1
|
El-Kashef DH, Abdel-Rahman N, Sharawy MH. Apocynin alleviates thioacetamide-induced acute liver injury: Role of NOX1/NOX4/NF-κB/NLRP3 pathways. Cytokine 2024; 183:156747. [PMID: 39236429 DOI: 10.1016/j.cyto.2024.156747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
The liver has a distinctive capacity to regenerate, yet severe acute injury can be life-threatening if not treated appropriately. Inflammation and oxidative stress are central processes implicated in the pathophysiology of acute livery injury. NOX isoforms are important enzymes for ROS generation, NF-κB and NLRP3 activation, its inhibition could be vital in alleviating acute liver injury (ALI). Here in our study, we used apocynin, a natural occurring potent NOX inhibitor, to exploreits potential protective effect against thioacetamide (TAA)-induced ALI through modulating crucial oxidative and inflammatory pathways. Rats were injected once with TAA (500 mg/kg/i.p) and treated with apocynin (10 mg/kg/i.p) twice before TAA challenge. Sera and hepatic tissues were collected for biochemical, mRNA expression, western blot analysis and histopathological assessments. Pretreatment with apocynin improved liver dysfunction evidenced by decreased levels of aminotransferases, ALP, GGT and bilirubin. Apocynin reduced mRNA expression of NOX1 and NOX4 which in turn alleviated oxidative stress, as shown by reduction in MDA and NOx levels, and elevation in GSH levels andcatalase and SOD activities. Moreover, apocynin significantly reduced MPO gene expression. We also demonstrate that apocynin ameliorated inflammation through activating IκBα and suppressing IKKα, IKKβ, NF-κBp65 and p-NF-κBp65, IL-6 andTNF-α. Additionally, apocynin potentiated the gene expression of anti-inflammatory IL-10 and reduced levels of hepatic NLRP3, Caspase-1 and IL-1β. These results suggest that apocynin protects against ALI in association with the inhibition of NOX1 and NOX4 and regulating oxidative and inflammatory pathways.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
3
|
Mohammad A, Babiker F, Al-Bader M. Effects of Apocynin, a NADPH Oxidase Inhibitor, in the Protection of the Heart from Ischemia/Reperfusion Injury. Pharmaceuticals (Basel) 2023; 16:492. [PMID: 37111249 PMCID: PMC10141704 DOI: 10.3390/ph16040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Ischemia and perfusion (I/R) induce inflammation and oxidative stress, which play a notable role in tissue damage. The aim of this study was to investigate the role of an NADPH oxidase inhibitor (apocynin) in the protection of the heart from I/R injury. Hearts isolated from Wistar rats (n = 8 per group) were perfused with a modified Langendorff preparation. Left ventricular (LV) contractility and cardiovascular hemodynamics were evaluated by a data acquisition program, and infarct size was evaluated by 2,3,5-Triphenyl-2H-tetrazolium chloride (TTC) staining. Furthermore, the effect of apocynin on the pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and anti-inflammatory cytokine (IL-10) was evaluated using an enzyme linked immunosorbent assay (ELISA). Hearts were subjected to 30 min of regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery, followed by 30 min of reperfusion. Hearts were infused with apocynin before ischemia, during ischemia or at reperfusion. To understand the potential pathways of apocynin protection of the heart, a nitric oxide donor (S-nitroso-N-acetylpenicillamine, SNAP), nitric oxide blocker (N (gamma)-nitro-L-arginine methyl ester, L-Name), nicotinic acid adenine dinucleotide phosphate (NAADP) inhibiter (Ned-K), cyclic adenosine diphosphate ribose (cADPR) agonist, or CD38 blocker (Thiazoloquin (az)olin (on)e compound, 78c) was infused with apocynin. Antioxidants were evaluated by measuring superoxide dismutase (SOD) and catalase (CAT) activity. Apocynin infusion before ischemia or at reperfusion protected the heart by normalizing cardiac hemodynamics and decreasing the infarct size. Apocynin treatment resulted in a significant (p < 0.05) decrease in pro-inflammatory cytokine levels and a significant increase (p < 0.05) in anti-inflammatory and antioxidant levels. Apocynin infusion protected the heart by improving LV hemodynamics and coronary vascular dynamics. This treatment decreased the infarct size and inflammatory cytokine levels and increased anti-inflammatory cytokine and antioxidant levels. This protection follows a pathway involving CD38, nitric oxide and acidic stores.
Collapse
Affiliation(s)
| | - Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait
| | | |
Collapse
|
4
|
Biliverdin/Bilirubin Redox Pair Protects Lens Epithelial Cells against Oxidative Stress in Age-Related Cataract by Regulating NF- κB/iNOS and Nrf2/HO-1 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7299182. [PMID: 35480872 PMCID: PMC9036166 DOI: 10.1155/2022/7299182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Age-related cataract (ARC) is the leading cause of vision impairment globally. It has been widely accepted that excessive reactive oxygen species (ROS) accumulation in lens epithelial cells (LECs) is a critical risk factor for ARC formation. Biliverdin (BV)/bilirubin (BR) redox pair is the active by-product of heme degradation with robust antioxidative stress and antiapoptotic effects. Thus, we purpose that BV and BR may have a therapeutic effect on ARC. In the present study, we determine the expression levels of enzymes regulating BV and BR generation in human lens anterior capsule samples. The therapeutic effect of BV/BR redox pair on ARC was assessed in hydrogen peroxide (H2O2)-damaged mouse LECs in vitro. The NF-κB/inducible nitric oxide synthase (iNOS) and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathways were evaluated to illustrate the molecular mechanism. The results revealed that the mRNA expressions of Nrf2, HO-1, and biliverdin reductase A (BVRA) were all decreased in human samples of age-related nuclear cataract. BV/BR redox pair pretreatment protected LECs against H2O2 damage by prohibiting NF-κB p65 nuclear trafficking, ameliorating iNOS expression, reducing intracellular and mitochondrial ROS levels, and restoring glutathione (GSH) and superoxide dismutase (SOD) levels. BV and BR pretreatment also regulated the expression of apoptotic molecules (Bax, Bcl-2, and cleaved caspase-3), thus decreasing the apoptosis of LECs. In addition, BV/BR pair promoted Nrf2 nuclear accumulation and HO-1 induction, whereas the knockdown of BVRA counteracted the effect of BV on activating Nrf2/HO-1 pathway and antiapoptosis. These findings implicated that BV/BR redox pair protects LECs against H2O2-induced apoptosis by regulating NF-κB/iNOS and Nrf2/HO-1 pathways. Moreover, BVRA is responsible for BV-mediated cytoprotection by reductive conversion of BV to BR. This trial is registered with ChiCTR2000036059.
