1
|
Wang B, Gao Y, Song Z, Zhang Y, Fan P, Lu X, Zhang H, Zhang Z. Pairing tumor cell vesicle antigens with cationic nano-adjuvants by electrostatic adherence for personalized cancer vaccine. Int J Pharm 2025; 672:125252. [PMID: 39892678 DOI: 10.1016/j.ijpharm.2025.125252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 02/04/2025]
Abstract
Simultaneous co-delivery of both antigens and adjuvants is crucial for the efficient activation of dendritic cells (DCs), but it has often been overlooked in the context of tumor cell-based vaccines. Building on the significant advancements in cationic nano-adjuvants, we proposed a straightforward and effective strategy for crafting personalized cancer vaccines, in which tumor cell vesicle antigens were paired with cationic nano-adjuvants to form nano-network through electrostatic adherence. Our pioneering research indicates that densely arranged nanoparticles can be simultaneously taken up by DCs, thus facilitating the co-delivery of adjuvants and antigens. To further enhance the interaction between DCs and antigens, the antigens-adjuvants nano-network was reconstructed using high aspect ratio silicon dioxide (SiO2) rods to generate 3D structures with ample interparticle spaces. This fosters a conducive environment for DCs infiltration, thereby optimizing the spatial and temporal orchestration of antigen cross-presentation. When combined with programmed death ligand 1 (PD-L1) immune checkpoint inhibitors, the dual-scale cancer vaccine effectively inhibits tumor proliferation through T cell-mediated mechanisms, resulting in a survival rate of 60 % in mice for over 40 days. In summary, our study introduces an innovative approach to the spatiotemporal orchestration of antigen cross-presentation, providing fresh insights into the construction of cancer vaccines based on tumor cells.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001 China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001 Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001 Henan Province, China
| | - Yiwen Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Zhihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Yuru Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Peibo Fan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Xiang Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001 China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001 Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001 Henan Province, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001 China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001 Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001 Henan Province, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001 China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001 Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001 Henan Province, China.
| |
Collapse
|
2
|
Sanz-Ortega L, Rojas JM, Barber DF. Improving Tumor Retention of Effector Cells in Adoptive Cell Transfer Therapies by Magnetic Targeting. Pharmaceutics 2020; 12:E812. [PMID: 32867162 PMCID: PMC7557387 DOI: 10.3390/pharmaceutics12090812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Adoptive cell transfer therapy is a promising anti-tumor immunotherapy in which effector immune cells are transferred to patients to treat tumors. However, one of its main limitations is the inefficient trafficking of inoculated effector cells to the tumor site and the small percentage of effector cells that remain activated when reaching the tumor. Multiple strategies have been attempted to improve the entry of effector cells into the tumor environment, often based on tumor types. It would be, however, interesting to develop a more general approach, to improve and facilitate the migration of specific activated effector lymphoid cells to any tumor type. We and others have recently demonstrated the potential for adoptive cell transfer therapy of the combined use of magnetic nanoparticle-loaded lymphoid effector cells together with the application of an external magnetic field to promote the accumulation and retention of lymphoid cells in specific body locations. The aim of this review is to summarize and highlight the recent findings in the field of magnetic accumulation and retention of effector cells in tumors after adoptive transfer, and to discuss the possibility of using this approach for tumor targeting with chimeric antigen receptor (CAR) T-cells.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine, Karolinska Institute, 14183 Stockholm, Sweden;
| | - José Manuel Rojas
- Animal Health Research Centre (CISA)-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28130 Madrid, Spain;
| | - Domingo F. Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain
| |
Collapse
|
3
|
Sanz-Ortega L, Rojas JM, Marcos A, Portilla Y, Stein JV, Barber DF. T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. J Nanobiotechnology 2019; 17:14. [PMID: 30670029 PMCID: PMC6341614 DOI: 10.1186/s12951-019-0440-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
