1
|
Jeung K, Kim M, Jang E, Shon YJ, Jung GY. Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering. Biotechnol Adv 2025; 79:108522. [PMID: 39863189 DOI: 10.1016/j.biotechadv.2025.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive. Cell-free systems (CFSs) serve as powerful platforms for rapid prototyping of genetic circuits, metabolic pathways, and enzyme functionality. They offer numerous advantages, including minimizing unwanted metabolic interference, precise control of reaction conditions, reduced labor, and shorter Design-Build-Test-Learn cycles. Additionally, the introduction of in vitro compartmentalization strategies in CFSs enables ultra-high-throughput screening in physically separated spaces, which significantly enhances prototyping efficiency. This review highlights the latest examples of using CFS to overcome prototyping limitations in living cells with a focus on rapid prototyping, particularly regarding gene regulation, enzymes, and multienzymatic reactions in bacteria. Finally, this review evaluates CFSs as a versatile prototyping platform and discusses its future applications, emphasizing its potential for producing high-value chemicals through microbial biosynthesis.
Collapse
Affiliation(s)
- Kumyoung Jeung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minsun Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-Ro, Jung-Gu, Ulsan 44429, Republic of Korea
| | - Eunsoo Jang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yang Jun Shon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
2
|
Zhao Y, Duan X, Zhang J, Ding Y, Liu Q. Advances in the bioproduction of d-allulose: A comprehensive review of current status and future prospects. Food Res Int 2025; 202:115767. [PMID: 39967077 DOI: 10.1016/j.foodres.2025.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
As living standards rise, the overconsumption of sugary and calorific foods has led to a rise in obesity, diabetes, and other diseases. In response to the increasing demand for healthier diets, the food industry is actively seeking sugar alternatives. Among these alternatives, d-allulose as a functional sweetener has garnered significant attention for its low-calorie content, low glycemic index, and health benefits. This review summarizes recent advancements in d-allulose research, including its physiological functions, potential applications, and bioproduction methods. This review consolidates the known physiological functions of d-allulose and assesses its potential applications in the food and medical industries. Furthermore, the review explores recent progress in biotechnological production technologies, such as enzymatic conversion and microbial fermentation, which are key to producing d-allulose. d-Allulose is a standout natural sweetener with low calories and a low glycemic index, providing health benefits like lowering blood sugar and lipids, antioxidants, preventing obesity, and regulating metabolism. In the food industry, d-allulose is suitable for use in a variety of products, including baked goods, beverages, confectionery, and yogurt. The primary methods for its production are enzymatic conversion and microbial fermentation, both of which offer scalable and sustainable approaches. Recent research has advanced the production of d-allulose using low-cost raw materials, including agricultural and forestry waste, and even CO2, highlighting a move towards more sustainable production methods. With its diverse physiological functions and broad application prospects, d-allulose holds significant potential for growth in both the food and healthcare sectors.
Collapse
Affiliation(s)
- Yang Zhao
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jinbo Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yucheng Ding
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qianqian Liu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
3
|
Puiggené Ò, Favoino G, Federici F, Partipilo M, Orsi E, Alván-Vargas MVG, Hernández-Sancho JM, Dekker NK, Ørsted EC, Bozkurt EU, Grassi S, Martí-Pagés J, Volke DC, Nikel PI. Seven critical challenges in synthetic one-carbon assimilation and their potential solutions. FEMS Microbiol Rev 2025; 49:fuaf011. [PMID: 40175298 PMCID: PMC12010959 DOI: 10.1093/femsre/fuaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
Synthetic C1 assimilation holds the promise of facilitating carbon capture while mitigating greenhouse gas emissions, yet practical implementation in microbial hosts remains relatively limited. Despite substantial progress in pathway design and prototyping, most efforts stay at the proof-of-concept stage, with frequent failures observed even under in vitro conditions. This review identifies seven major barriers constraining the deployment of synthetic C1 metabolism in microorganisms and proposes targeted strategies for overcoming these issues. A primary limitation is the low catalytic activity of carbon-fixing enzymes, particularly carboxylases, which restricts the overall pathway performance. In parallel, challenges in expressing multiple heterologous genes-especially those encoding metal-dependent or oxygen-sensitive enzymes-further hinder pathway functionality. At the systems level, synthetic C1 pathways often exhibit poor flux distribution, limited integration with the host metabolism, accumulation of toxic intermediates, and disruptions in redox and energy balance. These factors collectively reduce biomass formation and compromise product yields in biotechnological setups. Overcoming these interconnected challenges is essential for moving synthetic C1 assimilation beyond conceptual stages and enabling its application in scalable, efficient bioprocesses towards a circular bioeconomy.