Collapse
|
5
|
Boshtam M, Kouhpayeh S, Amini F, Azizi Y, Najaflu M, Shariati L, Khanahmad H. Anti-inflammatory effects of apocynin: a narrative review of the evidence. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1990136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Farahnaz Amini
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yadollah Azizi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied physiology research center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Jahan H, Choudhary MI. Gliclazide alters macrophages polarization state in diabetic atherosclerosis in vitro via blocking AGE-RAGE/TLR4-reactive oxygen species-activated NF-kβ nexus. Eur J Pharmacol 2021; 894:173874. [PMID: 33460615 DOI: 10.1016/j.ejphar.2021.173874] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Hyperglycemic milieu in diabetes mellitus stimulates macrophages for exaggerated pro-inflammatory cytokine response, particularly IL-1β, IL-6, and TNF-α. Although hyperglycemia causes macrophages to produce pro-inflammatory cytokines, AGEs (advanced glycation end products) active inflammation, produced as a result of chronic hyperglycemia, inducers cause polarization of macrophages into pro-inflammatory M1 phenotype. AGEs in diabetes accelerate atherosclerotic plaque initiation and progression via promoting macrophages polarization towards pro-inflammatory state. Gliclazide (Glz) is a well known antidiabetic drug with excellent safety profile. Its repurposing in the management of diabetes-associated late complications has tremendous merit. The present study demonstrated that Glz retards diabetic atherosclerotic progression, and cytokines storm in a concentration dependent manner over a concentration range of 1-100 μM than those of AGEs (200 μg/ml)-treated cells through a mechanism that alters macrophage M1 polarization state. Glz exerted these beneficial effects, independent of its antidiabetic effect. Glz pretreatment significantly (P < 0.05) inhibited the AGEs-induced pro-inflammatory mediators (NO•, reactive oxygen species, i-NOS), and production of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. It also significantly (P < 0.05) promoted the production of anti-inflammatory cytokines (IL-10 and TGF-β) in RAW 264.7 mouse macrophages. Glz pretreatment also effectively abated the AGEs-induced RAGE (~2-fold decrease), and CD86 surface marker expressions (P < 0.001 at 100 μM) on macrophages by inhibiting the NF-kβ activation in a concentration dependent manner (1-100 μM) (P < 0.001). In conclusion, our data demonstrates that Glz alleviates the diabetic atherosclerosis progression by ameliorating the AGEs-mediated M1 pro-inflammatory phenotype via blocking AGE-RAGE/TLR4-reactive oxygen species -activated NF-kβ nexus in macrophages.
Collapse
Affiliation(s)
- Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, JI. Mulyorejo, Surabaya, 60115, Indonesia.
| |
Collapse
|
7
|
Cross AL, Hawkes J, Wright HL, Moots RJ, Edwards SW. APPA (apocynin and paeonol) modulates pathological aspects of human neutrophil function, without supressing antimicrobial ability, and inhibits TNFα expression and signalling. Inflammopharmacology 2020; 28:1223-1235. [PMID: 32383062 PMCID: PMC7525285 DOI: 10.1007/s10787-020-00715-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Neutrophils are key players in the pathophysiological process underlying inflammatory conditions not only by release of tissue-damaging cytotoxic enzymes, reactive oxygen species (ROS) but also by secretion of important immunomodulatory chemokines and cytokines. Here, we report the effects of the novel agent APPA, undergoing formal clinical development for treatment of osteoarthritis, and its constituent components, apocynin (AP) and paeonol (PA) on a number of neutrophil functions, including effects on TNFα- expression and signalling. Neutrophils were treated with APPA (10-1000 µg/mL) prior to the measurement of cell functions, including ROS production, chemotaxis, apoptosis and surface receptor expression. Expression levels of several key genes and proteins were measured after incubation with APPA and the chromatin re-modelling agent, R848. APPA did not significantly affect phagocytosis, bacterial killing or expression of surface receptors, while chemotactic migration was affected only at the highest concentrations. However, APPA down-regulated neutrophil degranulation and ROS levels, and decreased the formation of neutrophil extracellular traps. APPA also decreased cytokine-stimulated gene expression, inhibiting both TNFα- and GM-CSF-induced cell signalling. APPA was as effective as infliximab in down-regulating chemokine and IL-6 expression following incubation with R848. Whilst APPA does not interfere with neutrophil host defence against infections, it does inhibit neutrophil degranulation, and cytokine-driven signalling pathways (e.g. autocrine signalling and NF-κB activation), processes that are associated with inflammation. These observations may explain the mechanisms by which APPA exerts anti-inflammatory effects and suggests a potential therapeutic role in inflammatory diseases in which neutrophils and TNFα signalling are important in pathology, such as rheumatoid arthritis.
Collapse
Affiliation(s)
- A L Cross
- Institute of Ageing and Chronic Disease, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - J Hawkes
- Institute of Ageing and Chronic Disease, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - H L Wright
- Institute of Ageing and Chronic Disease, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - R J Moots
- Institute of Ageing and Chronic Disease, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - S W Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
8
|
Curcumin-Loaded Solid Lipid Nanoparticles Bypass P-Glycoprotein Mediated Doxorubicin Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12020096. [PMID: 31991669 PMCID: PMC7076516 DOI: 10.3390/pharmaceutics12020096] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is a critical hindrance to the success of cancer chemotherapy. The main thing responsible for MDR phenotypes are plasma-membranes associated with adenosine triphosphate (ATP) Binding Cassette (ABC) drug efflux transporters, such as the P-glycoprotein (Pgp) transporter that has the broadest spectrum of substrates. Curcumin (CURC) is a Pgp inhibitor, but it is poorly soluble and bioavailable. To overcome these limitations, we validated the efficacy and safety of CURC, loaded in biocompatible solid lipid nanoparticles (SLNs), with or without chitosan coating, with the goal of increasing the stability, homogeneous water dispersibility, and cellular uptake. Both CURC-loaded SLNs were 5–10-fold more effective than free CURC in increasing the intracellular retention and toxicity of doxorubicin in Pgp-expressing triple negative breast cancer (TNBC). The effect was due to the decrease of intracellular reactive oxygen species, consequent inhibition of the Akt/IKKα-β/NF-kB axis, and reduced transcriptional activation of the Pgp promoter by p65/p50 NF-kB. CURC-loaded SLNs also effectively rescued the sensitivity to doxorubicin against drug-resistant TNBC tumors, without signs of systemic toxicity. These results suggest that the combination therapy, based on CURC-loaded SLNs and doxorubicin, is an effective and safe approach to overcome the Pgp-mediated chemoresistance in TNBC.
Collapse
|
9
|
Combination of PDT and NOPDT with a Tailored BODIPY Derivative. Antioxidants (Basel) 2019; 8:antiox8110531. [PMID: 31703295 PMCID: PMC6912809 DOI: 10.3390/antiox8110531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
The engineering of photosensitizers (PS) for photodynamic therapy (PDT) with nitric oxide (NO) photodonors (NOPD) is broadening the horizons for new and yet to be fully explored unconventional anticancer treatment modalities that are entirely controlled by light stimuli. In this work, we report a tailored boron-dipyrromethene (BODIPY) derivative that acts as a PS and a NOPD simultaneously upon single photon excitation with highly biocompatible green light. The photogeneration of the two key species for PDT and NOPDT, singlet oxygen (1O2) and NO, has been demonstrated by their direct detection, while the formation of NO is shown not to be dependent on the presence of oxygen. Biological studies carried out using A375 and SKMEL28 cancer cell lines, with the aid of suitable model compounds that are based on the same BODIPY light harvesting core, unambiguously reveal the combined action of 1O2 and NO in inducing amplified cancer cell mortality exclusively under irradiation with visible green light.
