1
|
Si L, Lai Y. Pharmacological mechanisms by which baicalin ameliorates cardiovascular disease. Front Pharmacol 2024; 15:1415971. [PMID: 39185317 PMCID: PMC11341428 DOI: 10.3389/fphar.2024.1415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Baicalin is a flavonoid glycoside obtained from the dried root of Scutellaria baicalensis Georgi, which belongs to the Labiatae family. Accumulating evidence indicates that baicalin has favorable therapeutic effects on cardiovascular diseases. Previous studies have revealed the therapeutic effects of baicalin on atherosclerosis, myocardial ischemia/reperfusion injury, hypertension, and heart failure through anti-inflammatory, antioxidant, and lipid metabolism mechanisms. In recent years, some new ideas related to baicalin in ferroptosis, coagulation and fibrinolytic systems have been proposed, and new progress has been made in understanding the mechanism by which baicalin protects cardiomyocytes. However, many relevant underlying mechanisms remain unexplained, and much experimental data is lacking. Therefore, further research is needed to determine these mechanisms. In this review, we summarize the mechanisms of baicalin, which include its anti-inflammatory and antioxidant effects; inhibition of endothelial cell apoptosis; modulation of innate immunity; suppression of vascular smooth muscle cells proliferation, migration, and contraction; regulation of coagulation and fibrinolytic systems; inhibition of myocardial hypertrophy; prevention of myocardial fibrosis; and anti-apoptotic effects on cardiomyocytes.
Collapse
Affiliation(s)
- Lujia Si
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Deng Y, Leng L, Wang C, Yang Q, Hu Y. Analyzing the molecular mechanism of Scutellaria Radix in the treatment of sepsis using RNA sequencing. BMC Infect Dis 2024; 24:695. [PMID: 38997656 PMCID: PMC11241924 DOI: 10.1186/s12879-024-09589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction, which seriously threatens human health. The clinical and experimental results have confirmed that Traditional Chinese medicine (TCM), such as Scutellariae Radix, has anti-inflammatory effects. This provides a new idea for the treatment of sepsis. This study systematically analyzed the mechanism of Scutellariae Radix treatment in sepsis based on network pharmacology, RNA sequencing and molecular docking. METHODS Gene expression analysis was performed using Bulk RNA sequencing on sepsis patients and healthy volunteers. After quality control of the results, the differentially expressed genes (DEGs) were analyzed. The active ingredients and targets of Scutellariae Radix were identified using The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Gene Ontology (GO) and Protein-Protein Interaction (PPI) analysis were performed for disease-drug intersection targets. With the help of GEO database, Survival analysis and Meta-analysis was performed on the cross-targets to evaluate the prognostic value and screen the core targets. Subsequently, single-cell RNA sequencing was used to determine where the core targets are located within the cell. Finally, in this study, molecular docking experiments were performed to further clarify the interrelationship between the active components of Scutellariae Radix and the corresponding targets. RESULTS There were 72 active ingredients of Scutellariae Radix, and 50 common targets of drug and disease. GO and PPI analysis showed that the intersection targets were mainly involved in response to chemical stress, response to oxygen levels, response to drug, regulation of immune system process. Survival analysis showed that PRKCD, EGLN1 and CFLAR were positively correlated with sepsis prognosis. Meta-analysis found that the three genes were highly expressed in sepsis survivor, while lowly in non-survivor. PRKCD was mostly found in Macrophages, while EGLN1 and CFLAR were widely expressed in immune cells. The active ingredient Apigenin regulates CFLAR expression, Baicalein regulates EGLN1 expression, and Wogonin regulates PRKCD expression. Molecular docking studies confrmed that the three active components of astragalus have good binding activities with their corresponding targets. CONCLUSIONS Apigenin, Baicalein and Wogonin, important active components of Scutellaria Radix, produce anti-sepsis effects by regulating the expression of their targets CFLAR, EGLN1 and PRKCD.
Collapse
Affiliation(s)
- Yaxing Deng
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Linghan Leng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Qingqiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China.
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Prado Y, Aravena D, Gatica S, Llancalahuen FM, Aravena C, Gutiérrez-Vera C, Carreño LJ, Cabello-Verrugio C, Simon F. From genes to systems: The role of food supplementation in the regulation of sepsis-induced inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166909. [PMID: 37805092 DOI: 10.1016/j.bbadis.2023.166909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Systemic inflammation includes a widespread immune response to a harmful stimulus that results in extensive systemic damage. One common example of systemic inflammation is sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Under the pro-inflammatory environment of sepsis, oxidative stress contributes to tissue damage due to dysfunctional microcirculation that progressively causes the failure of multiple organs that ultimately triggers death. To address the underlying inflammatory condition in critically ill patients, progress has been made to assess the beneficial effects of dietary supplements, which include polyphenols, amino acids, fatty acids, vitamins, and minerals that are recognized for their immuno-modulating, anticoagulating, and analgesic properties. Therefore, we aimed to review and discuss the contribution of food-derived supplementation in the regulation of inflammation from gene expression to physiological responses and summarize the precedented potential of current therapeutic approaches during systemic inflammation.