Background T lymphocytes are highly dynamic elements of the immune system with a tightly regulated migration. T cell-based transfer therapies are promising therapeutic approaches which in vivo efficacy is often limited by the small proportion of administered cells that reaches the region of interest. Manipulating T cell localisation to improve specific targeting will increase the effectiveness of these therapies. Nanotechnology has been successfully used for localized release of drugs and biomolecules. In particular, magnetic nanoparticles (MNPs) loaded with biomolecules can be specifically targeted to a location by an external magnetic field (EMF). The present work studies whether MNP-loaded T cells could be targeted and retained in vitro and in vivo at a site of interest with an EMF. Results T cells were unable to internalize the different MNPs used in this study, which remained in close association with the cell membrane. T cells loaded with an appropriate MNP concentration were attracted to an EMF and retained in an in vitro capillary flow-system. MNP-loaded T cells were also magnetically retained in the lymph nodes after adoptive transfer in in vivo models. This enhanced in vivo retention was in part due to the EMF application and to a reduced circulating cell speed within the organ. This combined use of MNPs and EMFs did not alter T cell viability or function. Conclusions These studies reveal a promising approach to favour cell retention that could be implemented to improve cell-based therapy.![]() Electronic supplementary material The online version of this article (10.1186/s12951-019-0440-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - José M Rojas
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.,Animal Health Research Centre (CISA)-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, 28130, Madrid, Spain
| | - Ana Marcos
- Theodor Kocher Institute, University of Bern, 3012, Bern, Switzerland.,Section of Medicine, Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Yadileiny Portilla
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, 3012, Bern, Switzerland.,Section of Medicine, Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Melby ES, Cui Y, Borgatta J, Mensch AC, Hang MN, Chrisler WB, Dohnalkova A, Van Gilder JM, Alvarez CM, Smith JN, Hamers RJ, Orr G. Impact of lithiated cobalt oxide and phosphate nanoparticles on rainbow trout gill epithelial cells. Nanotoxicology 2018; 12:1166-1181. [DOI: 10.1080/17435390.2018.1508785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Eric S. Melby
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| | - Yi Cui
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| | - Jaya Borgatta
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - Arielle C. Mensch
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| | - Mimi N. Hang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - William B. Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| | - John M. Van Gilder
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - Catherine M. Alvarez
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - Jordan N. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert J. Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| |
Collapse
|
5
|
Melby ES, Allen C, Foreman-Ortiz IU, Caudill ER, Kuech TR, Vartanian AM, Zhang X, Murphy CJ, Hernandez R, Pedersen JA. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10793-10805. [PMID: 30102857 DOI: 10.1021/acs.langmuir.8b02060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular understanding of the impact of nanomaterials on cell membranes is critical for the prediction of effects that span environmental exposures to nanoenabled therapies. Experimental and computational studies employing phospholipid bilayers as model systems for membranes have yielded important insights but lack the biomolecular complexity of actual membranes. Here, we increase model membrane complexity by incorporating the peripheral membrane protein cytochrome c and studying the interactions of the resulting membrane systems with two types of anionic nanoparticles. Experimental and computational studies reveal that the extent of cytochrome c binding to supported lipid bilayers depends on anionic phospholipid number density and headgroup chemistry. Gold nanoparticles functionalized with short, anionic ligands or wrapped with an anionic polymer do not interact with silica-supported bilayers composed solely of phospholipids. Strikingly, when cytochrome c was bound to these bilayers, nanoparticles functionalized with short anionic ligands attached to model biomembranes in amounts proportional to the number of bound cytochrome c molecules. In contrast, anionic polymer-wrapped gold nanoparticles appeared to remove cytochrome c from supported lipid bilayers in a manner inversely proportional to the strength of cytochrome c binding to the bilayer; this reflects the removal of a weakly bound pool of cytochrome c, as suggested by molecular dynamics simulations. These results highlight the importance of the surface chemistry of both the nanoparticle and the membrane in predicting nano-bio interactions.
Collapse
Affiliation(s)
- Eric S Melby
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
- Environmental and Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard , Richland , Washington 99354 , United States
| | - Caley Allen
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Isabel U Foreman-Ortiz
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Emily R Caudill
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Thomas R Kuech
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Ariane M Vartanian
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Xi Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Catherine J Murphy
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Rigoberto Hernandez
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Joel A Pedersen
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
6
|
Mitchell HD, Markillie LM, Chrisler WB, Gaffrey MJ, Hu D, Szymanski CJ, Xie Y, Melby ES, Dohnalkova A, Taylor RC, Grate EK, Cooley SK, McDermott JE, Heredia-Langner A, Orr G. Cells Respond to Distinct Nanoparticle Properties with Multiple Strategies As Revealed by Single-Cell RNA-Seq. ACS NANO 2016; 10:10173-10185. [PMID: 27788331 DOI: 10.1021/acsnano.6b05452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells "overloaded" while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. Here, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantum dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.