Collapse
|
10
|
Salaroglio IC, Gazzano E, Abdullrahman A, Mungo E, Castella B, Abd-Elrahman GEFAE, Massaia M, Donadelli M, Rubinstein M, Riganti C, Kopecka J. Increasing intratumor C/EBP-β LIP and nitric oxide levels overcome resistance to doxorubicin in triple negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:286. [PMID: 30482226 PMCID: PMC6258159 DOI: 10.1186/s13046-018-0967-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) easily develops resistance to the first-line drug doxorubicin, because of the high levels of the drug efflux transporter P-glycoprotein (Pgp) and the activation of pro-survival pathways dependent on endoplasmic reticulum (ER). Interfering with these mechanisms may overcome the resistance to doxorubicin, a still unmet need in TNBC. METHODS We analyzed a panel of human and murine breast cancer cells for their resistance to doxorubicin, Pgp expression, lysosome and proteasome activity, nitrite production, ER-dependent cell death and immunogenic cell death parameters. We evaluated the efficacy of genetic (C/EBP-β LIP induction) and pharmacological strategies (lysosome and proteasome inhibitors), in restoring the ER-dependent and immunogenic-dependent cell death induced by doxorubicin, in vitro and in syngeneic mice bearing chemoresistant TNBC. The results were analyzed by one-way analysis of variance test. RESULTS We found that TNBC cells characterized by high levels of Pgp and resistance to doxorubicin, had low induction of the ER-dependent pro-apoptotic factor C/EBP-β LIP upon doxorubicin treatment and high activities of lysosome and proteasome that constitutively destroyed LIP. The combination of chloroquine and bortezomib restored doxorubicin sensitivity by activating multiple and interconnected mechanisms. First, chloroquine and bortezomib prevented C/EBP-β LIP degradation and activated LIP-dependent CHOP/TRB3/caspase 3 axis in response to doxorubicin. Second, C/EBP-β LIP down-regulated Pgp and up-regulated calreticulin that triggered the dendritic cell (DC)-mediated phagocytosis of tumor cell, followed by the activation of anti-tumor CD8+T-lymphocytes upon doxorubicin treatment. Third, chloroquine and bortezomib increased the endogenous production of nitric oxide that further induced C/EBP-β LIP and inhibited Pgp activity, enhancing doxorubicin's cytotoxicity. In orthotopic models of resistant TNBC, intratumor C/EBP-β LIP induction - achieved by a specific expression vector or by chloroquine and bortezomib - effectively reduced tumor growth and Pgp expression, increased intra-tumor apoptosis and anti-tumor immune-infiltrate, rescuing the efficacy of doxorubicin. CONCLUSIONS We suggest that preventing C/EBP-β LIP degradation by lysosome and proteasome inhibitors triggers multiple virtuous circuitries that restore ER-dependent apoptosis, down-regulate Pgp and re-activate the DC/CD8+T-lymphocytes response against TNBC. Lysosome and proteasome inhibitors associated with doxorubicin may overcome the resistance to the drug in TNBC.
Collapse
Affiliation(s)
- Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Turin, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Turin, Italy
| | - Ahmad Abdullrahman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Turin, Italy
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Turin, Italy
| | - Barbara Castella
- Laboratory of Blood Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Gamal Eldein Fathy Abd-Ellatef Abd-Elrahman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Turin, Italy.,Pharmaceutical and Drug Industries Research Division, Therapeutic Chemistry Department, National Research Centre, Cairo, Egypt
| | - Massimo Massaia
- Laboratory of Blood Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.,Hematology Division, AO S Croce e Carle, Cuneo, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Menachem Rubinstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Turin, Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Turin, Italy.
| |
Collapse
|
11
|
Chattaragada MS, Riganti C, Sassoe M, Principe M, Santamorena MM, Roux C, Curcio C, Evangelista A, Allavena P, Salvia R, Rusev B, Scarpa A, Cappello P, Novelli F. FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis. Oncogene 2018; 37:697-709. [PMID: 29059164 PMCID: PMC5808099 DOI: 10.1038/onc.2017.358] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysregulation plays a central role in cancers and drives reactive oxygen species (ROS)-dependent tumor progression. We investigated the pro-tumoral roles of mitochondrial dynamics and altered intracellular ROS levels in pancreatic ductal adenocarcinoma (PDAC). We identified 'family with sequence similarity 49 member B' (FAM49B) as a mitochondria-localized protein that regulates mitochondrial fission and cancer progression. Silencing FAM49B in PDAC cells resulted in increased fission and mitochondrial ROS generation, which enhanced PDAC cell proliferation and invasion. Notably, FAM49B expression levels in PDAC cells were downregulated by the tumor microenvironment. Overall, the results of this study show that FAM49B acts as a suppressor of cancer cell proliferation and invasion in PDAC by regulating tumor mitochondrial redox reactions and metabolism.
Collapse
Affiliation(s)
- M S Chattaragada
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - C Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - M Sassoe
- Department of Neurosciences, ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
| | - M Principe
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - M M Santamorena
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - C Roux
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - C Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - A Evangelista
- Department of Clinical Epidemiology, Azienda Universitaria Ospedaliera Città della Salute e della Scienza and CPO Piemonte, Turin, Italy
| | - P Allavena
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center, Milan, Italy
| | - R Salvia
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - B Rusev
- Department of Pathology and Public Health & ARC-NET Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - A Scarpa
- Department of Pathology and Public Health & ARC-NET Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - P Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - F Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Gimenes R, Gimenes C, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Pagan LU, Chaer ID, Fernandes DC, Laurindo FR, Cicogna AC, Okoshi MP, Okoshi K. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc Diabetol 2018; 17:15. [PMID: 29343259 PMCID: PMC5771187 DOI: 10.1186/s12933-017-0657-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/26/2017] [Indexed: 01/02/2023] Open
Abstract
Background Increased reactive oxygen species (ROS) generation in diabetes mellitus (DM) is an important mechanism leading to diabetic cardiomyopathy. Apocynin, a drug isolated from the herb Picrorhiza kurroa, is considered an antioxidant agent by inhibiting NADPH oxidase activity and improving ROS scavenging. This study analyzed the influence of apocynin on cardiac remodeling in diabetic rats. Methods Six-month-old male Wistar rats were assigned into 4 groups: control (CTL, n = 15), control + apocynin (CTL + APO, n = 20), diabetes (DM, n = 20), and diabetes + apocynin (DM + APO, n = 20). DM was induced by streptozotocin. Seven days later, apocynin (16 mg/kg/day) or vehicle was initiated and maintained for 8 weeks. Left ventricular (LV) histological sections were used to analyze interstitial collagen fraction. NADPH oxidase activity was evaluated in LV samples. Comparisons between groups were performed by ANOVA for a 2 × 2 factorial design followed by the Bonferroni post hoc test. Results Body weight (BW) was lower and glycemia higher in diabetic animals. Echocardiogram showed increased left atrial diameter, LV diastolic diameter, and LV mass indexed by BW in both diabetic groups; apocynin did not affect these indices. LV systolic function was impaired in DM groups and unchanged by apocynin. Isovolumic relaxation time was increased in DM groups; transmitral E/A ratio was higher in DM + APO compared to DM. Myocardial functional evaluation through papillary muscle preparations showed impaired contractile and relaxation function in both DM groups at baseline conditions. After positive inotropic stimulation, developed tension (DT) was lower in DM than CTL. In DM + APO, DT had values between those in DM and CTL + APO and did not significantly differ from either group. Myocardial interstitial collagen fraction was higher in DM than CTL and did not differ between DM + APO and CTL + APO. Serum activity of antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD), and catalase was lower in DM than CTL; apocynin restored catalase and SOD levels in DM + APO. Myocardial NADPH oxidase activity did not differ between groups. Conclusion Apocynin restores serum antioxidant enzyme activity despite unchanged myocardial NADPH oxidase activity in diabetic rats.
