1
|
Zhao X, Chen K, Wang J, Qiu Y. Analysis of Prospective Genetic Indicators for Prenatal Exposure to Arsenic in Newborn Cord Blood of Using Machine Learning. Biol Trace Elem Res 2024; 202:2466-2473. [PMID: 37740142 DOI: 10.1007/s12011-023-03863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Using a machine learning methods, we aim to find biological effect biomarkers of prenatal arsenic exposure in newborn cord blood. From the Gene Expression Omnibus (GEO) database, two datasets (GSE48354 and GSE7967) pertaining to cord blood sequencing while exposed to arsenic were retrieved and merged for additional study. Using the "limma" package in the R, differentially expressed genes (DEGs) were eliminated. Machine learning techniques of the LASSO regression algorithm and SVM-RFE algorithm were used to find potential biological effect biomarkers for cord blood sequencing in pregnant women exposed to arsenic. To evaluate the efficacy of biomarkers, a receiver operating characteristic (ROC) curve was used. Furthermore, we investigated the proportion of invading immune cells in each sample using CIBERSORT, and we investigated the relationship between biomarkers and immune cells using the Spearman approach. Using LASSO regression and the SVM-RFE technique, 28 DEGs were discovered, and the main biomarkers of cord blood exposed to arsenic were discovered to be DENND2D, OLIG1, RGS18, CXCL16, DDIT4, FOS, G0S2, GPR183, JMJD6, and SOCS3. According to an immune infiltration analysis and correlation analysis, key biomarkers were substantially associated with the invading immune cells. Ten genes are important biomarkers of cord blood exposed to arsenic connected with infiltrating immune cells, and infiltrating immune cells may play important roles in cord blood exposed to arsenic, according to the study's findings.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Kun Chen
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Jing Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China.
| |
Collapse
|
2
|
Wang J, Yu X, Cao X, Tan L, Jia B, Chen R, Li J. GAPDH: A common housekeeping gene with an oncogenic role in pan-cancer. Comput Struct Biotechnol J 2023; 21:4056-4069. [PMID: 37664172 PMCID: PMC10470192 DOI: 10.1016/j.csbj.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is one of the most prominent housekeeping proteins and is widely used as an internal control in some semi-quantitative assays. In addition to glycolysis, GAPDH is involved in several cancer-related biological processes and has been reported to be commonly dysregulated in multiple cancer types. Therefore, its role in the physiological process of cancer needs to be urgently elucidated. Pan-cancer analysis indicated that GAPDH is ubiquitously highly expressed in most cancer types, and that patients with a high GAPDH expression of in tumor tissues have a poor prognosis. The concordance of GAPDH expression in tumors with the infiltration of immune cells and immune checkpoints implies a certain association between GAPDH and the tumor microenvironment as well as tumor development. Gene Set Enrichment Analysis revealed that GAPDH may contribute to multiple important cancer-related pathways and biological processes. Multi-omics analysis and in vitro cell experiments revealed that GAPDH overexpression is regulated by DNA copy number amplification and promoter methylation modification. Importantly, a transcription factor, forkhead box M1 (FOXM1), which is capable of regulating GAPDH expression, was also identified and was confirmed to be an oncogene and ubiquitously highly expressed in multiple cancer types. Semi-quantitative chromatin immunoprecipitation, quantitative PCR, and dual-luciferase assays showed that FOXM1 mainly binds to the promoter region of GAPDH in two cancer cell lines. The present findings revealed the implication of GAPDH in tumor development, thus bringing attention to this important molecule and casting doubts on its role as an internal reference gene in cancer studies.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xueting Yu
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xiyuan Cao
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Rui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| |
Collapse
|
3
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
4
|
Ren J, Wang B, Li L, Li S, Ma Y, Su L, Liu G, Liu Y, Dai Y. Glutathione ameliorates the meiotic defects of copper exposed ovine oocytes via inhibiting the mitochondrial dysfunctions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114530. [PMID: 36630773 DOI: 10.1016/j.ecoenv.2023.114530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 05/28/2023]
Abstract
Regardless of the essential role of copper (Cu) in the physiological regulation process of mammalian reproduction, excessive exposure to Cu triggers the meiotic defects of porcine oocytes via compromising the mitochondrial functions. However, the connections between the excessive Cu exposure and meiotic defects of ovine oocytes have not been reported. In this study, the effect of copper sulfate (CuSO4) exposure on the meiotic potentials of ovine oocytes was analyzed. Subsequently, the ameliorative effect of glutathione (GSH) supplementation on the meiotic defects of CuSO4 exposed ovine oocytes was investigated. For these purposes, the in vitro maturation (IVM) of ovine cumulus oocyte complexes (COCs) was conducted in the presence of 5, 10, 20 and 40 μg/mL of CuSO4 supplementation. Subsequently, different concentrations of GSH (2, 4 and 8 mM) were added to the IVM medium containing CuSO4 solution. After IVM, the assay, including nuclear maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, mitochondrial function, reactive oxygen species (ROS) generation, apoptosis, epigenetic modification and fertilization capacity of ovine oocytes were performed. The results showed that excessive Cu exposure triggered the meiotic defects of ovine oocytes via promoting the mitochondrial dysfunction related oxidative stress damage. Moreover, the GSH supplementation, not only ameliorated the decreased maturation potential and fertilization defect of CuSO4 exposed oocytes, but inhibited the mitochondrial dysfunction related oxidative stress damage, ROS generation, apoptosis and altered H3K27me3 expression in the CuSO4 exposed oocytes. Combined with the gene expression pattern, the finding in the present study provided fundamental bases for the ameliorative effect of GSH supplementation on the meiotic defects of CuSO4 exposed oocytes via inhibiting the mitochondrial dysfunctions, further benefiting these potential applications of GSH supplementation in the mammalian IVM system and livestock breeding suffering from the excessive Cu exposure.
Collapse
Affiliation(s)
- Jingyu Ren
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, No. 22 Zhaowuda Road, Hohhot, Zip Code: 010031, Inner Mongolia, China
| | - Liping Li
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Shubin Li
- Center of Reproductive Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Yuzhen Ma
- Center of Reproductive Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Zip Code: 010050, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Zip Code: 010050, Inner Mongolia, China.
| | - Yongbin Liu
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China.
| |
Collapse
|
5
|
Arsenic trioxide promotes ERK1/2-mediated phosphorylation and degradation of BIM EL to attenuate apoptosis in BEAS-2B cells. Chem Biol Interact 2023; 369:110304. [PMID: 36509116 DOI: 10.1016/j.cbi.2022.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Inorganic arsenic is highly toxic, widely distributed in the human environment and may result in multisystem diseases and several types of cancers. The BCL-2-interacting mediator of cell death protein (BIM) is a key modulator of the intrinsic apoptosis pathway. Interestingly, in the present study, we found that arsenic trioxide (As2O3) decreased BIMEL levels in human bronchial epithelial cell line BEAS-2B and increased BIMEL levels in human lung carcinoma cell line A549 and mouse Sertoli cell line TM4. Mechanismly, the 26S proteasome inhibitors MG132 and bortezomib could effectively inhibit BIMEL degradation induced by As2O3 in BEAS-2B cells. As2O3 activated extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways, but only the ERK1/2 MAPK inhibitor PD98059 blocked BIMEL degradation induced by As2O3. Furthermore, As2O3 induced-phosphorylation of BIMEL at multiple sites was inhibited by ERK1/2 MAPK inhibitor PD98059. Inhibition of As2O3-induced ERK1/2 MAPK phosphorylation increased the levels of BIMEL and cleaved-caspase-3 proteins and decreased BEAS-2B cell viability. As2O3 also markedly mitigated tunicamycin-induced apoptosis of BEAS-2B cells by increasing ERK1/2 phosphorylation and BIMEL degradation. Our results suggest that As2O3-induced activation of the ERK1/2 MAPK pathway increases phosphorylation of BIMEL and promotes BIMEL degradation, thereby alleviating the role of apoptosis in As2O3-induced cell death. This study provides new insights into how to maintain the survival of BEAS-2B cells before malignant transformation induced by high doses of As2O3.
Collapse
|
6
|
Wang Y, Zhang J, Zhang X, Zhang H, Cao X, Hu T, Lin J, Tang X, Chen X, Jiang Y, Yan X, Zhuang H, Luo P, Shen L. Study on the Mechanism of Arsenic-Induced Lung Injury Based on SWATH Proteomics Technology. Biol Trace Elem Res 2022:10.1007/s12011-022-03466-2. [PMID: 36333559 DOI: 10.1007/s12011-022-03466-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Chronic arsenic poisoning is a global health problem that affects millions of people, and studies have found that long-term ingestion of arsenic-containing compounds can lead to lung damage, but the exact mechanism is unknown. In this study, Sprague-Dawley (SD) rats were used as the research object, and the proteomic analysis method based on sequential window acquisition of all theoretical fragment ions (SWATH) was used to detect the changes in the expression levels of related proteins in the lung tissue of arsenic-exposed rats, and to explore the mechanism of arsenic compound-induced lung injury. The results showed that arsenic exposure resulted in the abnormal expression of collagen type III and proteins involved in metabolic, immune, and cellular processes, leading to the dysfunction of important pathways associated with these proteins, resulting in lung injury. It suggested that the underlying mechanism of arsenic-induced lung injury may be related to oxidative stress, immune injury, cell junction, and collagen type III. This result provides a new research idea for revealing the mechanism of lung injury caused by arsenic exposure.