Collapse
Affiliation(s)
- Hugh D Mitchell
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Lye Meng Markillie
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - William B Chrisler
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Matthew J Gaffrey
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Dehong Hu
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Craig J Szymanski
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Yumei Xie
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eric S Melby
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Alice Dohnalkova
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ronald C Taylor
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eva K Grate
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Scott K Cooley
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jason E McDermott
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Alejandro Heredia-Langner
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Galya Orr
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
7
|
Zarska M, Novotny F, Havel F, Sramek M, Babelova A, Benada O, Novotny M, Saran H, Kuca K, Musilek K, Hvezdova Z, Dzijak R, Vancurova M, Krejcikova K, Gabajova B, Hanzlikova H, Kyjacova L, Bartek J, Proska J, Hodny Z. Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide. Bioconjug Chem 2016; 27:2558-2574. [PMID: 27602782 DOI: 10.1021/acs.bioconjchem.6b00491] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs' properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB), MTABGNRs, show excellent cellular uptake. Despite their promise for biomedicine, however, relatively little is known about the cellular pathways that facilitate the uptake of GNRs, their subcellular fate and intracellular persistence. Here we studied the mechanism of cellular internalization and long-term fate of GNRs coated with MTAB, for which the synthesis was optimized to give higher yield, in various human cell types including normal diploid versus cancerous, and dividing versus nondividing (senescent) cells. The process of MTABGNRs internalization into their final destination in lysosomes proceeds in two steps: (1) fast passive adhesion to cell membrane mediated by sulfated proteoglycans occurring within minutes and (2) slower active transmembrane and intracellular transport of individual nanorods via clathrin-mediated endocytosis and of aggregated nanorods via macropinocytosis. The expression of sulfated proteoglycans was the major factor determining the extent of uptake by the respective cell types. Upon uptake into proliferating cells, MTABGNRs were diluted equally and relatively rapidly into daughter cells; however, in nondividing/senescent cells the loss of MTABGNRs was gradual and very modest, attributable mainly to exocytosis. Exocytosed MTABGNRs can again be internalized. These findings broaden our knowledge about cellular uptake of gold nanorods, a crucial prerequisite for future successful engineering of nanoparticles for biomedical applications such as photothermal cancer therapy or elimination of senescent cells as part of the emerging rejuvenation approach.
Collapse
Affiliation(s)
- Monika Zarska
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Filip Novotny
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.,Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic
| | - Filip Havel
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.,Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic
| | - Michal Sramek
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Andrea Babelova
- Laboratory of Mutagenesis and Carcinogenesis, Cancer Research Institute BMC, Slovak Academy of Sciences , 945 05 Bratislava, Slovakia
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Michal Novotny
- Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic
| | - Hilal Saran
- Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic
| | - Zuzana Hvezdova
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Rastislav Dzijak
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Marketa Vancurova
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Katerina Krejcikova
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Blanka Gabajova
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Hana Hanzlikova
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Lenka Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.,Genome Integrity Unit, Danish Cancer Society Research Center , DK-2100 Copenhagen, Denmark.,Department of Medical Biochemistry and Biophysics, Science For Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institute , 17121 Solna, Sweden
| | - Jan Proska
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.,Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic
| |
Collapse
|
8
|
Forest V, Pourchez J. Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:889-896. [PMID: 27770966 DOI: 10.1016/j.msec.2016.09.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
Abstract
The internalization of nanoparticles by cells (and more broadly the nanoparticle/cell interaction) is a crucial issue both for biomedical applications (for the design of nanocarriers with enhanced cellular uptake to reach their intracellular therapeutic targets) and in a nanosafety context (as the internalized dose is one of the key factors in cytotoxicity). Many parameters can influence the nanoparticle/cell interaction, among them, the nanoparticle physico-chemical features, and especially the surface charge. It is generally admitted that positive nanoparticles are more uptaken by cells than neutral or negative nanoparticles. It is supposedly due to favorable electrostatic interactions with negatively charged cell membrane. However, this theory seems too simplistic as it does not consider a fundamental element: the nanoparticle protein corona. Indeed, once introduced in a biological medium nanoparticles adsorb proteins at their surface, forming a new interface defining the nanoparticle "biological identity". This adds a new level of complexity in the interactions with biological systems that cannot be any more limited to electrostatic binding. These interactions will then influence cell behavior. Based on a literature review and on an example of our own experience the parameters involved in the nanoparticle protein corona formation as well as in the nanoparticle/cell interactions are discussed.
Collapse
Affiliation(s)
- Valérie Forest
- Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, SAINBIOSE, F-42023 Saint Etienne, France; INSERM, U1059, F-42023 Saint Etienne, France; Université de Lyon, F-69000 Lyon, France.
| | - Jérémie Pourchez
- Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, SAINBIOSE, F-42023 Saint Etienne, France; INSERM, U1059, F-42023 Saint Etienne, France; Université de Lyon, F-69000 Lyon, France
| |
Collapse
|
9
|
Szymanski CJ, Munusamy P, Mihai C, Xie Y, Hu D, Gilles MK, Tyliszczak T, Thevuthasan S, Baer DR, Orr G. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 2015; 62:147-54. [PMID: 26056725 DOI: 10.1016/j.biomaterials.2015.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022]
Abstract
Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce(3+)/Ce(4+) ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce(3+)/Ce(4+) ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of the cells.