Collapse
Affiliation(s)
- R Gimenes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - C Gimenes
- Sagrado Coração University, Bauru, SP, Brazil
| | - C M Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - N P Xavier
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - D H S Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - A A H Fernandes
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M D M Cezar
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - G N Guirado
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - L U Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - I D Chaer
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - D C Fernandes
- Department of Cardiopneumology, Medical School, Sao Paulo University, USP, São Paulo, Brazil
| | - F R Laurindo
- Department of Cardiopneumology, Medical School, Sao Paulo University, USP, São Paulo, Brazil
| | - A C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - M P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - K Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil. .,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, Sao Paulo State University, UNESP, Rubiao Junior, S/N, Botucatu, SP, CEP 18618-687, Brazil.
| |
Collapse
|
13
|
Marín M, Gimeno C, Giner RM, Ríos JL, Máñez S, Recio MAC. Influence of Dimerization of Apocynin on Its Effects in Experimental Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4083-4091. [PMID: 28485605 DOI: 10.1021/acs.jafc.7b00872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Apocynin has been widely used as an inhibitor of the nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) system and shows promise as an anti-inflammatory drug. Diapocynin, the dimeric product generated by the oxidation of apocynin in the presence of myeloperoxidase (MPO), is supposed to be its active form. In this study, diapocynin has been chemically synthesized and its activity on several inflammatory mediators in LPS-stimulated RAW 264.7 macrophages and its anti-inflammatory effect on ulcerative colitis induced by dextran sodium sulfate (DSS) in mice analyzed. We found that diapocynin showed higher inhibitory activity than apocynin. The dimer reduced ROS production, TNF-α, IL-6, and IL-1β levels and inhibited iNOS and COX-2 expression as well as decreased NO and PGE2 production induced in LPS-stimulated RAW 264.7 cells. The anti-inflammatory molecular mechanism of diapocynin was associated with the suppression of NF-κB activation. However, these results were not paralleled by in vivo studies. Oral administration of apocynin and diapocynin (100 mg/kg) three times a week exhibited similar protections against experimental inflammatory bowel disease induced by DSS; therefore, apocynin should not be considered a prodrug. However, it should be taken into account that the dimer is more potent because its dose (0.3 mmol/kg) is half that of apocynin.
Collapse
Affiliation(s)
- Marta Marín
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Clotilde Gimeno
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Rosa M Giner
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - José L Ríos
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Salvador Máñez
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Marı A C Recio
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| |
Collapse
|
14
|
Nam MH, Son WR, Lee YS, Lee KW. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium. ACTA ACUST UNITED AC 2016; 22:67-78. [DOI: 10.1080/15419061.2016.1225196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mi-Hyun Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Won-Rak Son
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Young Sik Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc Diabetol 2016; 15:126. [PMID: 27585437 PMCID: PMC5009715 DOI: 10.1186/s12933-016-0442-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Although increased oxidative stress is a major component of diabetic hypertensive cardiomyopathy, research into the effects of antioxidants on cardiac remodeling remains scarce. The actions of antioxidant apocynin include inhibiting reactive oxygen species (ROS) generation by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and ROS scavenging. We evaluated the effects of apocynin on cardiac remodeling in spontaneously hypertensive rats (SHR) with diabetes mellitus (DM). METHODS Male SHR were divided into four groups: control (SHR, n = 16); SHR treated with apocynin (SHR-APO; 16 mg/kg/day, added to drinking water; n = 16); diabetic SHR (SHR-DM, n = 13); and SHR-DM treated with apocynin (SHR-DM-APO, n = 14), for eight weeks. DM was induced by streptozotocin (40 mg/kg, single dose). Statistical analyzes: ANOVA and Tukey or Mann-Whitney. RESULTS Echocardiogram in diabetic groups showed higher left ventricular and left atrium diameters indexed for body weight, and higher isovolumetric relaxation time than normoglycemic rats; systolic function did not differ between groups. Isolated papillary muscle showed impaired contractile and relaxation function in diabetic groups. Developed tension was lower in SHR-APO than SHR. Myocardial hydroxyproline concentration was higher in SHR-DM than SHR, interstitial collagen fraction was higher in SHR-DM-APO than SHR-APO, and type III collagen protein expression was lower in SHR-DM and SHR-DM-APO than their controls. Type I collagen and lysyl oxidase expression did not differ between groups. Apocynin did not change collagen tissue. Myocardial lipid hydroperoxide concentration was higher in SHR-DM than SHR and SHR-DM-APO. Glutathione peroxidase activity was lower and catalase higher in SHR-DM than SHR. Apocynin attenuated antioxidant enzyme activity changes in SHR-DM-APO. Advanced glycation end-products and NADPH oxidase activity did not differ between groups. CONCLUSION Apocynin reduces oxidative stress independently of NADPH oxidase activity and does not change ventricular or myocardial function in spontaneously hypertensive rats with diabetes mellitus. The apocynin-induced myocardial functional impairment in SHR shows that apocynin actions need to be clarified during sustained chronic pressure overload.
Collapse
|
16
|
Apocynin and Diphenyleneiodonium Induce Oxidative Stress and Modulate PI3K/Akt and MAPK/Erk Activity in Mouse Embryonic Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7409196. [PMID: 26788250 PMCID: PMC4691611 DOI: 10.1155/2016/7409196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/13/2015] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) are important regulators of cellular functions. In embryonic stem cells, ROS are suggested to influence differentiation status. Regulated ROS formation is catalyzed primarily by NADPH-dependent oxidases (NOXs). Apocynin and diphenyleneiodonium are frequently used inhibitors of NOXs; however, both exhibit uncharacterized effects not related to NOXs inhibition. Interestingly, in our model of mouse embryonic stem cells we demonstrate low expression of NOXs. Therefore we aimed to clarify potential side effects of these drugs. Both apocynin and diphenyleneiodonium impaired proliferation of cells. Surprisingly, we observed prooxidant activity of these drugs determined by hydroethidine. Further, we revealed that apocynin inhibits PI3K/Akt pathway with its downstream transcriptional factor Nanog. Opposite to this, apocynin augmented activity of canonical Wnt signaling. On the contrary, diphenyleneiodonium activated both PI3K/Akt and Erk signaling pathways without affecting Wnt. Our data indicates limits and possible unexpected interactions of NOXs inhibitors with intracellular signaling pathways.