Collapse
Affiliation(s)
- Òscar Puiggené
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Giusi Favoino
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Filippo Federici
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michele Partipilo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nienke K Dekker
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sara Grassi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Martí-Pagés
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Gui X, Li F, Cui X, Wu R, Liu D, Ma C, Ma L, Jiang H, You C, Zhu Z. A Light-Driven In Vitro Enzymatic Biosystem for the Synthesis of α-Farnesene from Methanol. BIODESIGN RESEARCH 2024; 6:0039. [PMID: 39081856 PMCID: PMC11286291 DOI: 10.34133/bdr.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Terpenoids of substantial industrial interest are mainly obtained through direct extraction from plant sources. Recently, microbial cell factories or in vitro enzymatic biosystems have emerged as promising alternatives for terpenoid production. Here, we report a route for the synthesis of α-farnesene based on an in vitro enzyme cascade reaction using methanol as an inexpensive and renewable C1 substrate. Thirteen biocatalytic reactions divided into 2 modules were optimized and coupled to achieve methanol-to-α-farnesene conversion via integration with natural thylakoid membranes as a green energy engine. This in vitro enzymatic biosystem driven by light enabled the production of 1.43 and 2.40 mg liter-1 α-farnesene using methanol and the intermediate glycolaldehyde as substrates, respectively. This work could provide a promising strategy for developing light-powered in vitro biosynthetic platforms to produce more natural compounds synthesized from C1 substrates.
Collapse
Affiliation(s)
- Xinyue Gui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology,
Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Fei Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinyu Cui
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ranran Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dingyu Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chunling Ma
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lijuan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology,
Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun You
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Luo Z, Qiao L, Chen H, Mao Z, Wu S, Ma B, Xie T, Wang A, Pei X, Sheldon RA. Precision Engineering of the Co-immobilization of Enzymes for Cascade Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202403539. [PMID: 38556813 DOI: 10.1002/anie.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Li Qiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Haomin Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Zhili Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Shujiao Wu
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Bianqin Ma
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand PO Wits., 2050, Johannesburg, South Africa
- Department of Biotechnology, Section BOC, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
6
|
Cheng G, Sun H, Wang Q, Yang J, Qiao J, Zhong C, Cai T, Wang Y. Scanning the active center of formolase to identify key residues for enhanced C1 to C3 bioconversion. BIORESOUR BIOPROCESS 2024; 11:48. [PMID: 38735884 PMCID: PMC11089019 DOI: 10.1186/s40643-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Formolase (FLS) is a computationally designed enzyme that catalyzes the carboligation of two or three C1 formaldehyde molecules into C2 glycolaldehyde or C3 dihydroxyacetone (DHA). FLS lays the foundation for several artificial carbon fixation and valorization pathways, such as the artificial starch anabolic pathway. However, the application of FLS is limited by its low catalytic activity and product promiscuity. FINDINGS FLS, designed and engineered based on benzoylformate decarboxylase from Pseudomonas putida, was selected as a candidate for modification. To evaluate its catalytic activity, 25 residues located within an 8 Å distance from the active center were screened using single-point saturation mutagenesis. A screening approach based on the color reaction of the DHA product was applied to identify the desired FLS variants. After screening approximately 5,000 variants (approximately 200 transformants per site), several amino acid sites that were not identified by directed evolution were found to improve DHA formation. The serine-to-phenylalanine substitution at position 236 improved the activity towards DHA formation by 7.6-fold. Molecular dynamics simulations suggested that the mutation increased local hydrophobicity at the active site, predisposing the cofactor-C2 intermediate to nucleophilic attack by the third formaldehyde molecule for subsequent DHA generation. CONCLUSIONS This study provides improved FLS variants and valuable information into the influence of residues adjacent to the active center affecting catalytic efficiency, which can guide the rational engineering or directed evolution of FLS to optimize its performance in artificial carbon fixation and valorization.
Collapse
Affiliation(s)
- Guimin Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, People's Republic of China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Hongbing Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Qian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Jinxing Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jing Qiao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Cheng Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, People's Republic of China
| | - Tao Cai
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Yu Wang
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
7
|
Giuriato D, Catucci G, Correddu D, Nardo GD, Gilardi G. CYP116B5-SOX: An artificial peroxygenase for drug metabolites production and bioremediation. Biotechnol J 2024; 19:e2300664. [PMID: 38719620 DOI: 10.1002/biot.202300664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 06/06/2024]
Abstract
CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.
Collapse
Affiliation(s)
- Daniele Giuriato
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Danilo Correddu
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|