Collapse
Affiliation(s)
- Yi Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jun Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xinglai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaolu Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Yuxuan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xi Yan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China.
| | - Liming Shen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China.
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
7
|
Islam R, Zhao L, Wang Y, Lu-Yao G, Liu LZ. Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers (Basel) 2022; 14:4502. [PMID: 36139662 PMCID: PMC9496897 DOI: 10.3390/cancers14184502] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic is a crucial environmental metalloid whose high toxicity levels negatively impact human health. It poses significant health concerns to millions of people in developed and developing countries such as the USA, Canada, Bangladesh, India, China, and Mexico by enhancing sensitivity to various types of diseases, including cancers. However, how arsenic causes changes in gene expression that results in heinous conditions remains elusive. One of the proposed essential mechanisms that still has seen limited research with regard to causing disease upon arsenic exposure is the dysregulation of epigenetic components. In this review, we have extensively summarized current discoveries in arsenic-induced epigenetic modifications in carcinogenesis and angiogenesis. Importantly, we highlight the possible mechanisms underlying epigenetic reprogramming through arsenic exposure that cause changes in cell signaling and dysfunctions of different epigenetic elements.
Collapse
Affiliation(s)
| | | | | | | | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
A Comprehensive Transcriptomic Analysis of Arsenic-Induced Bladder Carcinogenesis. Cells 2022; 11:cells11152435. [PMID: 35954277 PMCID: PMC9367831 DOI: 10.3390/cells11152435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Arsenic (sodium arsenite: NaAsO2) is a potent carcinogen and a known risk factor for the onset of bladder carcinogenesis. The molecular mechanisms that govern arsenic-induced bladder carcinogenesis remain unclear. We used a physiological concentration of NaAsO2 (250 nM: 33 µg/L) for the malignant transformation of normal bladder epithelial cells (TRT-HU1), exposed for over 12 months. The increased proliferation and colony-forming abilities of arsenic-exposed cells were seen after arsenic exposure from 4 months onwards. Differential gene expression (DEG) analysis revealed that a total of 1558 and 1943 (padj < 0.05) genes were deregulated in 6-month and 12-month arsenic-exposed TRT-HU1 cells. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that cell proliferation and survival pathways, such as the MAPK, PI3K/AKT, and Hippo signaling pathways, were significantly altered. Pathway analysis revealed that the enrichment of stem cell activators such as ALDH1A1, HNF1b, MAL, NR1H4, and CDH1 (p < 0.001) was significantly induced during the transformation compared to respective vehicle controls. Further, these results were validated by qPCR analysis, which corroborated the transcriptomic analysis. Overall, the results suggested that stem cell activators may play a significant role in facilitating the arsenic-exposed cells to gain a survival advantage, enabling the healthy epithelial cells to reprogram into a cancer stem cell phenotype, leading to malignant transformation.
Collapse
|
9
|
Aonuma T, Moukette B, Kawaguchi S, Barupala NP, Sepúlveda MN, Frick K, Tang Y, Guglin M, Raman SV, Cai C, Liangpunsakul S, Nakagawa S, Kim IM. MiR-150 Attenuates Maladaptive Cardiac Remodeling Mediated by Long Noncoding RNA MIAT and Directly Represses Profibrotic Hoxa4. Circ Heart Fail 2022; 15:e008686. [PMID: 35000421 PMCID: PMC9018469 DOI: 10.1161/circheartfailure.121.008686] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND MicroRNA-150 (miR-150) plays a protective role in heart failure (HF). Long noncoding RNA, myocardial infarction-associated transcript (MIAT) regulates miR-150 function in vitro by direct interaction. Concurrent with miR-150 downregulation, MIAT is upregulated in failing hearts, and gain-of-function single-nucleotide polymorphisms in MIAT are associated with increased risk of myocardial infarction (MI) in humans. Despite the correlative relationship between MIAT and miR-150 in HF, their in vivo functional relationship has never been established, and molecular mechanisms by which these 2 noncoding RNAs regulate cardiac protection remain elusive. METHODS We use MIAT KO (knockout), Hoxa4 (homeobox a4) KO, MIAT TG (transgenic), and miR-150 TG mice. We also develop DTG (double TG) mice overexpressing MIAT and miR-150. We then use a mouse model of MI followed by cardiac functional, structural, and mechanistic studies by echocardiography, immunohistochemistry, transcriptome profiling, Western blotting, and quantitative real-time reverse transcription-polymerase chain reaction. Moreover, we perform expression analyses in hearts from patients with HF. Lastly, we investigate cardiac fibroblast activation using primary adult human cardiac fibroblasts and in vitro assays to define the conserved MIAT/miR-150/HOXA4 axis. RESULTS Using novel mouse models, we demonstrate that genetic overexpression of MIAT worsens cardiac remodeling, while genetic deletion of MIAT protects hearts against MI. Importantly, miR-150 overexpression attenuates the detrimental post-MI effects caused by MIAT. Genome-wide transcriptomic analysis of MIAT null mouse hearts identifies Hoxa4 as a novel downstream target of the MIAT/miR-150 axis. Hoxa4 is upregulated in cardiac fibroblasts isolated from ischemic myocardium and subjected to hypoxia/reoxygenation. HOXA4 is also upregulated in patients with HF. Moreover, Hoxa4 deficiency in mice protects the heart from MI. Lastly, protective actions of cardiac fibroblast miR-150 are partially attributed to the direct and functional repression of profibrotic Hoxa4. CONCLUSIONS Our findings delineate a pivotal functional interaction among MIAT, miR-150, and Hoxa4 as a novel regulatory mechanism pertinent to ischemic HF.
Collapse
Affiliation(s)
- Tatsuya Aonuma
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bruno Moukette
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nipuni P. Barupala
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marisa N. Sepúlveda
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kyle Frick
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Maya Guglin
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subha V. Raman
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenleng Cai
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA;,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Il-man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA;,Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA;,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA;,Address for correspondence: Il-man Kim, PhD, Associate Professor, Department of Anatomy, Cell Biology and Physiology, Wells Center for Pediatric Research, Krannert Institute of Cardiology, Indiana University School of Medicine, 635 Barnhill Drive, MS 346A, Indianapolis, IN 46202, USA, , Phone: 317-278-2086
| |
Collapse
|
10
|
Barguilla I, Domenech J, Rubio L, Marcos R, Hernández A. Nanoplastics and Arsenic Co-Exposures Exacerbate Oncogenic Biomarkers under an In Vitro Long-Term Exposure Scenario. Int J Mol Sci 2022; 23:ijms23062958. [PMID: 35328376 PMCID: PMC8955425 DOI: 10.3390/ijms23062958] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
The increasing accumulation of plastic waste and the widespread presence of its derivatives, micro- and nanoplastics (MNPLs), call for an urgent evaluation of their potential health risks. In the environment, MNPLs coexist with other known hazardous contaminants and, thus, an interesting question arises as to whether MNPLs can act as carriers of such pollutants, modulating their uptake and their harmful effects. In this context, we have examined the interaction and joint effects of two relevant water contaminants: arsenic and polystyrene nanoplastics (PSNPLs), the latter being a model of nanoplastics. Since both agents are persistent pollutants, their potential effects have been evaluated under a chronic exposure scenario and measuring different effect biomarkers involved in the cell transformation process. Mouse embryonic fibroblasts deficient for oxidative DNA damage repair mechanisms, and showing a cell transformation status, were used as a sensitive cell model. Such cells were exposed to PSNPLs, arsenic, and a combination PSNPLs/arsenic for 12 weeks. Interestingly, a physical interaction between both pollutants was demonstrated by using TEM/EDX methodologies. Results also indicate that the continuous co-exposure enhances the DNA damage and the aggressive features of the initially transformed phenotype. Remarkably, co-exposed cells present a higher proportion of spindle-like cells within the population, an increased capacity to grow independently of anchorage, as well as enhanced migrating and invading potential when compared to cells exposed to arsenic or PSNPLs alone. This study highlights the need for further studies exploring the long-term effects of contaminants of emerging concern, such as MNPLs, and the importance of considering the behavior of mixtures as part of the hazard and human risk assessment approaches.
Collapse
Affiliation(s)
- Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (I.B.); (J.D.)
| | - Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (I.B.); (J.D.)
| | - Laura Rubio
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Santiago de los Caballeros 51000, Dominican Republic;
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (I.B.); (J.D.)
- Correspondence: (R.M.); (A.H.)
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (I.B.); (J.D.)