Collapse
|
17
|
Liu C, Song Y, Qu L, Tang J, Meng L, Wang Y. Involvement of NOX in the Regulation of Renal Tubular Expression of Na/K-ATPase in Acute Unilateral Ureteral Obstruction Rats. Nephron Clin Pract 2015; 130:66-76. [DOI: 10.1159/000381858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
|
18
|
An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells. PLoS One 2015; 10:e0126159. [PMID: 25955018 PMCID: PMC4425697 DOI: 10.1371/journal.pone.0126159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/29/2015] [Indexed: 12/01/2022] Open
Abstract
Background Multidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anticancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recognized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet been investigated whether multidrug resistant cells have a different ability to induce immunosuppression than chemosensitive ones. We addressed this issue in human and murine chemosensitive and multidrug resistant cancer cells. Results We found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine, was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-inducers cytokines IL-6, IL-4, IL-1β, IL-13, TNF-α and CD40L, was increased. The disruption of the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes in STAT-silenced chemoresistant cells. Conclusions Our work shows that multidrug resistant cells have a stronger immunosuppressive attitude than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis, thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve the efficacy of chemo-immunotherapy protocols against resistant tumors.
Collapse
|
19
|
Uysal A, Sahna E, Ozguler IM, Burma O, Ilhan N. Effects of apocynin, an NADPH oxidase inhibitor, on levels of ADMA, MPO, iNOS and TLR4 induced by myocardial ischemia reperfusion. Perfusion 2014; 30:472-7. [PMID: 25404055 DOI: 10.1177/0267659114559260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE In this study, the effects of apocynin, an NADPH oxidase inhibitor, on the levels of inducible nitric oxide synthase (iNOS) and the toll-like receptor 4 (TLR4), which are inflammatory mediators in myocardial ischemia-reperfusion (MIR) injury, and myeloperoxidase (MPO), which is the indicator of neutrophil infiltration and the endogenous nitric oxide synthase inhibitor asymmetric dimethyl arginine (ADMA) increasing with oxidative stress were investigated. METHODS MIR injury was accomplished by the application of occlusion for 30 minutes and reperfusion for 120 minutes in the left anterior descending artery (LAD). In the study, 21 Sprague-Dawley male rats were divided into three groups: a sham group (n = 7); a MIR group (n = 7); and a MIR + apocynin treatment group (n = 7, before the procedure, an intraperitoneal administration of 10 mg/kg of apocynin for 15 days). After reperfusion, iNOS, TLR4, MPO and ADMA levels in myocardial tissue were measured by ELISA. RESULTS While myocardial TLR4, MPO and ADMA levels increased in the MIR group, these parameters were found to be decreased significantly in the group treated with apocynin. Although iNOS levels showed an increase in the MIR group compared to the sham group and a reduction in the MIR+apocynin group, there was no statistically significant difference between the groups. DISCUSSION In our study, the effect of the treatment of apocynin in MIR on ADMA, MPO, iNOS and TLR4 levels in myocardial tissue was shown for the first time. It is thought that apocynin treatment may show a protective effect in MIR injury by affecting oxidative stress (ADMA) and inflammatory parameters (iNOS, MPO).
Collapse
Affiliation(s)
- A Uysal
- Depertment of Cardiovascular Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| | - E Sahna
- Depertment of Pharmacology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - I M Ozguler
- Depertment of Cardiovascular Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| | - O Burma
- Depertment of Cardiovascular Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| | - N Ilhan
- Depertment of Biochemistry, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
20
|
Zehendner CM, Librizzi L, Hedrich J, Bauer NM, Angamo EA, de Curtis M, Luhmann HJ. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption. PLoS One 2013; 8:e82823. [PMID: 24324834 PMCID: PMC3855783 DOI: 10.1371/journal.pone.0082823] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/28/2013] [Indexed: 11/19/2022] Open
Abstract
Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR) on the evolution of reactive oxygen species (ROS) and blood-brain barrier (BBB) integrity in brain endothelial cells (BEC). BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC) or towards occlusion of the arteria cerebri media (MCAO) with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER) and transwell permeability assays. ROS in BEC were evaluated using 2',7'-dichlorodihydrofluorescein diacetate (DCF), MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ) integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI) was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1) and claudin 5 (Cl5), decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role in this process.
Collapse
Affiliation(s)
- Christoph M. Zehendner
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| | - Laura Librizzi
- Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Jana Hedrich
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nina M. Bauer
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Eskedar A. Angamo
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marco de Curtis
- Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Heiko J. Luhmann
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
21
|
Huei Kao C. Role of rice heme oxygenase in lateral root formation. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25766. [PMID: 23887491 PMCID: PMC4091076 DOI: 10.4161/psb.25766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 05/31/2023]
Abstract
Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. In rice, exposure to auxin, methyl jasmonate (MJ), apocynin, and CoCl2 has been shown to increase LR formation. This review provides evidence showing a close link between rice heme oxygenase (HO) and LR formation. The effect of auxin and MJ is nitric oxide (NO) dependent, whereas that of apocynin requires H2O2. The effect of CoCl2 on the LR formation could be by some other pathway unrelated to NO and H2O2. This review also highlights future lines of research that should increase our knowledge of HO-involved LR formation in rice.
Collapse
|
22
|
Nam SJ, Oh IS, Yoon YH, Kwon BI, Kang W, Kim HJ, Nahm SH, Choi YH, Lee SH, Racanelli V, Shin EC. Apocynin regulates cytokine production of CD8(+) T cells. Clin Exp Med 2013; 14:261-8. [PMID: 23700158 DOI: 10.1007/s10238-013-0241-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/10/2013] [Indexed: 11/25/2022]
Abstract
Apocynin is known to suppress the production of reactive oxygen species (ROS) by inhibiting NADPH oxidases, specifically phagocytic NADPH oxidase (PHOX or NOX2). Given the pro-inflammatory effects of ROS, apocynin has been studied extensively for its use as a therapeutic agent in various disease models. While the effects of apocynin on neutrophils and monocytes have been investigated, it remains to be elucidated whether apocynin modulates the effector function of T cells. In the present study, we examined the effect of apocynin on CD8(+) T cells and further investigated its mechanism of action. We found that apocynin directly inhibited the production of pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL-2 in anti-CD3/anti-CD28-stimulated CD8(+) T cells. The action of apocynin was upstream of the protein kinase C and calcium signaling in the T cell receptor signaling pathway because apocynin did not inhibit cytokine production in phorbol 12-myristate 13-acetate/ionomycin-stimulated CD8(+) T cells. Electrophoretic mobility shift assays revealed that apocynin attenuated anti-CD3/anti-CD28-induced NF-κB activation in CD8(+) T cells. In the experiments with NOX2-deficient mice, we demonstrated that apocynin inhibited TNF-α production of CD8(+) T cells in a NOX2-independent manner. Taken together, we demonstrated that apocynin, a well-known NOX2 inhibitor, suppressed the cytokine production of CD8(+) T cells. We also showed the NOX2-independent action of apocynin in the inhibition of TNF-α production in CD8(+) T cells.