Collapse
Affiliation(s)
- Craig J Szymanski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Prabhakaran Munusamy
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Cosmin Mihai
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yumei Xie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Mary K Gilles
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tolek Tyliszczak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Donald R Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| |
Collapse
|
10
|
|
11
|
van Bracht E, Versteegden LRM, Stolle S, Verdurmen WPR, Woestenenk R, Raavé R, Hafmans T, Oosterwijk E, Brock R, van Kuppevelt TH, Daamen WF. Enhanced cellular uptake of albumin-based lyophilisomes when functionalized with cell-penetrating peptide TAT in HeLa cells. PLoS One 2014; 9:e110813. [PMID: 25369131 PMCID: PMC4219704 DOI: 10.1371/journal.pone.0110813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/23/2014] [Indexed: 01/24/2023] Open
Abstract
Lyophilisomes are a novel class of biodegradable proteinaceous nano/micrometer capsules with potential use as drug delivery carrier. Cell-penetrating peptides (CPPs) including the TAT peptide have been successfully implemented for intracellular delivery of a broad variety of cargos including various nanoparticulate pharmaceutical carriers. In the present study, lyophilisomes were modified using CPPs in order to achieve enhanced cellular uptake. Lyophilisomes were prepared by a freezing, annealing, and lyophilization method and a cystein-elongated TAT peptide was conjugated to the lyophilisomes using a heterobifunctional linker. Fluorescent-activated cell sorting (FACS) was utilized to acquire a lyophilisome population with a particle diameter smaller than 1000 nm. Cultured HeLa, OVCAR-3, Caco-2 and SKOV-3 cells were exposed to unmodified lyophilisomes and TAT-conjugated lyophilisomes and examined with FACS. HeLa cells were investigated in more detail using a trypan blue quenching assay, confocal microscopy, and transmission electron microscopy. TAT-conjugation strongly increased binding and cellular uptake of lyophilisomes in a time-dependent manner in vitro, as assessed by FACS. These results were confirmed by confocal microscopy. Transmission electron microscopy indicated rapid cellular uptake of TAT-conjugated lyophilisomes via phagocytosis and/or macropinocytosis. In conclusion, TAT-peptides conjugated to albumin-based lyophilisomes are able to enhance cellular uptake of lyophilisomes in HeLa cells.
Collapse
Affiliation(s)
- Etienne van Bracht
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Luuk R. M. Versteegden
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Sarah Stolle
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud university medical centre, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - René Raavé
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Theo Hafmans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Willeke F. Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Induction of long-term immunity against respiratory syncytial virus glycoprotein by an osmotic polymeric nanocarrier. Acta Biomater 2014; 10:4606-4617. [PMID: 25110285 DOI: 10.1016/j.actbio.2014.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/26/2014] [Accepted: 07/31/2014] [Indexed: 11/22/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the most common causes of viral deaths in infants worldwide, yet no effective vaccines are available. Here, we report an osmotically active polysaccharide-based polysorbitol transporter (PST) prepared from sorbitol diacrylate and low-molecular-weight polyethylenimine (PEI) showing a potent, yet safe, adjuvant activity and acting as an effective delivery tool for RSV glycoprotein (RGp) antigen. PST showed no toxicity in vitro or in vivo, unlike PEI and the well-known experimental mucosal adjuvant cholera toxin (CT). PST formed nano-sized complexes with RGp by simple mixing, without affecting antigenic stability. The complexes exhibited negative surface charges that made them highly efficient in the selective activation of phagocytic cells and enhancement of phagocytic uptake. This resulted in an improved cytokine production and in the significant augmentation of RGp-specific antibody production, which persisted for over 200 days. Interestingly, PST/RGp enhanced phagocytic uptake owing to the osmotic property of PST and its negative zeta potential, suggesting that PST could selectively stimulate phagocytic cells, thereby facilitating a long-lived antigen-specific immune response, which was presumably further enhanced by the polysaccharide properties of PST.