- Correspondence: (R.M.); (A.H.)
| |
Collapse
|
11
|
Ozturk M, Metin M, Altay V, Bhat RA, Ejaz M, Gul A, Unal BT, Hasanuzzaman M, Nibir L, Nahar K, Bukhari A, Dervash MA, Kawano T. Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and Cancer Signaling. Biol Trace Elem Res 2022; 200:988-1001. [PMID: 33864199 DOI: 10.1007/s12011-021-02719-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Arsenic is a well-known element because of its toxicity. Humans as well as plants and animals are negatively affected by its exposure. Some countries suffer from high levels of arsenic in their tap water and soils, which is considered a primary arsenic-linked risk factor for living beings. Humans generally get exposed to arsenic by contaminated drinking waters, resulting in many health problems, ranging from cancer to skin diseases. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. This issue emphasizes the importance of speciation of the metalloid elements in terms of impacts on health. When species get exposed to arsenic, it affects the cells altering their involvement. It can lead to abnormalities in inflammatory mechanisms and the immune system which contribute to the negative impacts generated on the body. The poisoning originating from arsenic gives rise to various biological signs on the body which can be useful for the diagnosis. It is important to find true biomarkers for the detection of arsenic poisoning. In view of its application in medicine and biology, studies on understanding the biological activity of arsenic have increased. In this review, we aim at summarizing the current state of knowledge of arsenic and the mechanism behind its toxicity including genotoxicity, oxidative insults, epigenomic changes, and alterations in cellular signaling.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Rouf Ahmad Bhat
- Department of Environmental Science, Sri Pratap College, Cluster University Srinagar, Srinagar, Kashmir, India
| | - Mahnoor Ejaz
- Atta-ur-Rahman School of Applied Biosciences, Nat. University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, Nat. University of Sciences & Technology, Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Faculty of Science and Arts, Dept. of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Lutfunnahar Nibir
- Upazilla Health Complex, Ministry of Health, Government of the People's, Homna, Comilla, Bangladesh
| | - Kamuran Nahar
- Dept. of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricul. University, Dhaka, Bangladesh
| | - Andleep Bukhari
- Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Moonisa Aslam Dervash
- Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Kashmir, India
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
12
|
Bauer AK, Siegrist KJ, Wolff M, Nield L, Brüning T, Upham BL, Käfferlein HU, Plöttner S. The Carcinogenic Properties of Overlooked yet Prevalent Polycyclic Aromatic Hydrocarbons in Human Lung Epithelial Cells. TOXICS 2022; 10:28. [PMID: 35051070 PMCID: PMC8779510 DOI: 10.3390/toxics10010028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
The WHO classified air pollution as a human lung carcinogen and polycyclic aromatic hydrocarbons (PAHs) are components of both indoor (e.g., tobacco smoke and cookstoves) and outdoor (e.g., wildfires and industrial and vehicle emissions) air pollution, thus a human health concern. However, few studies have evaluated the adverse effects of low molecular weight (LMW) PAHs, the most abundant PAHs in the environment. We hypothesized that LMW PAHs combined with the carcinogenic PAH benzo[a]pyrene (B[a]P) act as co-carcinogens in human lung epithelial cell lines (BEAS-2B and A549). Therefore, in this paper, we evaluate several endpoints, such as micronuclei, gap junctional intercellular communication (GJIC) activity, cell cycle analysis, anti-BPDE-DNA adduct formation, and cytotoxicity after mixed exposures of LMW PAHs with B[a]P. The individual PAH doses used for each endpoint did not elicit cytotoxicity nor cell death and were relevant to human exposures. The addition of a binary mixture of LMW PAHs (fluoranthene and 1-methylanthracene) to B[a]P treated cells resulted in significant increases in micronuclei formation, dysregulation of GJIC, and changes in cell cycle as compared to cells treated with either B[a]P or the binary mixture alone. In addition, anti-BPDE-DNA adducts were significantly increased in human lung cells treated with B[a]P combined with the binary mixture of LMW PAHs as compared to cells treated with B[a]P alone, further supporting the increased co-carcinogenic potential by LMW PAHs. Collectively, these novel studies using LMW PAHs provide evidence of adverse pulmonary effects that should warrant further investigation.
Collapse
Affiliation(s)
- Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.J.S.); (L.N.)
| | - Katelyn J. Siegrist
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.J.S.); (L.N.)
| | - Melanie Wolff
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany; (M.W.); (T.B.); (H.U.K.)
| | - Lindsey Nield
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.J.S.); (L.N.)
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany; (M.W.); (T.B.); (H.U.K.)
| | - Brad L. Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA;
| | - Heiko U. Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany; (M.W.); (T.B.); (H.U.K.)
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany; (M.W.); (T.B.); (H.U.K.)
| |
Collapse
|
13
|
Ruan Y, Fang X, Guo T, Liu Y, Hu Y, Wang X, Hu Y, Gao L, Li Y, Pi J, Xu Y. Metabolic reprogramming in the arsenic carcinogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113098. [PMID: 34952379 DOI: 10.1016/j.ecoenv.2021.113098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to arsenic has been associated with a variety of cancers with the mechanisms undefined. Arsenic exposure causes alterations in metabolites in bio-samples. Recent research progress on cancer biology suggests that metabolic reprogramming contributes to tumorigenesis. Therefore, metabolic reprogramming provides a new clue for the mechanisms of arsenic carcinogenesis. In the present manuscript, we review the latest findings in reprogramming of glucose, lipids, and amino acids in response to arsenic exposure. Most studies focused on glucose reprogramming and found that arsenic exposure enhanced glycolysis. However, in vivo studies observed "reverse Warburg effect" in some cases due to the complexity of the disease evolution and microenvironment. Arsenic exposure has been reported to disturb lipid deposition by inhibiting lipolysis, and induce serine-glycine one-carbon pathway. As a dominant mechanism for arsenic toxicity, oxidative stress is considered to link with metabolism reprogramming. Few studies analyzed the causal relationship between metabolic reprogramming and arsenic-induced cancers. Metabolic alterations may vary with exposure doses and periods. Identifying metabolic alterations common among humans and experiment models with human-relevant exposure characteristics may guide future investigations.
Collapse
Affiliation(s)
- Yihui Ruan
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Xin Fang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Tingyue Guo
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yiting Liu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yu Hu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Xuening Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, P.R. China
| | - Lanyue Gao
- Experimental Teaching Center, School of Public Health, China Medical University, P.R. China
| | - Yongfang Li
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China
| | - Jingbo Pi
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China; Program of Environmental Toxicology, School of Public Health, China Medical University, P.R. China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, P.R. China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, P.R. China.
| |
Collapse
|
14
|
Barguilla I, Peremartí J, Bach J, Marcos R, Hernández A. Role of As3mt and Mth1 in the genotoxic and carcinogenic effects induced by long-term exposures to arsenic in MEF cells. Toxicol Appl Pharmacol 2020; 409:115303. [DOI: 10.1016/j.taap.2020.115303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
|
15
|
Schmidlin CJ, Zeng T, Liu P, Wei Y, Dodson M, Chapman E, Zhang DD. Chronic arsenic exposure enhances metastatic potential via NRF2-mediated upregulation of SOX9. Toxicol Appl Pharmacol 2020; 402:115138. [PMID: 32682831 PMCID: PMC7594696 DOI: 10.1016/j.taap.2020.115138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022]
Abstract
Chronic low dose arsenic exposure continues to be a worldwide health concern because of its prevalence and link to increased cancer risk, including non-small cell lung cancer (NSCLC). Mortality of NSCLC patients increases with the development of a metastatic lesion compared to when the tumor is localized; however, the exact mechanism for what causes NSCLC cells to metastasize in the context of environmental toxicant exposure has yet to be fully elucidated. One proposed contributor to metastasis in NSCLC is nuclear factor (erythroid-derived 2)-like 2 (NRF2), a transcription factor with known oncogenic properties that has proved to be critical for arsenic carcinogenesis. Here, we demonstrate that chronic arsenic exposure enhances the invasive and migratory capacity of immortalized lung epithelial cells via NRF2-dependent upregulation of SRY-box 9 (SOX9), another transcription factor linked with cell proliferation, epithelial-mesenchymal transition, and metastasis. We identified a functional antioxidant response element (ARE) in the promoter region of SOX9, suggesting that it is an NRF2 target gene, with mutation of the ARE preventing NRF2 binding. Pharmacological induction or inhibition of NRF2 increased or decreased SOX9 expression, respectively. Furthermore, we demonstrate that hyperactivation of NRF2 via knockout of Kelch-like ECH-associated protein 1 (KEAP1), its negative regulator, contributes to proliferation; while, inhibition of NRF2 or direct knockdown of SOX9 slowed the ability of NSCLC cells to proliferate, migrate, and invade. Overall, this study suggests that NRF2-mediated SOX9 upregulation can contribute to the metastatic potential of both environmentally and genetically driven lung tumors.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Tao Zeng
- Institutue of Toxicology, School of Public Health, Shandong University, Jinan, China
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Yongyi Wei
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
16
|
Kim C, States JC, Ceresa BP. Chronic and acute arsenic exposure enhance EGFR expression via distinct molecular mechanisms. Toxicol In Vitro 2020; 67:104925. [PMID: 32599262 DOI: 10.1016/j.tiv.2020.104925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
Abstract
The impacts of acute arsenic exposure (i.e. vomiting, diarrhea, and renal failure) are distinct from those brought about by sustained, low level exposure from environmental sources or drinking of contaminated well water. Chronic arsenic exposure is a risk factor for the development of pulmonary diseases, including lung cancer. How arsenic exposure leads to pulmonary disease is not fully understood. Both acute versus chronic arsenic exposure increase EGFR expression, but do so via distinct molecular mechanisms. BEAS-2B cells were exposed to either acute sodium arsenite (5 μM for 24 h) or chronic sodium arsenite (100 nM for 24 weeks). Cells treated with acute arsenic exhibited a decrease in viability, changes in morphology, and increased mRNA level of BTC. In contrast, during 24 weeks of arsenic exposure, the cells had increased EGFR expression and activity, and increased mRNA and protein levels of TGFα. Further, chronic arsenic treatment caused an increase in cell migration in the absence of exogenous ligand. Elevated TGFα and EGFR expression are features of many non-small cell lung cancers. We propose that lung epithelial cells chronically exposed to low level arsenic increases EGFR signaling via TGFα production to enhance ligand-independent cell migration.