Collapse
Affiliation(s)
- Seung-Joo Nam
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Daejeon, 305-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen YH, Chao YY, Hsu YY, Kao CH. Heme oxygenase is involved in H(2)O (2)-induced lateral root formation in apocynin-treated rice. PLANT CELL REPORTS 2013; 32:219-26. [PMID: 23076168 DOI: 10.1007/s00299-012-1356-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/24/2012] [Accepted: 10/07/2012] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE : Apocynin is a natural organic compound structurally related to vanillin. We demonstrated that hydrogen peroxide and heme oxygenase participated in apocynin-induced lateral root formation in rice. Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Information concerning the effect of apocynin on plants is limited. In this study, we examined the effect of apocynin on lateral root (LR) formation in rice. Treatment with apocynin induced LR formation and increased H(2)O(2) production, but had no effect on nitric oxide production. Diphenyleneiodonium chloride, an inhibitor of H(2)O(2) generating NADPH oxidase, was effective in reducing apocynin-induced H(2)O(2) production and LR formation. Apocynin treatment also increased superoxide dismutase activity and decreased catalase activity. H(2)O(2) application was able to increase the number of LRs. Moreover, H(2)O(2) production caused by H(2)O(2) and apocynin was localized in the root area corresponding to the LR emergence. Treatment with H(2)O(2) and apocynin also increased heme oxygenase (HO) activity and induced OsHO1 mRNA expression. Lateral root formation and HO activity induced by H(2)O(2) and apocynin were reduced by Zn protoporphyrin IX (the specific inhibitor of HO). Our data suggest that both H(2)O(2) and HO are required for apocynin-induced LR formation in rice.
Collapse
Affiliation(s)
- Yi-Hsuan Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
24
|
Co-administration of apocynin with lipoic acid enhances neuroprotection in a rat model of ischemia/reperfusion. Neurosci Lett 2012; 507:43-6. [DOI: 10.1016/j.neulet.2011.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/31/2011] [Accepted: 11/25/2011] [Indexed: 12/11/2022]
|
25
|
Furieri LB, Galán M, Avendaño MS, García-Redondo AB, Aguado A, Martínez S, Cachofeiro V, Bartolomé MV, Alonso MJ, Vassallo DV, Salaices M. Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on reactive oxygen species. Br J Pharmacol 2011; 162:1819-31. [PMID: 21232032 DOI: 10.1111/j.1476-5381.2011.01203.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Exposure to mercury is known to increase cardiovascular risk but the underlying mechanisms are not well explored. We analysed whether chronic exposure to low mercury doses affects endothelial modulation of the coronary circulation. EXPERIMENTAL APPROACH Left coronary arteries and hearts from Wistar rats treated with either HgCl(2) (first dose 4.6 µg·kg(-1) , subsequent doses 0.07 µg·kg(-1) day(-1) , 30 days) or vehicle were used. Endothelial cells from pig coronary arteries incubated with HgCl(2) were also used. KEY RESULTS Mercury treatment increased 5-HT-induced vasoconstriction but reduced acetylcholine-induced vasodilatation. It also reduced nitric oxide (NO) production and the effects of NO synthase inhibition with L-NAME (100 µmol·L(-1) ) on 5-HT and acetylcholine responses. Superoxide anion production and mRNA levels of NOX-1 and NOX-4 were all increased. The superoxide anion scavenger tiron (1 mmol·L(-1)) reduced 5-HT responses and increased acetylcholine responses only in vessels from mercury-treated rats. In isolated hearts from mercury-treated rats, coronary perfusion and diastolic pressure were unchanged, but developed isovolumetric systolic pressure was reduced. In these hearts, L-NAME increased coronary perfusion pressure and diastolic pressure while it further reduced developed systolic pressure. CONCLUSIONS AND IMPLICATIONS Chronic exposure to low doses of mercury promotes endothelial dysfunction of coronary arteries, as shown by decreased NO bioavailability induced by increased oxidative stress. These effects on coronary function increase resistance to flow, which under overload conditions might cause ventricular contraction and relaxation impairment. These findings provide further evidence that mercury, even at low doses, could be an environmental risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Lorena B Furieri
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Olukman M, Orhan CE, Celenk FG, Ulker S. Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. J Diabetes Complications 2010; 24:415-23. [PMID: 20226688 DOI: 10.1016/j.jdiacomp.2010.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/23/2009] [Accepted: 02/04/2010] [Indexed: 12/14/2022]
Abstract
AIM Increased production of reactive oxygen species (ROS) in the diabetic vasculature results in the impairment of nitric oxide (NO)-mediated relaxations leading to impaired endothelium-dependent vasodilation. An important source of ROS is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and the inhibition of this enzyme is an active area of interest. This study aimed to investigate the effects of apocynin, an NADPH oxidase inhibitor, on endothelial dysfunction and on the expression of NO synthase (NOS) and NADPH oxidase in thoracic aorta of diabetic rats. METHOD Streptozotocin (STZ)-diabetic rats received apocynin (16 mg/kg per day) for 4 weeks. Endothelium-dependent and -independent relaxations were determined in thoracic aortic rings. Western blotting and RT-PCR analysis were performed for NOSs and NADPH oxidase in the aortic tissue. RESULTS Acetylcholine-induced relaxations and l-NAME-induced contractions were decreased in diabetic aorta. The decrease in acetylcholine and l-NAME responses were prevented by apocynin treatment without a significant change in plasma glucose levels. Endothelial NOS (eNOS) protein and mRNA expression exhibited significant decrease in diabetes, while protein and/or mRNA expressions of inducible NOS (iNOS) as well as p22(phox) and gp91(phox) subunits of NADPH oxidase were increased, and these alterations were markedly prevented by apocynin treatment. CONCLUSION NADPH oxidase expression is increased in diabetic rat aorta. NADPH oxidase-mediated oxidative stress is accompanied by the decreased eNOS and increased iNOS expressions, contributing to endothelial dysfunction. Apocynin effectively prevents the increased NADPH oxidase expression in diabetic aorta and restores the alterations in NOS expression, blocking the vicious cycle leading to diabetes-associated endothelial dysfunction.