Collapse
|
13
|
Nazarenus M, Zhang Q, Soliman MG, del Pino P, Pelaz B, Carregal-Romero S, Rejman J, Rothen-Rutishauser B, Clift MJD, Zellner R, Nienhaus GU, Delehanty JB, Medintz IL, Parak WJ. In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far? BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1477-90. [PMID: 25247131 PMCID: PMC4168913 DOI: 10.3762/bjnano.5.161] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
The interfacing of colloidal nanoparticles with mammalian cells is now well into its second decade. In this review our goal is to highlight the more generally accepted concepts that we have gleaned from nearly twenty years of research. While details of these complex interactions strongly depend, amongst others, upon the specific properties of the nanoparticles used, the cell type, and their environmental conditions, a number of fundamental principles exist, which are outlined in this review.
Collapse
Affiliation(s)
- Moritz Nazarenus
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Mahmoud G Soliman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Pablo del Pino
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | | | - Joanna Rejman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Martin J D Clift
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Reinhard Zellner
- Institute of Physical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - James B Delehanty
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| |
Collapse
|
14
|
Mihai C, Chrisler WB, Xie Y, Hu D, Szymanski CJ, Tolic A, Klein JA, Smith JN, Tarasevich BJ, Orr G. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface. Nanotoxicology 2013; 9:9-22. [PMID: 24289294 DOI: 10.3109/17435390.2013.859319] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn(2+)) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn(2+), together with organelle-specific fluorescent proteins, we quantified Zn(2+) in single cells and organelles over time. We found that at the ALI, intracellular Zn(2+) values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn(2+) values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn(2+) values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn(2+). At the ALI, the majority of intracellular Zn(2+) was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn(2+) following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn(2+) have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.
Collapse
|
15
|
Wang W, Li Y, Liu X, Jin M, Du H, Liu Y, Huang P, Zhou X, Yuan L, Sun Z. Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line. Int J Nanomedicine 2013; 8:3533-41. [PMID: 24092974 PMCID: PMC3787934 DOI: 10.2147/ijn.s46732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Silica nanoparticles (SNPs) are one of the most important nanomaterials, and have been widely used in a variety of fields. Therefore, their effects on human health and the environment have been addressed in a number of studies. In this work, the effects of amorphous SNPs were investigated with regard to multinucleation in L-02 human hepatic cells. Our results show that L-02 cells had an abnormally high incidence of multinucleation upon exposure to silica, that increased in a dose-dependent manner. Propidium iodide staining showed that multinucleated cells were arrested in G2/M phase of the cell cycle. Increased multinucleation in L-02 cells was associated with increased generation of cellular reactive oxygen species and mitochondrial damage on flow cytometry and confocal microscopy, which might have led to failure of cytokinesis in these cells. Further, SNPs inhibited cell growth and induced apoptosis in exposed cells. Taken together, our findings demonstrate that multinucleation in L-02 human hepatic cells might be a failure to undergo cytokinesis or cell fusion in response to SNPs, and the increase in cellular reactive oxygen species could be responsible for the apoptosis seen in both mononuclear cells and multinucleated cells.
Collapse
Affiliation(s)
- Wen Wang
- School of Public Health, Capital Medical University, Beijing ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing ; School of Public Health, Jilin University, Changchun, Jilin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wegmann F, Gartlan KH, Harandi AM, Brinckmann SA, Coccia M, Hillson WR, Kok WL, Cole S, Ho LP, Lambe T, Puthia M, Svanborg C, Scherer EM, Krashias G, Williams A, Blattman JN, Greenberg PD, Flavell RA, Moghaddam AE, Sheppard NC, Sattentau QJ. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nat Biotechnol 2013; 30:883-8. [PMID: 22922673 PMCID: PMC3496939 DOI: 10.1038/nbt.2344] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/19/2012] [Indexed: 12/15/2022]
Abstract
Protection against mucosally transmitted infections probably requires immunity at the site of pathogen entry, yet there are no mucosal adjuvant formulations licensed for human use. Polyethyleneimine (PEI) represents a family of organic polycations used as nucleic acid transfection reagents in vitro and DNA vaccine delivery vehicles in vivo. Here we show that diverse PEI forms have potent mucosal adjuvant activity for viral subunit glycoprotein antigens. A single intranasal administration of influenza hemagglutinin or herpes simplex virus type-2 (HSV-2) glycoprotein D with PEI elicited robust antibody-mediated protection from an otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen, which were taken up by antigen-presenting cells in vitro and in vivo, promoted dendritic cell trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host double-stranded DNA that triggered Irf3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use.