Collapse
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, USA
| | | | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, USA.
| |
Collapse
|
17
|
Dong Z, Gao M, Li C, Xu M, Liu S. LncRNA UCA1 Antagonizes Arsenic-Induced Cell Cycle Arrest through Destabilizing EZH2 and Facilitating NFATc2 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903630. [PMID: 32537408 PMCID: PMC7284218 DOI: 10.1002/advs.201903630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 05/17/2023]
Abstract
Arsenic (As) is a widespread metalloid contaminant, and its internal exposure is demonstrated to cause serious detrimental health problems. Albeit considerable studies are performed to interrogate the molecular mechanisms responsible for As-induced toxicities, the exact mechanisms are not fully understood yet, especially at the epigenetic regulation level. In the present study, it is identified that long non-coding RNA (lncRNA) urothelial cancer associated 1 (UCA1) alleviates As-induced G2/M phase arrest in human liver cells. Intensive mechanistic investigations illustrate that UCA1 interacts with enhancer of zeste homolog 2 (EZH2) and accelerates the latter's protein turnover rate under normal and As-exposure conditions. The phosphorylation of EZH2 at the Thr-487 site by cyclin dependent kinase 1 (CDK1) is responsible for As-induced EZH2 protein degradation, and UCA1 enhances this process through increasing the interaction between CDK1 and EZH2. As a consequence, the cell cycle regulator nuclear factor of activated T cells 2 (NFATc2), a downstream target of EZH2, is upregulated to resist As-blocked cell cycle progress and cytotoxicity. In conclusion, the findings decipher a novel prosurvival signaling pathway underlying As toxicity from the perspective of epigenetic regulation: UCA1 facilitates the ubiquitination of EZH2 to upregulate NFATc2 and further antagonizes As-induced cell cycle arrest.
Collapse
Affiliation(s)
- Zheng Dong
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049China
| | - Changying Li
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
18
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
19
|
He J, Liu W, Ge X, Wang GC, Desai V, Wang S, Mu W, Bhardwaj V, Seifert E, Liu LZ, Bhushan A, Peiper SC, Jiang BH. Arsenic-induced metabolic shift triggered by the loss of miR-199a-5p through Sp1-dependent DNA methylation. Toxicol Appl Pharmacol 2019; 378:114606. [PMID: 31170415 PMCID: PMC6788774 DOI: 10.1016/j.taap.2019.114606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
Inorganic arsenic is an environmental carcinogen that poses a major global public health risk. A high percentage of drinking water from wells in the U.S. contains higher-than-normal levels of arsenic, suggesting an increased risk of arsenic-induced deleterious effects. In addition to primary preventive measures, therapeutic strategies need to effectively address and integrate multiple molecular mechanisms underlying arsenic-induced carcinogenesis. We previously showed that the loss of miR-199a-5p in arsenic-transformed cells is pivotal to promote arsenic-induced angiogenesis and tumor growth in lung epithelial cells. In this study, we further showed that subacute or chronic exposure to arsenic diminished miR-199a-5p levels largely due to DNA methylation, which was achieved by increased DNA methyltransferase-1 (DNMT1) activity, mediated by the formation of specific protein 1 (Sp1)/DNMT1 complex. In addition to the DNA hypermethylation, arsenic exposure also repressed miR-199a transcription through a transcriptional repressor Sp1. We further identified an association between miR-199a-5p repression and the arsenic-mediated energy metabolic shift, as reflected by mitochondria defects and a switch to glycolysis, in which a glycolytic enzyme pyruvate kinase 2 (PKM2) was a functional target of miR-199a-5p. Taken together, the repression of miR-199a-5p through both Sp1-dependent DNA methylation and Sp1 transcriptional repression promotes an arsenic-mediated metabolic shift from mitochondria respiration to aerobic glycolysis via PKM2.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America.
| | - Weitao Liu
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xin Ge
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Gao-Chan Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Vilas Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Shaomin Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Wei Mu
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Erin Seifert
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling-Zhi Liu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IW 52242, United States of America
| | - Alok Bhushan
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Stephen C Peiper
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Bing-Hua Jiang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IW 52242, United States of America.
| |
Collapse
|
20
|
Tam LM, Huang M, Wang Y. Targeted Quantitative Proteomics Revealed Arsenite-induced Proteasomal Degradation of RhoB in Fibroblast Cells. Chem Res Toxicol 2019; 32:1343-1350. [PMID: 31140275 PMCID: PMC6952175 DOI: 10.1021/acs.chemrestox.9b00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arsenic is a toxicant widely present in the environment. Previous epidemiological and animal studies support that arsenic exposure is associated with elevated incidences of lung and skin cancers. Therefore, it is important to understand the molecular mechanisms through which arsenite initiates malignant transformation of lung and skin tissues. Ras superfamily of small GTPases assumes a crucial role in many cellular processes including transcription, protein synthesis, and trafficking. In addition, small GTPase signaling is known to be altered in many types of cancer. By employing a multiple-reaction monitoring (MRM)-based targeted proteomic method, we found that the protein level of RhoB was substantially decreased in IMR90 human lung fibroblast cells upon a 12-h exposure to 5 μM NaAsO2. In addition, the protein level of ectopically expressed RhoB was found to decline in a dose-dependent manner upon arsenite exposure in HEK293T, HeLa, and GM00637 cells as well as that of endogenous RhoB protein in IMR90 cells. Moreover, the arsenite-elicited down-regulation of RhoB was found to arise from enhanced proteasomal degradation. Taken together, we demonstrated, for the first time, that exposure to arsenite could attenuate the protein expression of RhoB through proteasomal degradation.
Collapse
Affiliation(s)
- Lok Ming Tam
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
21
|
Wise JTF, Wang L, Alstott MC, Ngalame NNO, Wang Y, Zhang Z, Shi X. Investigating the Role of Mitochondrial Respiratory Dysfunction during Hexavalent Chromium-Induced Lung Carcinogenesis. J Environ Pathol Toxicol Oncol 2019; 37:317-329. [PMID: 30806238 DOI: 10.1615/jenvironpatholtoxicoloncol.2018028689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a lung carcinogen and its complete mechanism of action remains to be investigated. Metabolic reprogramming of key energy metabolism pathways (e.g., increased anaerobic glycolysis in the presence of oxygen or "Warburg effect", dysregulated mitochondrial function, and lipogenesis) are important to cancer cell and tumor survival and growth. In our current understanding of Cr(VI)-induced carcinogenesis, the role for metabolic reprogramming remains unclear. In this study, we treated human lung epithelial cells (BEAS-2B) with Cr(VI) for 6 months and obtained malignantly transformed cells from an isolated colony grown in soft agar. We also used Cr(VI)-transformed cells from two other human lung cell lines (BEP2D and WTHBF-6 cells). Overall, we found that all the Cr(VI)-transformed cells had no changes in their mitochondrial respiratory functions (measured by the Seahorse Analyzer) compared with passaged-matched control cells. Using a xenograft tumor growth model, we generated tumors from these transformed cells in Nude mice. Using cells obtained from the xenograft tumor tissues, we observed that these cells had decreased maximal mitochondrial respiration, spare respiratory capacity, and coupling efficiency. These results provide evidence that, although mitochondrial dysfunction does not occur during Cr(VI)-induced transformation of lung cells, it does occur during tumor development.
