1
|
Li JL, Liu LL, Lin ZR, Zeng HQ, Zhou Z, Long YH. Talarindigotin A: a cytotoxic indigotin derivative, from the mangrove endophytic fungus Talaromyces amestolkiae SCNU-F0041. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:632-638. [PMID: 39565810 DOI: 10.1080/10286020.2024.2428228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
A new indigotin alkaloid, named talarindigotin A (1), along with the analogue 5H, 6H-quinindolin-11-one (2) were isolated from the mangrove endophytic fungus Talaromyces amestolkiae SCNU-F0041. Their structures were assigned on the basis of NMR, HRMS, and single-crystal X-ray diffraction analysis. In the cytotoxic bioassay, compound 1 showed great cytotoxicity against HepG2, Hela, HCT116, and Huh7 human cancer cell lines with IC50 values ranging from 2.08 to 4.58 μM.
Collapse
Affiliation(s)
- Jia-Lin Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Ling-Ling Liu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Zi-Rong Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Hai-Qi Zeng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Zhe Zhou
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yu-Hua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Fansher DJ, Besna JN, Pelletier JN. Indigo production identifies hotspots in cytochrome P450 BM3 for diversifying aromatic hydroxylation. Faraday Discuss 2024; 252:29-51. [PMID: 38993060 DOI: 10.1039/d4fd00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Evolution of P450 BM3 is a topic of extensive research, but screening the various substrate/reaction combinations remains a time-consuming process. Indigo production has the potential to serve as a simple high-throughput method for reaction screening, as bacterial colonies expressing indigo (+) variants can be visually identified via their blue phenotype. Indigo (+) single variants, indigo (-) single variants and a combinatorial library, containing mutations that enable the blue phenotype, were screened for their ability to hydroxylate a panel of 12 aromatic compounds using the 4-aminoantipyrine colorimetric assay. Recombination of indigo (+) single variants to create a multiple-variant library is a particularly useful strategy, as all top performing P450 BM3 variants with high hydroxylation activity were either indigo (+) single variants or contained multiple substitutions. Furthermore, active variants, as determined using the 4-AAP assay, were further characterized and several variants were identified that gave more than 90% conversion with 1,3-dichlorobenzene and predominantly formed 2,6-dichlorophenol; other variants showed significant substrate selectivity. This supports the hypothesis that substitution at positions that enable the indigo (+) phenotype, or hotspot residues, is a general mechanism for increasing aromatic hydroxylation activity. Overall, this research demonstrates that indigo (+) single variants, identified via colorimetric colony-based screening, may be recombined to generate a multiply-substituted variant library containing many variants with high aromatic hydroxylation activity. The combination of colony-based screening and other screening assays greatly accelerates enzyme engineering, as readily-identified indigo (+) single variants can be recombined to create a library of active multiple variants without extensive screening of single variants.
Collapse
Affiliation(s)
- Douglas J Fansher
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
| | - Jonathan N Besna
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Joelle N Pelletier
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
3
|
Ali S, McCosker PM, Willis AC, Pyne SG, Richardson C, Bremner JB, Keller PA. Mapping of Some Further Alkylation-Initiated Pathways to Polyheterocyclic Compounds from Indigo and Indirubin. Molecules 2024; 29:4242. [PMID: 39275089 PMCID: PMC11396853 DOI: 10.3390/molecules29174242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
The reaction of indigo with two equivalents of the electrophile ethyl bromoacetate with caesium carbonate as a base result in the formation of structurally complex polyheterocyclics, including a fused spiroimidazole and a spiro[1,3]oxazino derivative, together with a biindigoid-type derivative, through a convenient one-pot reaction. Further assessment of the reaction using five equivalents of the electrophile gave rise to other molecules incorporating the 2-(7,13,14-trioxo-6,7,13,14-tetrahydropyrazino[1,2-a:4,3-a']diindol-6-yl) scaffold. The reaction of ethyl bromoacetate with the less reactive indirubin resulted in the synthesis of three derivatives of a new class of polyheterocyclic system via a cascade process, although yields were low. These compounds were derived from the parent indolo[1,2-b]pyrrolo[4,3,2-de]isoquinoline skeleton. Despite the modest yields of the reactions, they represent quick cascade routes to a variety of heterocycles from cheap starting materials, with these structures otherwise being difficult to synthesise in a traditional stepwise manner. These outcomes also contribute significantly to the detailed understanding of the indigo/indirubin cascade reaction pathways initiated by base-catalysed N-alkylation.
Collapse
Affiliation(s)
- Sarfaraz Ali
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Patrick M McCosker
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anthony C Willis
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - John B Bremner
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
5
|
Li F, Chen Q, Deng H, Ye S, Chen R, Keasling JD, Luo X. One-pot selective biosynthesis of Tyrian purple in Escherichia coli. Metab Eng 2024; 81:100-109. [PMID: 38000548 DOI: 10.1016/j.ymben.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 μM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.
Collapse
Affiliation(s)
- Feifei Li
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Life Sciences, Inner Mongolia University, Hohhot, 150100, China
| | - Que Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huaxiang Deng
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shumei Ye
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Life Sciences, Inner Mongolia University, Hohhot, 150100, China; Basic Medical College, Inner Mongolia Medical University, Hohhot, 150100, China
| | - Ruidong Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jay D Keasling
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; QB3 Institute, University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby, 2800, Denmark
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Life Sciences, Inner Mongolia University, Hohhot, 150100, China.
| |
Collapse
|
6
|
Frignani E, D’Eusanio V, Grandi M, Pigani L, Roncaglia F. A Continuous Extraction Protocol for the Characterisation of a Sustainably Produced Natural Indigo Pigment. Life (Basel) 2023; 14:59. [PMID: 38255674 PMCID: PMC10817639 DOI: 10.3390/life14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
The sustainable industrial production of indigo necessitates a unique extraction process to separate the plant-derived compounds. Calcium compounds are added to encourage hydrolysis of these precursors and to facilitate the isolation of the final form, resulting in an organic-inorganic composite pigment with unspecified characteristics. In this study, we devised a continuous solvent extraction procedure to fractionate the organic indigoid phase within the composite pigment. Overcoming challenges posed by limited solubility in the common organic solvents, this method allows for the analysis of individual fractions, significantly enhancing resolution. Comprehensive characterisation using spectroscopic analysis, thermogravimetry, and UHPLC-MS/MS revealed the potential for quantifying primary components of the natural pigment and distinct differentiation from the synthetic dye. This approach also holds promise for establishing robust manufacturing practices in the industrial production of natural indigo.
Collapse
Affiliation(s)
- Elia Frignani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (L.P.)
| | - Veronica D’Eusanio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (L.P.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Mauro Grandi
- G2B S.r.l., via Guareschi 25-27, 46010 Curtatone, Italy;
| | - Laura Pigani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (L.P.)
| | - Fabrizio Roncaglia
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (L.P.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| |
Collapse
|