Collapse
Affiliation(s)
- Frank Wegmann
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Na HK, Kim MH, Lee J, Kim YK, Jang H, Lee KE, Park H, Heo WD, Jeon H, Choi IS, Lee Y, Min DH. Cytoprotective effects of graphene oxide for mammalian cells against internalization of exogenous materials. NANOSCALE 2013; 5:1669-1677. [PMID: 23334460 DOI: 10.1039/c2nr33800a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To date, graphene oxide (GO), an oxidized version of graphene, has been utilized in many research areas including bioapplications such as drug delivery and bioanalysis. Unlike other spherical or polygonal nanomaterials, GO exhibits a sheet-like structure, which in itself suggests interesting applications based on its shape. Here we show that GO can protect cells from internalization of toxic hydrophobic molecules, nanoparticles, and nucleic acids such as siRNA and plasmid DNA by interacting with cell surface lipid bilayers without noticeably reducing cell viability. Furthermore, the cytoprotective effect of GO against the internalization of extracellular materials enabled spatial control over gene transfection through region-selective gene delivery only into GO-untreated cells, and not into the GO-treated cells.
Collapse
Affiliation(s)
- Hee-Kyung Na
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hardman CS, Panova V, McKenzie ANJ. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur J Immunol 2012; 43:488-98. [PMID: 23169007 PMCID: PMC3734634 DOI: 10.1002/eji.201242863] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/28/2012] [Accepted: 11/15/2012] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33) is an IL-1 family cytokine that signals via its receptor T1/ST2, and is a key regulator of inflammation, notably the type-2 response implicated in allergic asthma. Critical to our understanding of the role of IL-33 is the identification of the cellular sources of IL-33. Although progress has been made in this area, the development of a robust live cell reporter of expression would allow the localisation of IL-33 during ongoing immune responses. We have generated a fluorescent reporter mouse line, Il33Cit/+, to define the expression profile of IL-33 in vivo and demonstrate its temporal and spatial expression during experimental allergic asthma responses. We found that type-2 pneumocytes constitute the major source of IL-33 upon allergic lung inflammation following exposure to OVA, fungal extract or ragweed pollen. Using Il33Cit/Cit mice (IL-33-deficient), we establish a role for IL-33 early in the initiation of type-2 responses and the induction of nuocytes (ILC2). We also demonstrate a potential mechanism of action by which IL-33 rapidly initiates type-2 immune responses. Il33Cit/+ mice have enabled new insights into the initiation of type-2 responses and will provide an important tool for further dissection of this important inflammatory pathway in vivo.
Collapse
Affiliation(s)
- Clare S Hardman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | |
Collapse
|
19
|
Dombu CY, Betbeder D. Airway delivery of peptides and proteins using nanoparticles. Biomaterials 2012; 34:516-25. [PMID: 23046753 DOI: 10.1016/j.biomaterials.2012.08.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
Delivery of peptides and proteins via the airways is one of the most exciting potential applications of nanomedicine. These macromolecules could be used for many therapeutic applications, however due to their poor stability in physiological medium and difficulties in delivering them across biological barriers, they are very difficult to use in therapy. Nanoparticulate drug delivery systems have emerged as one of the most promising technologies to overcome these limitations, owing mainly to their proven capacity to cross biological barriers and to enter cells in high yields, thus improving delivery of macromolecules. In this review, we summarize the current advances in nanoparticle designed for transmucosal delivery of peptides and proteins. Challenges that must be overcome in order to derive clinical benefits are also discussed.
Collapse
|
20
|
Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 2012; 294:61-79. [PMID: 22349641 DOI: 10.1016/j.tox.2012.02.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/16/2022]
Abstract
Synthetic amorphous silica (SAS), in the form of pyrogenic (fumed), precipitated, gel or colloidal SAS, has been used in a wide variety of industrial and consumer applications including food, cosmetics and pharmaceutical products for many decades. Based on extensive physico-chemical, ecotoxicology, toxicology, safety and epidemiology data, no environmental or health risks have been associated with these materials if produced and used under current hygiene standards and use recommendations. With internal structures in the nanoscale size range, pyrogenic, precipitated and gel SAS are typical examples of nanostructured materials as recently defined by the International Organisation for Standardisation (ISO). The manufacturing process of these SAS materials leads to aggregates of strongly (covalently) bonded or fused primary particles. Weak interaction forces (van der Waals interactions, hydrogen bonding, physical adhesion) between aggregates lead to the formation of micrometre (μm)-sized agglomerates. Typically, isolated nanoparticles do not occur. In contrast, colloidal SAS dispersions may contain isolated primary particles in the nano-size range which can be considered nano-objects. The size of the primary particle resulted in the materials often being considered as "nanosilica" and in the inclusion of SAS in research programmes on nanomaterials. The biological activity of SAS can be related to the particle shape and surface characteristics interfacing with the biological milieu rather than to particle size. SAS adsorbs to cellular surfaces and can affect membrane structures and integrity. Toxicity is linked to mechanisms of interactions with outer and inner cell membranes, signalling responses, and vesicle trafficking pathways. Interaction with membranes may induce the release of endosomal substances, reactive oxygen species, cytokines and chemokines and thus induce inflammatory responses. None of the SAS forms, including colloidal nano-sized particles, were shown to bioaccumulate and all disappear within a short time from living organisms by physiological excretion mechanisms with some indications that the smaller the particle size, the faster the clearance is. Therefore, despite the new nomenclature designating SAS a nanomaterial, none of the recent available data gives any evidence for a novel, hitherto unknown mechanism of toxicity that may raise concerns with regard to human health or environmental risks. Taken together, commercial SAS forms (including colloidal silicon dioxide and surface-treated SAS) are not new nanomaterials with unknown properties, but are well-studied materials that have been in use for decades.