Collapse
Affiliation(s)
- James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Michael C Alstott
- Markey Cancer Center, Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY
| | - Ntube N O Ngalame
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Yuting Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Zhuo Zhang
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY
| | - Xianglin Shi
- Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY; Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
22
|
Zhou Q, Xi S. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 2018; 99:78-88. [PMID: 30223072 DOI: 10.1016/j.yrtph.2018.09.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Long-term exposure to arsenic (inorganic arsenic) is a world-wide environmental health concern. Arsenic is classified as the Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Epidemiological studies have established a strong association between inorganic arsenic (iAs) exposure in drinking water and an increased incidence of cancer including bladder, liver, lung, prostate, and skin cancer. iAs also increases the risk of other diseases such as cardiovascular disease, hypertension and diabetes. The molecular mechanisms of carcinogenesis of iAs remain poorly defined, several mechanisms have been proposed, including genotoxicity, altered cell proliferation, oxidative stress, changes to the epigenome, disturbances of signal transduction pathways, cytotoxicity and regenerative proliferation. In this article, we will summarize current knowledge on the mechanisms of arsenic carcinogenesis and focus on integrating all these issues to garner a broader perspective.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
23
|
Chen QY, Li J, Sun H, Wu F, Zhu Y, Kluz T, Jordan A, DesMarais T, Zhang X, Murphy A, Costa M. Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation. Mol Carcinog 2018; 57:968-977. [PMID: 29603397 PMCID: PMC6588163 DOI: 10.1002/mc.22817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Arsenic is a naturally occurring and highly potent metalloid known to elicit serious public health concerns. Today, approximately 200 million people around the globe are exposed to arsenic-contaminated drinking water at levels greater than the World Health Organization's recommended limit of 10 parts per billion. As a class I human carcinogen, arsenic exposure is known to elicit various cancers, including lung, skin, liver, and kidney. Current evidence suggests that arsenic is capable of inducing both genotoxic and cytotoxic injury, as well as activating epigenetic pathways to induce carcinogenesis. Our study identifies a novel pathway that is implicated in arsenic-induced carcinogenesis. Arsenic down-regulated miRNA-31 and the release of this inhibition caused overexpression of special AT-rich sequence-binding protein 2 (SATB2). Arsenic is known to disrupt miRNA expression, and here we report for the first time that arsenic is capable of inhibiting miR-31 expression. As a direct downstream target of miR-31, SATB2 is a prominent transcription factor, and nuclear matrix binding protein implicated in many types of human diseases including lung cancer. Results from this study show that arsenic induces the overexpressing SATB2 by inhibiting miR-31 expression, which blocks the translation of SATB2 mRNA, since levels of SATB2 mRNA remain the same but protein levels decrease. Overexpression of SATB2 induces malignant transformation of human bronchial epithelial (BEAS-2B) cells indicating the importance of the expression of miR-31 in preventing carcinogenesis by suppressing SATB2 protein levels.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Jinquan Li
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical college, Wuhan University of Science and Technology, Wuhan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Feng Wu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Ashley Jordan
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Thomas DesMarais
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
24
|
Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. ENVIRONMENT INTERNATIONAL 2018; 112:183-197. [PMID: 29275244 DOI: 10.1016/j.envint.2017.12.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.
Collapse
Affiliation(s)
- Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
25
|
Tu W, Liu Y, Xie C, Zhou X. Arsenite downregulates H3K4 trimethylation and H3K9 dimethylation during transformation of human bronchial epithelial cells. J Appl Toxicol 2017; 38:480-488. [DOI: 10.1002/jat.3555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Tu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei 430030 People's Republic of China
| | - Yin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei 430030 People's Republic of China
| | - Chengfeng Xie
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei 430030 People's Republic of China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei 430030 People's Republic of China
| |
Collapse
|
26
|
Ledda C, Iavicoli I, Bracci M, Avola R, Senia P, Santarelli L, Pomara C, Rapisarda V. Serum lipid, lipoprotein and apolipoprotein profiles in workers exposed to low arsenic levels: Lipid profiles and occupational arsenic exposure. Toxicol Lett 2017; 282:49-56. [PMID: 29054558 DOI: 10.1016/j.toxlet.2017.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 12/15/2022]
Abstract
Epidemiologic studies have reported that exposure to arsenic (As) is associated with higher risk of cardiovascular disease (i.e., coronary heart disease and peripheral arterial heart disease) and mortality. This cross-sectional study aimed to compare serum lipid, lipoprotein, and apolipoprotein profiles in workers exposed to As. The subjects of this study included 57 workers exposed to As and 57 controls. Demographic characteristics and occupational information were collected through questionnaires. Exposure to As was assessed in indoor air of a workplace and determined using the creatinine values in the urine. Blood samples were collected using immunochemistry and nephelometry to measure the levels of total cholesterol (CHOL), triglycerides (TRIG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), lipoprotein(a) (Lp(a)), apolipoprotein-A1 (Apo-A1), and apolipoprotein-B (Apo-B). No significant difference in the demographic data was detected between the two groups. Urinary As concentration was significantly (p<0.001) higher in exposed subjects than in the controls (13.4±6.1 and 4.4±6.1μg/gCreat, respectively). No statistically significant differences were observed in CHOL, TRIG, HDL, and LDL concentrations between the two groups. Lp(a), Apo-B, and Apo-B/Apo-A1 ratio values were significantly higher and the Apo-A1 level was significantly lower in the exposed group than in the control subjects. Regression analysis highlighted a significant (p<0.001) association between urinary As and Lp(a), Apo-A1, and Apo-B concentration, and Apo-B/Apo-A1 ratio. This study revealed the influence of As on apolipoproteins, suggesting a potential risk of cardiovascular diseases in subjects exposed to low levels of As.
Collapse
Affiliation(s)
- Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| | - Ivo Iavicoli
- Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Roberto Avola
- Biochemistry, Department of Biomedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Paola Senia
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lory Santarelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristoforo Pomara
- Megal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Department of Anatomy, University of Malta, Msida, Malta
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
27
|
Chen QY, Costa M. A comprehensive review of metal-induced cellular transformation studies. Toxicol Appl Pharmacol 2017; 331:33-40. [DOI: 10.1016/j.taap.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
|
28
|
Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:93-103. [PMID: 27701139 DOI: 10.1515/reveh-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 05/22/2023]
Abstract
Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports describing epigenetic changes induced by iAs exposure and the possible epigenetic mechanisms underlying these changes.
Collapse
|
29
|
Sun B, Xue J, Li J, Luo F, Chen X, Liu Y, Wang Q, Qi C, Zou Z, Zhang A, Liu Q. Circulating miRNAs and their target genes associated with arsenism caused by coal-burning. Toxicol Res (Camb) 2017; 6:162-172. [PMID: 30090486 PMCID: PMC6062399 DOI: 10.1039/c6tx00428h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022] Open
Abstract
Endemic arsenism, caused by burning coal containing high levels of arsenic, is found only in the Guizhou and Shanxi Provinces of China. Dysregulated microRNAs (miRNAs), detected in the blood, are emerging as promising biomarkers. At present, little is known about the change and clinical efficacy of circulating miRNAs in patients with endemic arsenism produced by burning of coal. Here, we determined, by using TaqMan Human miRNA Array Chips, the differential expression of plasma miRNAs between patients with arsenism caused by coal-burning and a control group. Four increased miRNAs (miR-21, miR-145, miR-155, and miR-191) were verified in a larger sample by quantitative real-time PCR. Furthermore, bioinformatics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to associate changes in plasma levels of the miRNAs with their functions and their effects on various pathways. The results of chip array assays show that the levels of miR-21, miR-141, miR-148a, miR-145, miR-155, miR-191, miR-218, and miR-491 were most prominently increased and that the levels of miR-200b, miR-200c, miR-26, and miR-34c were decreased. The qRT-PCR results confirm that the circulating levels of miR-21, miR-145, miR-155, and miR-191 are increased in patients with arsenism caused by coal-burning. KEGG analyses show that these miRNAs inhibit the target genes of pathways related to immune inflammation, oxidative stress, and DNA damage repair. Therefore, the four miRNAs may be biomarkers of endemic arsenism caused by coal-burning. Further studies with larger samples should be performed to confirm these findings and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Baofei Sun
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Junchao Xue
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Fei Luo
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| | - Xiong Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Yonglian Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Qingling Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Caihua Qi
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Zhonglan Zou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Qizhan Liu
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| |
Collapse
|
30
|
Wang J, Song J, Gao Z, Huo X, Zhang Y, Wang W, Qi J, Zheng S. Analysis of gene expression profiles of non-small cell lung cancer at different stages reveals significantly altered biological functions and candidate genes. Oncol Rep 2017; 37:1736-1746. [PMID: 28098899 DOI: 10.3892/or.2017.5380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
We attempt to dissect the pathology of non-small cell lung cancer (NSCLC) patients at different stages and discover the novel candidate genes. Microarray data (GSE21933) were retrieved from the Gene Expression Omnibus database. The differential expression profiles of lung tumor tissues during different stages were analyzed. The significantly altered functions and pathways were assessed and the key nodes in a protein-protein interaction (PPI) network were screened out. Then, the coexpression gene pairs and tumor-related genes were assessed. RT-PCR analysis was performed to validate the candidate gene, natural killer-tumor recognition sequence (NKTR). The number of differentially expressed genes (DEGs) for stage IB, IIB, IIIA and IV tumors were 499, 602, 592 and 457, respectively. Most of the DEGs were NSCLC-related genes identified through literature research. A few genes were commonly downregulated in all the 4 stages of tumors, such as CNTN6 and LBX2. The DEGs in early‑stage tumors were closely related with the negative regulation of signal transduction, the apoptosis pathway and the p53 signaling pathway. DEGs in late-stage tumors were significantly enriched in transcription, response to organic substances and synapse regulation-related biological processes. A total of 16 genes (including NKTR) made up the significant coexpression network. NKTR was a key node in the PPI network and was significantly upregulated in lung cancer cells. The mechanism of NSCLC progression in different tumor stages may be different. NKTR may be the target candidate for NSCLC prevention and treatment.