Collapse
MESH Headings
- Acetophenones/administration & dosage
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/physiopathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/administration & dosage
- Gene Expression Regulation, Enzymologic/drug effects
- Male
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/genetics
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Murat Olukman
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | | | | | | |
Collapse
|
27
|
Dendooven A, Ishola DA, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, Joles JA. Oxidative stress in obstructive nephropathy. Int J Exp Pathol 2010; 92:202-10. [PMID: 20804541 DOI: 10.1111/j.1365-2613.2010.00730.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Amélie Dendooven
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Qi XF, Teng YC, Yoon YS, Kim DH, Cai DQ, Lee KJ. Reactive oxygen species are involved in the IFN-γ-stimulated production of Th2 chemokines in HaCaT keratinocytes. J Cell Physiol 2010; 226:58-65. [DOI: 10.1002/jcp.22303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Turgut F, Bolton WK. Potential new therapeutic agents for diabetic kidney disease. Am J Kidney Dis 2010; 55:928-40. [PMID: 20138415 DOI: 10.1053/j.ajkd.2009.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 11/12/2009] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease, and both the incidence and prevalence of diabetic nephropathy continue to increase. Currently, various treatment regimens and combinations of therapies provide only partial renoprotection. It is obvious that new approaches are desperately needed to retard the progression of diabetic nephropathy. Recently, a number of new agents have been described that have the potential to delay the progression of diabetic kidney disease and minimize the growing burden of end-stage renal disease. These include inhibitors and breakers of advanced glycation end products, receptor antagonists for advanced glycation end products, protein kinase C inhibitors, NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase inhibitors, glycosaminoglycans, endothelin receptor antagonists, antifibrotic agents, and growth factor inhibitors. This review addresses these promising new therapeutic agents for delaying the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Faruk Turgut
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | |
Collapse
|
30
|
Scirocco A, Matarrese P, Petitta C, Cicenia A, Ascione B, Mannironi C, Ammoscato F, Cardi M, Fanello G, Guarino MPL, Malorni W, Severi C. Exposure of Toll-like receptors 4 to bacterial lipopolysaccharide (LPS) impairs human colonic smooth muscle cell function. J Cell Physiol 2010; 223:442-50. [PMID: 20112289 DOI: 10.1002/jcp.22053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endotoxemia by bacterial lipopolysaccharide (LPS) has been reported to affect gut motility specifically depending on Toll-like receptor 4 activation (TLR4). However, the direct impact of LPS ligation to TLR4 on human smooth muscle cells (HSMC) activity still remains to be elucidated. The present study shows that TLR4, its associated molecule MD2, and TLR2 are constitutively expressed on cultured HSMC and that, once activated, they impair HSMC function. The stimulation of TLR4 by LPS induced a time- and dose-dependent contractile dysfunction, which was associated with a decrease of TLR2 messenger, a rearrangement of microfilament cytoskeleton and an oxidative imbalance, i.e., the formation of reactive oxygen species (ROS) together with the depletion of GSH content. An alteration of mitochondria, namely a hyperpolarization of their membrane potential, was also detected. Most of these effects were partially prevented by the NADPH oxidase inhibitor apocynin or the NFkappaB inhibitor MG132. Finally, a 24 h washout in LPS-free medium almost completely restored morphofunctional and biochemical HSMC resting parameters, even if GSH levels remained significantly lower and no recovery was observed in TLR2 expression. Thus, the exposure to bacterial endotoxin directly and persistently impaired gastrointestinal smooth muscle activity indicating that HSMC actively participate to dysmotility during infective burst. The knowledge of these interactions might provide novel information on the pathogenesis of infection-associated gut dysmotility and further clues for the development of new therapeutic strategies.
Collapse
|
31
|
Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD. Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 2009; 11:2535-52. [PMID: 19309261 DOI: 10.1089/ars.2009.2585] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
NOX NADPH oxidases are electron-transporting membrane enzymes whose primary function is the generation of reactive oxygen species (ROS). ROS produced by NOX enzymes show a variety of biologic functions, such as microbial killing, blood pressure regulation, and otoconia formation. Strong evidence suggests that NOX enzymes are major contributors to oxidative damage in pathologic conditions. Blocking the undesirable actions of NOX enzymes, therefore, is a therapeutic strategy for treating oxidative stress-related pathologies, such as ischemia/reperfusion tissue injury, and neurodegenerative and metabolic diseases. Most currently available NOX inhibitors have low selectivity, potency, and bioavailability, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. This review has two main purposes. First, we describe a systematic approach that we believe should be followed in the search for truly selective NOX inhibitors. Second, we present a critical review of small-molecule NOX inhibitors described over the last two decades, including recently published patents from the pharmaceutical industry. Structures, activities, and in vitro/in vivo specificity of these NOX inhibitors are discussed. We conclude that NOX inhibition is a pertinent and promising novel pharmacologic concept, but that major efforts will be necessary to develop specific NOX inhibitors suited for clinical application.
Collapse
Affiliation(s)
- Vincent Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Pharmaceutical Sciences, University of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Tossi V, Lamattina L, Cassia R. A possible mechanism for the apocynin-induced nitric oxide accumulation in plants. PLANT SIGNALING & BEHAVIOR 2009; 4:880-882. [PMID: 19847121 PMCID: PMC2802795 DOI: 10.4161/psb.4.9.9429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 05/28/2023]
Abstract
Nitric oxide (NO) is a small, ubiquitous bioactive molecule, postulated as a broad spectrum anti-stress compound. The NADPH oxidase inhibitor apocynin induces the accumulation of endogenous NO in leaves of maize seedlings through a nitric oxide synthase (NOS)-like activity, and confers an augmented tolerance to UV-B-induced oxidative damage. Here we propose a mechanism for the apocynin-induced NO increase in plants. NOS catalyzes the oxidation of arginine to citrulline and NO. It is suggested that apocynin inhibits arginase, the enzyme that hydrolyzes L-arginine to urea and L-ornithine, increasing the arginine availability for arginine-dependent NO synthesis. Superoxide (O(2)(-)) is a strong NO scavenger due to its high reactivity with NO to give peroxynitrite (ONOO(-)). Superoxide is mainly produced by plant NADPH oxidase (pNOX). Inhibition of pNOX by apocynin at relatively high NO concentration, could reduces the formation of O(2)(-) and ONOO(-), increasing the availability of a huge amount of NO. We consider apocynin as a very attractive compound for studying NO-regulated processes in plants since it can replace the use of NO donors and overcome the subsequent technical problems.
Collapse
Affiliation(s)
- Vanesa Tossi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | | |
Collapse
|
33
|
Tossi V, Cassia R, Lamattina L. Apocynin-induced nitric oxide production confers antioxidant protection in maize leaves. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1336-1341. [PMID: 19286274 DOI: 10.1016/j.jplph.2009.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 05/27/2023]
Abstract
The effect of apocynin on nitric oxide (NO) synthesis and oxidative stress was studied in corn (Zea mays) seedlings. After treatment with 100 microM apocynin, strongly increased amounts of NO were detected in the leaves. This NO production was reduced by more than 70% by N(G)-nitro-l-arginine methyl ester (L-NAME), a NO synthase (NOS) inhibitor, but there was no reduction in NO production when apocynin was applied in combination with diphenylene iodonium (a plant NOX inhibitor). When maize seedlings were UV-B-irradiated, cellular damage occurred and reactive oxygen species (ROS) were found widely distributed in chloroplasts and mesophyll cells. Pre-treatment with apocynin and coinciding NO accumulation prevented this damage. However, the protective effect was averted by L-NAME application. Leaf discs placed in 1M H(2)O(2) for 24h showed a reduction in chlorophyll content that could also be avoided by apocynin treatment. Our results show that apocynin induces the accumulation of NO in leaves of maize seedlings through a NOS-like activity, a mechanism alternative to NOX inhibition, and confers an augmented tolerance to different types of abiotic oxidative stress. Indeed, we propose the use of apocynin as an alternative approach to study NO functionality in plants.
Collapse
Affiliation(s)
- Vanesa Tossi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| | - Raúl Cassia
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina.