Collapse
Affiliation(s)
- Claudia Fruijtier-Pölloth
- CATS Consultants GmbH, Toxicology and Preclinical Affairs, Ussenried 7, D-87463 Dietmannsried, Germany.
| |
Collapse
|
21
|
Groenke N, Seisenbaeva GA, Kaminskyy V, Zhivotovsky B, Kost B, Kessler VG. Structural characterization, solution stability, and potential health and environmental effects of the Nano-TiO2 bioencapsulation matrix and the model product of its biodegradation TiBALDH. RSC Adv 2012. [DOI: 10.1039/c2ra20388j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Zangar RC, Bollinger N, Weber TJ, Tan RM, Markillie LM, Karin NJ. Reactive oxygen species alter autocrine and paracrine signaling. Free Radic Biol Med 2011; 51:2041-7. [PMID: 21963990 PMCID: PMC3219223 DOI: 10.1016/j.freeradbiomed.2011.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endoplasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A custom ELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-κB pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.
Collapse
Affiliation(s)
- Richard C Zangar
- Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Xie Y, Williams NG, Tolic A, Chrisler WB, Teeguarden JG, Maddux BLS, Pounds JG, Laskin A, Orr G. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface. Toxicol Sci 2011; 125:450-61. [PMID: 21964423 DOI: 10.1093/toxsci/kfr251] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The majority of in vitro studies characterizing the impact of engineered nanoparticles (NPs) on cells that line the respiratory tract were conducted in cells exposed to NPs in suspension. This approach introduces processes that are unlikely to occur during inhaled NP exposures in vivo, such as the shedding of toxic doses of dissolved ions. ZnO NPs are used extensively and pose significant sources for human exposure. Exposures to airborne ZnO NPs can induce adverse effects, but the relevance of the dissolved Zn(2+) to the observed effects in vivo is still unclear. Our goal was to mimic in vivo exposures to airborne NPs and decipher the contribution of the intact NP from the contribution of the dissolved ions to airborne ZnO NP toxicity. We established the exposure of alveolar type II epithelial cells to aerosolized NPs at the air-liquid interface (ALI) and compared the impact of aerosolized ZnO NPs and NPs in suspension at the same cellular doses, measured as the number of particles per cell. By evaluating membrane integrity and cell viability 6 and 24 h post-exposure, we found that aerosolized NPs induced toxicity at the ALI at doses that were in the same order of magnitude as doses required to induce toxicity in submersed cultures. In addition, distinct patterns of oxidative stress were observed in the two exposure systems. These observations unravel the ability of airborne ZnO NPs to induce toxicity without the contribution of dissolved Zn(2+) and suggest distinct mechanisms at the ALI and in submersed cultures.