Collapse
Affiliation(s)
- Jin Wang
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Zhengya Gao
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Xudong Huo
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Yajun Zhang
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Wencai Wang
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Jianwei Qi
- Department of Cardiothoracic Surgery, Yancheng Hospital, Medical School of Southeast University, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Shiying Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
31
|
Luo F, Sun B, Li H, Xu Y, Liu Y, Liu X, Lu L, Li J, Wang Q, Wei S, Shi L, Lu X, Liu Q, Zhang A. A MALAT1/HIF-2α feedback loop contributes to arsenite carcinogenesis. Oncotarget 2016; 7:5769-87. [PMID: 26735578 PMCID: PMC4868720 DOI: 10.18632/oncotarget.6806] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/05/2015] [Indexed: 02/07/2023] Open
Abstract
Arsenic is well established as a human carcinogen, but the molecular mechanisms leading to arsenic-induced carcinogenesis are complex and elusive. It is also not known if lncRNAs are involved in arsenic-induced liver carcinogenesis. We have found that MALAT1, a non-coding RNA, is over-expressed in the sera of people exposed to arsenite and in hepatocellular carcinomas (HCCs), and MALAT1 has a close relation with the clinicopathological characteristics of HCC. In addition, hypoxia-inducible factor (HIF)-2α is up-regulated in HCCs, and MALAT1 and HIF-2α have a positive correlation in HCC tissues. During the malignant transformation of human hepatic epithelial (L-02) cells induced by a low concentration (2.0 μM) of arsenite, MALAT1 and HIF-2α are increased. In addition, arsenite-induced MALAT1 causes disassociation of the von Hippel-Lindau (VHL) protein from HIF-2α, therefore, alleviating VHL-mediated HIF-2α ubiquitination, which causes HIF-2α accumulation. In turn, HIF-2α transcriptionally regulates MALAT1, thus forming a positive feedback loop to ensure expression of arsenite-induced MALAT1 and HIF-2α, which are involved in malignant transformation. Moreover, MALAT1 and HIF-2α promote the invasive and metastatic capacities of arsenite-induced transformed L-02 cells and in HCC-LM3 cells. The capacities of MALAT1 and HIF-2α to promote tumor growth are validated in mouse xenograft models. In mice, arsenite induces an inflammatory response, and MALAT1 and HIF-2α are over-expressed. Together, these findings suggest that the MALAT1/HIF-2α feedback loop is involved in regulation of arsenite-induced malignant transformation. Our results not only confirm a novel mechanism involving reciprocal regulation between MALAT1 and HIF-2α, but also expand the understanding of the carcinogenic potential of arsenite.
Collapse
Affiliation(s)
- Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Huiqiao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| |
Collapse
|
32
|
Abstract
Inflammatory cells and mediators are essential components in tumor microenvironment and play decisive roles in the initiation, proliferation, survival, promotion, invasion, or metastasis of lung cancer. Clinical and epidemiologic studies suggested a strong association between inflammation and lung cancer and an influence of immune surveillances and tumor responses to chemotherapeutic drugs, although roles of inflammation in lung cancer remain unclear. The present review outlined roles of inflammation in lung cancer, with particular focus on inflammatory components, types, biomarkers, or principal mechanisms by which the inflammation contributes to the development of lung cancer. The cancer-associated inflammatory cells (CICs) should be furthermore defined and include cancer-specific and interacted cells with inflammatory or inflammation-like characteristics, e.g., innate or adaptive immune cells and cancer tissue cells. We also discuss targeting potentials of inflammation in the prevention and treatment of lung cancer. The diversity of cancer-related inflammatory microenvironment is instrumental to design novel therapeutic approaches for lung cancer.
Collapse
|
33
|
Kobayashi T. Understanding the biology of urothelial cancer metastasis. Asian J Urol 2016; 3:211-222. [PMID: 29264189 PMCID: PMC5730871 DOI: 10.1016/j.ajur.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Management of unresectable urothelial cancer (UC) has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT) and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.
Collapse
|
34
|
He X, Despeaux E, Stueckle TA, Chi A, Castranova V, Dinu CZ, Wang L, Rojanasakul Y. Role of mesothelin in carbon nanotube-induced carcinogenic transformation of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L538-49. [PMID: 27422997 PMCID: PMC5142212 DOI: 10.1152/ajplung.00139.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
Carbon nanotubes (CNTs) have been likened to asbestos in terms of morphology and toxicity. CNT exposure can lead to pulmonary fibrosis and promotion of tumorigenesis. However, the mechanisms underlying CNT-induced carcinogenesis are not well defined. Mesothelin (MSLN) is overexpressed in many human tumors, including mesotheliomas and pancreatic and ovarian carcinomas. In this study, the role of MSLN in the carcinogenic transformation of human bronchial epithelial cells chronically exposed to single-walled CNT (BSW) was investigated. MSLN overexpression was found in human lung tumors, lung cancer cell lines, and BSW cells. The functional role of MSLN in the BSW cells was then investigated by using stably transfected MSLN knockdown (BSW shMSLN) cells. MSLN knockdown resulted in significantly decreased invasion, migration, colonies on soft agar, and tumor sphere formation. In vivo, BSW shMSLN cells formed smaller primary tumors and less metastases. The mechanism by which MSLN contributes to these more aggressive behaviors was investigated by using ingenuity pathway analysis, which predicted that increased MSLN could induce cyclin E expression. We found that BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. Cell cycle analysis showed that the BSW shMSLN cells had an increased G2 population and a decreased S phase population, which is consistent with the decreased rate of proliferation. Together, our results indicate a novel role of MSLN in the malignant transformation of bronchial epithelial cells following CNT exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced malignancies.
Collapse
Affiliation(s)
- Xiaoqing He
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Emily Despeaux
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Todd A Stueckle
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Alexander Chi
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia; and
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia
| | - Liying Wang
- HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; WVU Cancer Institute, West Virginia University, Morgantown, West Virginia; and
| |
Collapse
|
35
|
Rea M, Jiang T, Eleazer R, Eckstein M, Marshall AG, Fondufe-Mittendorf YN. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation. Mol Cell Proteomics 2016; 15:2411-22. [PMID: 27169413 PMCID: PMC4937513 DOI: 10.1074/mcp.m116.058412] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis.
Collapse
Affiliation(s)
- Matthew Rea
- From the ‡Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Tingting Jiang
- §Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Rebekah Eleazer
- From the ‡Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Meredith Eckstein
- From the ‡Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Alan G Marshall
- §Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306; ¶Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Yvonne N Fondufe-Mittendorf
- From the ‡Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536;
| |
Collapse
|
36
|
Li L, Chen F. Oxidative stress, epigenetics, and cancer stem cells in arsenic carcinogenesis and prevention. ACTA ACUST UNITED AC 2016; 2:57-63. [PMID: 27134817 DOI: 10.1007/s40495-016-0049-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The carcinogenic role of arsenic has been extensively studied for more than half century. How arsenic causes human cancer, however, remains to be fully elucidated. In this brief review, we focus our attentions on the most recent discoveries by us and others on the capabilities of arsenic in inducing generation of reactive oxygen species (ROS), expression of microRNAs (miRNAs) and the generation of the cancer stem cells. We believe that these new understandings on the mechanisms of arsenic-induced carcinogenesis will shed light on the prevention and treatment of human cancers resulted from environmental or occupational arsenic exposure. Furthermore, these latest findings on arsenic-induced cellular responses will also have an important impact on the investigation of the carcinogenic effects of other environmental or occupational carcinogens or hazards.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201
| |
Collapse
|
37
|
Liu YZ, Roy-Engel AM, Baddoo MC, Flemington EK, Wang G, Wang H. The impact of oil spill to lung health--Insights from an RNA-seq study of human airway epithelial cells. Gene 2015; 578:38-51. [PMID: 26692141 DOI: 10.1016/j.gene.2015.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
The Deepwater Horizon oil spill (BP oil spill) in the Gulf of Mexico was a unique disaster event, where a huge amount of oil spilled from the sea bed and a large volume of dispersants were applied to clean the spill. The operation lasted for almost 3 months and involved >50,000 workers. The potential health hazards to these workers may be significant as previous research suggested an association of persistent respiratory symptoms with exposure to oil and oil dispersants. To reveal the potential effects of oil and oil dispersants on the respiratory system at the molecular level, we evaluated the transcriptomic profile of human airway epithelial cells grown under treatment of crude oil, the dispersants Corexit 9500 and Corexit 9527, and oil-dispersant mixtures. We identified a very strong effect of Corexit 9500 treatment, with 84 genes (response genes) differentially expressed in treatment vs. control samples. We discovered an interactive effect of oil-dispersant mixtures; while no response gene was found for Corexit 9527 treatment alone, cells treated with Corexit 9527+oil mixture showed an increased number of response genes (46 response genes), suggesting a synergic effect of 9527 with oil on airway epithelial cells. Through GO (gene ontology) functional term and pathway-based analysis, we identified upregulation of gene sets involved in angiogenesis and immune responses and downregulation of gene sets involved in cell junctions and steroid synthesis as the prevailing transcriptomic signatures in the cells treated with Corexit 9500, oil, or Corexit 9500+oil mixture. Interestingly, these key molecular signatures coincide with important pathological features observed in common lung diseases, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Our study provides mechanistic insights into the detrimental effects of oil and oil dispersants to the respiratory system and suggests significant health impacts of the recent BP oil spill to those people involved in the cleaning operation.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Astrid M Roy-Engel
- Dept. of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Guangdi Wang
- Dept. of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - He Wang
- Dept. of Chronic Respiratory Diseases, School of Health Sciences, University of Newcastle, Callaghan, Australia.
| |
Collapse
|
38
|
Park YH, Kim D, Dai J, Zhang Z. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol 2015; 287:240-5. [PMID: 26091798 PMCID: PMC4549192 DOI: 10.1016/j.taap.2015.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022]
Abstract
Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG→TCG) at codon 47 and the codon 72 polymorphism (CGC→CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 upon acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer.
