS system remains challenging due to the low expression level, protein misfolding, inactivity, and more. These challenges limit the use of a bacterial CFPS system for human therapeutic protein synthesis. In this study, we demonstrated the improved performance of a customized CFPS platform for human therapeutic protein production by investigating the factors that limit cell-free transcription-translation. The improvement of the CFPS platform has been made in three ways. First, the cell extract was prepared from the rare tRNA expressed host strain, and CFPS was performed with a codon-optimized gene for Escherichia coli codon usage bias. The soluble protein yield was 15.2 times greater with the rare tRNA overexpressing host strain as cell extract and codon-optimized gene in the CFPS system. Next, we identify and prioritize the critical biomanufacturing factors for highly active crude cell lysate for human protein synthesis. Lastly, we engineer the CFPS reaction conditions to enhance protein yield. In this model, the therapeutic protein filaggrin expression was significantly improved by up to 23-fold, presenting 28 ± 5 μM of soluble protein yield. The customized CFPS system for filaggrin biomanufacturing described here demonstrates the potential of the CFPS system to be adapted for studying therapeutic proteins.
Collapse
Affiliation(s)
- Jeehye Kim
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline E Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States.,Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|