Collapse
Affiliation(s)
- Yumei Xie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang H, Xia T, Meng H, Xue M, George S, Ji Z, Wang X, Liu R, Wang M, France B, Rallo R, Damoiseaux R, Cohen Y, Bradley KA, Zink JI, Nel AE. Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. ACS NANO 2011; 5:2756-2769. [PMID: 21366263 PMCID: PMC3896548 DOI: 10.1021/nn200328m] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most in vitro toxicity studies on engineered nanomaterials (ENMs) use transformed rather than primary cells for logistical reasons. However, primary cells may provide a more appropriate connection to in vivo toxicity because these cells maintain their phenotypic fidelity and are also capable of differentiating into lineages that may be differently affected by potentially hazardous ENMs. Few studies to date have focused on the role of cellular differentiation in determining ENM toxicity. We compared the response of undifferentiated and differentiated primary human bronchial epithelial (NHBE) cells to cationic mesoporous silica nanoparticles (MSNPs) that are coated with polyethyleneimine (PEI) since this polymer is known to exert differential cytotoxicity depending on its molecular weight and cationic density. The attachment of cationic PEI polymers to the MSNP surface was used to assess these materials' toxicological potential in undifferentiated and differentiated human bronchial epithelial cells, using a multiparametric assay that screens for an integrated set of sublethal and lethal response outcomes. MSNPs coated with high molecular weight (10 and 25 kD) polymers were more toxic in differentiated cells than particles coated with shorter length polymers. The increased susceptibility of the differentiated cells is in agreement with more abundant expression of a proteoglycan, syndecan-1, which contains copious heparin sulfate side chains. Pretreatment with heparinase to remove the negatively charged sulfates decreased MSNP-PEI binding to the cell surface and lowered the cytotoxic potential of the cationic particles. These data demonstrate the importance of studying cellular differentiation as an important variable in the response of primary cells to toxic ENM properties.
Collapse
Affiliation(s)
- Haiyuan Zhang
- California NanoSystems Institute at University of California, Los Angeles, California
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
| | - Min Xue
- Department of Chemistry & Biochemistry, California, Los Angeles, California
| | - Saji George
- California NanoSystems Institute at University of California, Los Angeles, California
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
| | - Zhaoxia Ji
- California NanoSystems Institute at University of California, Los Angeles, California
| | - Xiang Wang
- California NanoSystems Institute at University of California, Los Angeles, California
| | - Rong Liu
- Department of Chemical & Biomolecular Engineering, California, Los Angeles, California
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
| | - Bryan France
- Department of Microbiology, Immunology & Molecular Genetics, California, Los Angeles, California
| | - Robert Rallo
- Department of Chemical & Biomolecular Engineering, California, Los Angeles, California
| | - Robert Damoiseaux
- California NanoSystems Institute at University of California, Los Angeles, California
- Molecular Shared Screening Resources, California, Los Angeles, California
| | - Yoram Cohen
- Department of Chemical & Biomolecular Engineering, California, Los Angeles, California
| | - Kenneth A. Bradley
- California NanoSystems Institute at University of California, Los Angeles, California
- Department of Microbiology, Immunology & Molecular Genetics, California, Los Angeles, California
| | - Jeffrey I. Zink
- Department of Chemistry & Biochemistry, California, Los Angeles, California
| | - Andre E. Nel
- California NanoSystems Institute at University of California, Los Angeles, California
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
- Corresponding Author: Andre Nel, M.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107
| |
Collapse
|
25
|
Yacobi NR, Fazllolahi F, Kim YH, Sipos A, Borok Z, Kim KJ, Crandall ED. Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. AIR QUALITY, ATMOSPHERE, & HEALTH 2011; 4:65-78. [PMID: 25568662 PMCID: PMC4283834 DOI: 10.1007/s11869-010-0098-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Studies on the health effects of air-pollution particles suggest that injury may result from inhalation of airborne ultrafine particles (<100 nm in diameter). Engineered nanomaterials (<100 nm in at least one dimension) may also be harmful if inhaled. Nanomaterials deposited on the respiratory epithelial tract are thought to cross the air-blood barrier, especially via the expansive alveolar region, into the systemic circulation to reach end organs (e.g., myocardium, liver, pancreas, kidney, and spleen). Since ambient ultrafine particles are difficult to track, studies of defined engineered nanomaterials have been used to obtain valuable information on how nanomaterials interact with and traffic across the air-blood barrier of mammalian lungs. Since specific mechanistic information on how nanomaterials interact with the lung is difficult to obtain using in vivo or ex vivo lungs due to their complex anatomy, in vitro alveolar epithelial models have been of considerable value in determining nanomaterial-lung interactions. In this review, we provide information on mechanisms underlying lung alveolar epithelial injury caused by various nanomaterials and on nanomaterial trafficking across alveolar epithelium that may lead to end-organ injury.
Collapse
Affiliation(s)
- Nazanin R. Yacobi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Farnoosh Fazllolahi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arnold Sipos
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA 90033, USA. Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Edward D. Crandall
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, IRD 620, 2020 Zonal Avenue, Los Angeles, CA 90033, USA. Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
26
|
Orr GA, Chrisler WB, Cassens KJ, Tan R, Tarasevich BJ, Markillie LM, Zangar RC, Thrall BD. Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor A. Nanotoxicology 2010; 5:296-311. [DOI: 10.3109/17435390.2010.513836] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|