Collapse
MESH Headings
- Animals
- Arsenites/toxicity
- Bronchi/drug effects
- Bronchi/metabolism
- Bronchi/pathology
- Cell Line
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromates/toxicity
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Heavy Metal Poisoning
- Humans
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Metals, Heavy/metabolism
- Mice, Nude
- Mutation, Missense
- Phosphorylation
- Poisoning/etiology
- Poisoning/genetics
- Poisoning/metabolism
- Poisoning/pathology
- Promoter Regions, Genetic
- Risk Assessment
- Signal Transduction/drug effects
- Sodium Compounds/toxicity
- Time Factors
- Transcriptional Activation
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Youn-Hee Park
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
39
|
Teoh JP, Park KM, Broskova Z, Jimenez FR, Bayoumi AS, Archer K, Su H, Johnson J, Weintraub NL, Tang Y, Kim IM. Identification of gene signatures regulated by carvedilol in mouse heart. Physiol Genomics 2015; 47:376-85. [PMID: 26152686 DOI: 10.1152/physiolgenomics.00028.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/06/2015] [Indexed: 01/14/2023] Open
Abstract
Chronic treatment with the β-blocker carvedilol has been shown to reduce established maladaptive left ventricle (LV) hypertrophy and to improve LV function in experimental heart failure. However, the detailed mechanisms by which carvedilol improves LV failure are incompletely understood. We previously showed that carvedilol is a β-arrestin-biased β1-adrenergic receptor ligand, which activates cellular pathways in the heart independent of G protein-mediated second messenger signaling. More recently, we have demonstrated by microRNA (miR) microarray analysis that carvedilol upregulates a subset of mature and pre-mature miRs, but not their primary miR transcripts in mouse hearts. Here, we next sought to identify the effects of carvedilol on LV gene expression on a genome-wide basis. Adult mice were treated with carvedilol or vehicle for 1 wk. RNA was isolated from LV tissue and hybridized for microarray analysis. Gene expression profiling analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes into pathways involved in tight junction, malaria, viral myocarditis, glycosaminoglycan biosynthesis, and arrhythmogenic right ventricular cardiomyopathy. Genes encoding proteins in the tight junction, malaria, and viral myocarditis pathways were upregulated in the LV by carvedilol, while genes encoding proteins in the glycosaminoglycan biosynthesis and arrhythmogenic right ventricular cardiomyopathy pathways were downregulated by carvedilol. These gene expression changes may reflect the molecular mechanisms that underlie the functional benefits of carvedilol therapy.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Felix R Jimenez
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Krystal Archer
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - John Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
40
|
Person RJ, Ngalame NNO, Makia NL, Bell MW, Waalkes MP, Tokar EJ. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells. Toxicol Appl Pharmacol 2015; 286:36-43. [PMID: 25804888 PMCID: PMC4444387 DOI: 10.1016/j.taap.2015.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer.
Collapse
Affiliation(s)
- Rachel J Person
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ntube N Olive Ngalame
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ngome L Makia
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew W Bell
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michael P Waalkes
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
41
|
Chen L, Yang J, Zheng M, Kong X, Huang T, Cai YD. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer. PLoS One 2015; 10:e0128696. [PMID: 26047514 PMCID: PMC4457841 DOI: 10.1371/journal.pone.0128696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Shanghai University, Shanghai, 200444, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People’s Republic of China
| | - Jing Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
| | - Mingyue Zheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, 201203, People’s Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
- * E-mail: (TH); (YDC)
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, 200444, People’s Republic of China
- * E-mail: (TH); (YDC)
| |
Collapse
|
42
|
Kim HG, Shi C, Bode AM, Dong Z. p38α MAPK is required for arsenic-induced cell transformation. Mol Carcinog 2015; 55:910-7. [PMID: 25969347 DOI: 10.1002/mc.22331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/18/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
Arsenic exposure has been reported to cause neoplastic transformation through the activation of PcG proteins. In the present study, we show that activation of p38α mitogen-activated protein kinase (MAPK) is required for arsenic-induced neoplastic transformation. Exposure of cells to 0.5 μM arsenic increased CRE and c-Fos promoter activities that were accompanied by increases in p38α MAPK and CREB phosphorylation and expression levels concurrently with AP-1 activation. Introduction of short hairpin (sh) RNA-p38α into BALB/c 3T3 cells markedly suppressed arsenic-induced colony formation compared with wildtype cells. CREB phosphorylation and AP-1 activation were decreased in p38α knockdown cells after arsenic treatment. Arsenic-induced AP-1 activation, measured as c-Fos and CRE promoter activities, and CREB phosphorylation were attenuated by p38 inhibition in BALB/c 3T3 cells. Thus, p38α MAPK activation is required for arsenic-induced neoplastic transformation mediated through CREB phosphorylation and AP-1 activation.
Collapse
Affiliation(s)
- Hong-Gyum Kim
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Chengcheng Shi
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
43
|
Rahman S, Housein Z, Dabrowska A, Mayán MD, Boobis AR, Hajji N. E2F1-mediated FOS induction in arsenic trioxide-induced cellular transformation: effects of global H3K9 hypoacetylation and promoter-specific hyperacetylation in vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:484-92. [PMID: 25574600 PMCID: PMC4421767 DOI: 10.1289/ehp.1408302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 01/06/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Aberrant histone acetylation has been observed in carcinogenesis and cellular transformation associated with arsenic exposure; however, the molecular mechanisms and cellular outcomes of such changes are poorly understood. OBJECTIVE We investigated the impact of tolerated and toxic arsenic trioxide (As2O3) exposure in human embryonic kidney (HEK293T) and urothelial (UROtsa) cells to characterize the alterations in histone acetylation and gene expression as well as the implications for cellular transformation. METHODS Tolerated and toxic exposures of As2O3 were identified by measurement of cell death, mitochondrial function, cellular proliferation, and anchorage-independent growth. Histone extraction, the MNase sensitivity assay, and immunoblotting were used to assess global histone acetylation levels, and gene promoter-specific interactions were measured by chromatin immunoprecipitation followed by reverse-transcriptase polymerase chain reaction. RESULTS Tolerated and toxic dosages, respectively, were defined as 0.5 μM and 2.5 μM As2O3 in HEK293T cells and 1 μM and 5 μM As2O3 in UROtsa cells. Global hypoacetylation of H3K9 at 72 hr was observed in UROtsa cells following tolerated and toxic exposure. In both cell lines, tolerated exposure alone led to H3K9 hyperacetylation and E2F1 binding at the FOS promoter, which remained elevated after 72 hr, contrary to global H3K9 hypoacetylation. Thus, promoter-specific H3K9 acetylation is a better predictor of cellular transformation than are global histone acetylation patterns. Tolerated exposure resulted in an increased expression of the proto-oncogenes FOS and JUN in both cell lines at 72 hr. CONCLUSION Global H3K9 hypoacetylation and promoter-specific hyperacetylation facilitate E2F1-mediated FOS induction in As2O3-induced cellular transformation.
Collapse
Affiliation(s)
- Sunniyat Rahman
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Xiao C, Liu Y, Xie C, Tu W, Xia Y, Costa M, Zhou X. Cadmium induces histone H3 lysine methylation by inhibiting histone demethylase activity. Toxicol Sci 2015; 145:80-9. [PMID: 25673502 PMCID: PMC4833035 DOI: 10.1093/toxsci/kfv019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cadmium is an established human lung carcinogen with weak mutagenicity. However, the mechanisms underlying cadmium-induced carcinogenesis remain obscure. It has been suggested that epigenetic mechanisms may play a role in cadmium-induced carcinogenesis. In this study, we investigated the effects of cadmium on histone methylation and histone demethylases, and the role of histone methylation in transformation of immortalized normal human bronchial epithelial (BEAS-2B) cells. Exposure to 0.625, 1.25, 2.5, and 5.0 μM of cadmium for 6, 24, and 48 h increased global trimethylated histone H3 on lysine 4 (H3K4me3) and dimethylated histone H3 on lysine 9 (H3K9me2) in BEAS-2B cells compared with untreated cells, and most of these changes remained after the removal of cadmium (P < .05 or P < .01 for most modifications). Meanwhile, cadmium inhibited the activities of histone H3 on lysine 4 (H3K4) and histone H3 on lysine 9 (H3K9) demethylases which were detected by histone demethylation assay. However, there was no significant change in the protein levels of the H3K4 demethylase lysine-specific demethylase 5A (KDM5A) and the H3K9 demethylase lysine-specific demethylase 3A (KDM3A). Interestingly, during transformation of BEAS-2B cells by 20 weeks of exposure to 2.0 μM cadmium as assessed by anchorage-independent growth in soft agar, global H3K4me3, and H3K9me2 were significantly increased at 4 weeks (P < .05 or P < .01), whereas no significant change was observed at 8, 12, 16, and 20 weeks compared with control. Our study suggests that cadmium increases global H3K4me3 and H3K9me2 by inhibiting the activities of histone demethylases, and aberrant histone methylation that occurs early (48 h) and at 4 weeks is associated with cadmium-induced transformation of BEAS-2B cells at the early stage.