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| |
Collapse
|
34
|
García-Redondo AB, Briones AM, Beltrán AE, Alonso MJ, Simonsen U, Salaices M. Hypertension increases contractile responses to hydrogen peroxide in resistance arteries through increased thromboxane A2, Ca2+, and superoxide anion levels. J Pharmacol Exp Ther 2009; 328:19-27. [PMID: 18818375 DOI: 10.1124/jpet.108.144295] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the mechanisms underlying the response to hydrogen peroxide (H(2)O(2)) in mesenteric resistance arteries from spontaneously hypertensive rats (SHRs) and normotensive Wistar Kyoto (WKY) rats. Arteries were mounted in microvascular myographs for isometric tension recording and for simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)), superoxide anion (O(2)(.)) production was evaluated by dihydroethidium fluorescence and confocal microscopy, and thromboxane A(2) (TXA(2)) production was evaluated by enzyme immunoassay. H(2)O(2) (1-100 microM) induced biphasic responses characterized by a transient endothelium-dependent contraction followed by relaxation. Simultaneous measurements of tension and Ca(2+) showed a greater effect of H(2)O(2) in arteries from hypertensive than normotensive rats. The cyclooxygenase (cox) inhibitor, indomethacin [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1-H-indole-3-acetic acid] (1 microM); the COX-1 inhibitor, SC-58560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole] (1 microM); the thromboxane (TXA(2)) synthase inhibitor, furegrelate [5-(3-pyridinylmethyl)-2-benzofurancarboxylic acid, sodium salt] (10 microM); and the TXA(2)/prostaglandin H(2) receptor antagonist, SQ 29,548 ([1S-[1.alpha.,2.alpha.(Z),3.alpha.,4.alpha.]]-7-[3-[[2-[(phenylamino) carbonyl] hydrazino] methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid)) (1 microM) abolished H(2)O(2) contraction in arteries from WKY rats but only reduced it in SHRs. The O(2)(.) scavenger, tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt) (1 mM), and the NADPH oxidase inhibitor, apocynin (4'-hydroxy-3'-methoxyacetophenone) (0.3 mM), decreased H(2)O(2) contraction in arteries from SHRs but not in WKY rats. H(2)O(2) induced TXA(2) and O(2)(.) production that was greater in SHRs than in WKY rats. The TXA(2) analog, U46619 [9,11-di-deoxy-11 alpha,9 alpha-epoxymethano prostaglandin F(2 alpha) (0.1 nM-1 microM)], also increased O(2)(.) production in SHR vessels. H(2)O(2)-induced TXA(2) production was decreased by SC-58560. H(2)O(2)-induced O(2)(.) production was decreased by tiron, apocynin, and SQ 29,548. In conclusion, the enhanced H(2)O(2) contraction in resistance arteries from SHRs seems to be mediated by increased TXA(2) release from COX-1 followed by elevations in vascular smooth muscle [Ca(2+)](i) levels and O(2)(.) production. This reveals a new mechanism of oxidative stress-induced vascular damage in hypertension.
Collapse
Affiliation(s)
- Ana Belén García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH-oxidase. It can decrease the production of superoxide (O(2)(-)) from activated neutrophils and macrophages while the ability of phagocytosis remains unaffected. The anti-inflammatory activity of apocynin has been demonstrated in a variety of cell and animal models of inflammation. Apocynin, after metabolic conversion, inhibits the assembly of NADPH-oxidase that is responsible for reactive oxygen species (ROS) production. It is, therefore, extensively used to reveal the role of this enzyme in cell and experimental models. Although some of the ROS serve as signaling molecules in the cells, excessive production is damaging and has been implicated to play an important role in the progression of many disease processes. This is why in many studies apocynin presents a promising potential treatment for some disorders; however, its utility with inflammatory diseases remains to be determined. Since its mode of action is not well defined, we tried to get a more precise insight into the mechanisms by which apocynin exerts its activity. Considering the anti-inflammatory activities of apocynin, we may conclude that this compound definitely deserves further study.
Collapse
|
36
|
Wiggers GA, Peçanha FM, Briones AM, Pérez-Girón JV, Miguel M, Vassallo DV, Cachofeiro V, Alonso MJ, Salaices M. Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol Heart Circ Physiol 2008; 295:H1033-H1043. [DOI: 10.1152/ajpheart.00430.2008] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased cardiovascular risk after mercury exposure has been described, but the underlying mechanisms are not well explored. We analyzed the effects of chronic exposure to low mercury concentrations on endothelium-dependent responses in aorta and mesenteric resistance arteries (MRA). Wistar rats were treated with mercury chloride (1st dose 4.6 μg/kg, subsequent dose 0.07 μg·kg−1·day−1im, 30 days) or vehicle. Blood levels at the end of treatment were 7.97 ± 0.59 ng/ml. Mercury treatment: 1) did not affect systolic blood pressure; 2) increased phenylephrine-induced vasoconstriction; 3) reduced acetylcholine-induced vasodilatation; and 4) reduced in aorta and abolished in MRA the increased phenylephrine responses induced by either endothelium removal or the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 100 μM). Superoxide dismutase (SOD, 150 U/ml) and the NADPH oxidase inhibitor apocynin (0.3 mM) decreased the phenylephrine-induced contraction in aorta more in mercury-treated rats than controls. In MRA, SOD did not affect phenylephrine responses; however, when coincubated with l-NAME, the l-NAME effect on phenylephrine response was restored in mercury-treated rats. Both apocynin and SOD restored the impaired acetylcholine-induced vasodilatation in vessels from treated rats. Endothelial NOS expression did not change in aorta but was increased in MRA from mercury-treated rats. Vascular O2−production, plasmatic malondialdehyde levels, and total antioxidant status increased with the mercury treatment. In conclusion, chronic exposure to low concentrations of mercury promotes endothelial dysfunction as a result of the decreased NO bioavailability induced by increases in oxidative stress. These findings offer further evidence that mercury, even at low concentrations, is an environmental risk factor for cardiovascular disease.
Collapse
|
37
|
Carbone DL, Moreno JA, Tjalkens RB. Nuclear factor kappa-B mediates selective induction of neuronal nitric oxide synthase in astrocytes during low-level inflammatory stimulation with MPTP. Brain Res 2008; 1217:1-9. [PMID: 18508038 PMCID: PMC2547142 DOI: 10.1016/j.brainres.2008.03.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/14/2008] [Accepted: 03/28/2008] [Indexed: 02/03/2023]
Abstract
Recent advances in understanding the progression of Parkinson's disease (PD) implicate perturbations in astrocyte function and induction of constitutively expressed neuronal nitric oxide synthase (NOS1) in both human PD and in the MPTP model of the disease. Transcriptional regulation of NOS1 is complex but recent data suggest that nuclear factor kappa-B (NF-kappaB) is an important transcription factor involved in inducible expression of the gene. The data presented here demonstrate that mild activation of primary astrocytes with low or 'sub-optimal' concentrations of MPTP (1 microM) and the inflammatory cytokine tumor necrosis factor alpha (10 pg/ml) and interferon gamma (1 ng/ml) results in selective induction of Nos1 mRNA and protein, increased production of nitric oxide (NO), and a significant elevation in global protein nitration. This mild inflammatory stimulus also resulted in activation and recruitment of p65 to a putative NF-kappaB response element located in the Nos1 promoter region flanking exon 1. A role for NF-kappaB in MPTP-dependent induction of NOS1 was confirmed through overexpression of a mutant IkappaBalpha super repressor of NF-kappaB that prevented induction of NOS1. The data presented here thus demonstrate a role for NF-kappaB in selective induction of NOS1 during early inflammatory activation of astrocytes stimulated by low-dose MPTP and inflammatory cytokines.
Collapse
Affiliation(s)
- David L. Carbone
- Program in Molecular, Cellular, and Integrative Neuroscience
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Julie A. Moreno
- Program in Molecular, Cellular, and Integrative Neuroscience
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Ronald B. Tjalkens
- Program in Molecular, Cellular, and Integrative Neuroscience
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|