Collapse
Affiliation(s)
- Chunlian Xiao
- *Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China and Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Yin Liu
- *Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China and Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Chengfeng Xie
- *Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China and Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Wei Tu
- *Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China and Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Yujie Xia
- *Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China and Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Max Costa
- *Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China and Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Xue Zhou
- *Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China and Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| |
Collapse
|
45
|
Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z, Chen KC, Rouchka EC, Fondufe-Mittendorf YN. Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genomics 2015; 16:212. [PMID: 25879800 PMCID: PMC4371809 DOI: 10.1186/s12864-015-1295-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with a higher than normal risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes resulting from arsenic exposure and withdrawal. Results In these studies, we sought to understand the molecular mechanisms behind the biological changes induced by arsenic exposure. A comprehensive global approach was employed to determine genome-wide changes to chromatin structure, transcriptome patterns and splicing patterns in response to chronic low dose arsenic and its subsequent withdrawal. Our results show that cells exposed to chronic low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression, and miRNA changes consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic is withdrawn. However, some gene expression patterns remained altered, plausibly as a result of an adaptive response by cells. Additionally, the correlation of changes to gene expression and chromatin structure solidify the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the initiation of transcription as well as at the level of splicing. Conclusions Our results show that adaptation of cells to iAs-mediated EMT is coupled to changes in chromatin structure effecting differential transcriptional and splicing patterns of genes. These studies provide new insights into the mechanism of iAs-mediated pathology, which includes epigenetic chromatin changes coupled with changes to the transcriptome and splicing patterns of key genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlyn Riedmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ye Ma
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Steven Grason Godfrey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Zhou Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
46
|
Liu ZM, Tseng HY, Cheng YL, Yeh BW, Wu WJ, Huang HS. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis. Toxicol Appl Pharmacol 2015; 285:41-50. [PMID: 25791921 DOI: 10.1016/j.taap.2015.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
Abstract
Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21(WAF1/CIP1)) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1-0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5-20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (-1486 to -1479bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Yu Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Ling Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Bi-Wen Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
47
|
Chen D, Stueckle TA, Luanpitpong S, Rojanasakul Y, Lu Y, Wang L. Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes. NANOSCALE RESEARCH LETTERS 2015; 10:12. [PMID: 25852310 PMCID: PMC4314466 DOI: 10.1186/s11671-014-0707-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/23/2014] [Indexed: 05/07/2023]
Abstract
A rapid increase in utility of engineered nanomaterials, including carbon nanotubes (CNTs), has raised a concern over their safety. Based on recent evidence from animal studies, pulmonary exposure of CNTs may lead to nanoparticle accumulation in the deep lung without effective clearance which could interact with local lung cells for a long period of time. Physicochemical similarities of CNTs to asbestos fibers may contribute to their asbestos-like carcinogenic potential after long-term exposure, which has not been well addressed. More studies are needed to identify and predict the carcinogenic potential and mechanisms for promoting their safe use. Our previous study reported a long-term in vitro exposure model for CNT carcinogenicity and showed that 6-month sub-chronic exposure of single-walled carbon nanotubes (SWCNT) causes malignant transformation of human lung epithelial cells. In addition, the transformed cells induced tumor formation in mice and exhibited an apoptosis resistant phenotype, a key characteristic of cancer cells. Although the potential role of p53 in the transformation process was identified, the underlying mechanisms of oncogenesis remain largely undefined. Here, we further examined the gene expression profile by using genome microarrays to profile molecular mechanisms of SWCNT oncogenesis. Based on differentially expressed genes, possible mechanisms of SWCNT-associated apoptosis resistance and oncogenesis were identified, which included activation of pAkt/p53/Bcl-2 signaling axis, increased gene expression of Ras family for cell cycle control, Dsh-mediated Notch 1, and downregulation of apoptotic genes BAX and Noxa. Activated immune responses were among the major changes of biological function. Our findings shed light on potential molecular mechanisms and signaling pathways involved in SWCNT oncogenic potential.
Collapse
Affiliation(s)
- Dongquan Chen
- />Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Todd A Stueckle
- />Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Sudjit Luanpitpong
- />Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 USA
| | - Yon Rojanasakul
- />Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 USA
| | - Yongju Lu
- />Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201 USA
| | - Liying Wang
- />Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| |
Collapse
|
48
|
TG-interacting factor mediates arsenic-induced malignant transformation of keratinocytes via c-Src/EGFR/AKT/FOXO3A and redox signalings. Arch Toxicol 2014; 89:2229-41. [DOI: 10.1007/s00204-014-1445-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
49
|
Zhao F, Klimecki WT. Culture conditions profoundly impact phenotype in BEAS-2B, a human pulmonary epithelial model. J Appl Toxicol 2014; 35:945-51. [PMID: 25524072 DOI: 10.1002/jat.3094] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/13/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
BEAS-2B, an immortalized, human lung epithelial cell line, has been used to model pulmonary epithelial function for over 30 years. The BEAS-2B phenotype can be modulated by culture conditions that include the presence or absence of fetal bovine serum (FBS). The popularity of BEAS-2B as a model of arsenic toxicology, and the common use of BEAS-2B cultured both with and without FBS, led us to investigate the impact of FBS on BEAS-2B in the context of arsenic toxicology. Comparison of genome-wide gene expression in BEAS-2B cultured with or without FBS revealed altered expression in several biological pathways, including those related to carcinogenesis and energy metabolism. Real-time measurements of oxygen consumption and glycolysis in BEAS-2B demonstrated that FBS culture conditions were associated with a 1.4-fold increase in total glycolytic capacity, a 1.9-fold increase in basal respiration, a 2.0-fold increase in oxygen consumed for ATP production and a 2.8-fold increase in maximal respiration, compared with BEAS-2B cultured without FBS. Comparisons of the transcriptome changes in BEAS-2B resulting from FBS exposure to the transcriptome changes resulting from exposure to 1 μM sodium arsenite revealed that mRNA levels of 43% of the arsenite-modulated genes were also modulated by FBS. Cytotoxicity studies revealed that BEAS-2B cells exposed to 5% FBS for 8 weeks were almost 5 times more sensitive to arsenite cytotoxicity than non-FBS-exposed BEAS-2B cells. Phenotype changes induced in BEAS-2B by FBS suggest that culture conditions should be carefully considered when using BEAS-2B as an experimental model of arsenic toxicity.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85724, USA
| | - Walter T Klimecki
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85724, USA
| |
Collapse
|
50
|
Zhao F, Malm SW, Hinchman AN, Li H, Beeks CG, Klimecki WT. Arsenite-induced pseudo-hypoxia results in loss of anchorage-dependent growth in BEAS-2B pulmonary epithelial cells. PLoS One 2014; 9:e114549. [PMID: 25513814 PMCID: PMC4267735 DOI: 10.1371/journal.pone.0114549] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
Abstract
Epidemiology studies have established a strong link between lung cancer and arsenic exposure. Currently, the role of disturbed cellular energy metabolism in carcinogenesis is a focus of scientific interest. Hypoxia inducible factor-1 alpha (HIF-1A) is a key regulator of energy metabolism, and it has been found to accumulate during arsenite exposure under oxygen-replete conditions. We modeled arsenic-exposed human pulmonary epithelial cells in vitro with BEAS-2B, a non-malignant lung epithelial cell line. Constant exposure to 1 µM arsenite (As) resulted in the early loss of anchorage-dependent growth, measured by soft agar colony formation, beginning at 6 weeks of exposure. This arsenite exposure resulted in HIF-1A accumulation and increased glycolysis, similar to the physiologic response to hypoxia, but in this case under oxygen-replete conditions. This "pseudo-hypoxia" response was necessary for the maximal acquisition of anchorage-independent growth in arsenite-exposed BEAS-2B. The HIF-1A accumulation and induction in glycolysis was sustained throughout a 52 week course of arsenite exposure in BEAS-2B. There was a time-dependent increase in anchorage-independent growth during the exposure to arsenite. When HIF-1A expression was stably suppressed, arsenite-induced glycolysis was abrogated, and the anchorage-independent growth was reduced. These findings establish that arsenite exerts a hypoxia-mimetic effect, which plays an important role in the subsequent gain of malignancy-associated phenotypes.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Scott W. Malm
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Alyssa N. Hinchman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Connor G. Beeks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Walter T. Klimecki
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|