Collapse
Affiliation(s)
- Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
4
|
de Oliveira Rodrigues Junior E, de Santana IR, Durço AO, Conceição LSR, Barreto AS, Menezes IAC, Roman-Campos D, Dos Santos MRV. The effects of flavonoids in experimental sepsis: A systematic review and meta-analysis. Phytother Res 2023. [PMID: 37115723 DOI: 10.1002/ptr.7846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Sepsis is a host's dysregulated immune response to an infection associated with systemic inflammation and excessive oxidative stress, which can cause multiple organ failure and death. The literature suggests that flavonoids, a broad class of secondary plant metabolites, have numerous biological activities which can be valuable in the treatment of sepsis. This study aimed to review the effects of flavonoids on experimental sepsis, focusing mainly on survival rate, and also summarizing information on its mechanisms of action. We searched in the main databases up to November 2022 using relevant keywords, and data were extracted and analyzed qualitatively and quantitatively. Thirty-two articles met the study criteria for review and 29 for meta-analysis. Overall, 30 different flavonoids were used in the studies. The flavonoids were able to strongly inhibit inflammatory response by reducing the levels of important pro-inflammatory mediators, for example, tumor necrosis factor-alpha and interleukin-1β, oxidative stress, and showed antibacterial and anti-apoptotic actions. The meta-analysis found an increase of 50% in survival rate of the animals treated with flavonoids. They appear to act as multi-target drugs and may be an excellent therapeutic alternative to reduce a number of the complications caused by sepsis, and consequently, to improve survival rate.
Collapse
Affiliation(s)
| | - Izabel Rodrigues de Santana
- Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - Aimée Obolari Durço
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - Lino Sérgio Rocha Conceição
- Department of Physical Therapy, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - André Sales Barreto
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Márcio Roberto Viana Dos Santos
- Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| |
Collapse
|
5
|
Froldi G, Ragazzi E. Selected Plant-Derived Polyphenols as Potential Therapeutic Agents for Peripheral Artery Disease: Molecular Mechanisms, Efficacy and Safety. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207110. [PMID: 36296702 PMCID: PMC9611444 DOI: 10.3390/molecules27207110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Vascular diseases, such as peripheral artery disease (PAD), are associated with diabetes mellitus and a higher risk of cardiovascular disease and even death. Surgical revascularization and pharmacological treatments (mainly antiplatelet, lipid-lowering drugs, and antidiabetic agents) have some effectiveness, but the response and efficacy of therapy are overly dependent on the patient’s conditions. Thus, the demand for new cures exists. In this regard, new studies on natural polyphenols that act on key points involved in the pathogenesis of vascular diseases and, thus, on PAD are of great urgency. The purpose of this review is to take into account the mechanisms that lead to endothelium dysfunction, such as the glycoxidation process and the production of advanced glycation end-products (AGEs) that result in protein misfolding, and to suggest plant-derived polyphenols that could be useful in PAD. Thus, five polyphenols are considered, baicalein, curcumin, mangiferin, quercetin and resveratrol, reviewing the literature in PubMed. The key molecular mechanisms and preclinical and clinical studies of each selected compound are examined. Furthermore, the safety profiles of the polyphenols are outlined, together with the unwanted effects reported in humans, also by searching the WHO database (VigiBase).
Collapse
|
6
|
Han L, Yuan Y, Chen X, Huang J, Wang G, Zhou C, Dong J, Zhang N, Zhang Y, Yin H, Jiang Y. A Candidate Drug Screen Strategy: The Discovery of Oroxylin A in Scutellariae Radix Against Sepsis via the Correlation Analysis Between Plant Metabolomics and Pharmacodynamics. Front Pharmacol 2022; 13:861105. [PMID: 35662699 PMCID: PMC9160923 DOI: 10.3389/fphar.2022.861105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is an acute systemic infectious disease with high mortality, which urgently needs more effective treatment. Scutellariae radix (SR), a commonly used traditional Chinese medicine (TCM) for clearing heat and detoxification, contains rich natural products possessing anti-inflammatory activity. In previous studies, it was found that the anti-inflammatory activities of SR extracts from different ecological conditions varied wildly. Based on this, in the present study, a screening strategy of antisepsis active components from SR based on correlation analysis between plant metabolomics and pharmacodynamics was established, and the mechanism was explored. First of all, a mass spectrum database of SR (above 240 components) was established to lay the foundation for the identification of plant metabolomics by liquid chromatography tandem mass spectrometry (LC-MS/MS). Through the correlation analysis between plant metabolomics and anti-inflammatory activity of SR from different ecology regions, 10 potential components with high correlation coefficients were preliminarily screened out. After the evaluation of anti-inflammatory activity and toxicity at the cellular level, the pharmacodynamic evaluation in vivo found that oroxylin A had the potentiality of antisepsis both in LPS- and CLP-induced endotoxemia mice. Network pharmacology and Western blot (WB) results indicated that oroxylin A significantly inhibited the toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway, which was further confirmed by secreted embryonic alkaline phosphatase (SEAP) assay. Moreover, the molecular docking analysis indicated that oroxylin A might competitively inhibit LPS binding to myeloid differentiation 2 (MD-2) to block the activation of TLR4. The study provided a feasible research strategy for the screening and discovery of antisepsis candidate drugs from TCM.
Collapse
Affiliation(s)
- Lingyu Han
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Yue Yuan
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Jian Huang
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Guan Wang
- Beijing Huisheng Biotechnology Co., Ltd., Beijing, China
| | - Chao Zhou
- Waters Technologies (Shanghai) Ltd., Beijing, China
| | - Jianjian Dong
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Na Zhang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Yuxin Zhang
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Ge J, Yang H, Zeng Y, Liu Y. Protective effects of wogonin on lipopolysaccharide-induced inflammation and apoptosis of lung epithelial cells and its possible mechanisms. Biomed Eng Online 2021; 20:125. [PMID: 34906140 PMCID: PMC8670054 DOI: 10.1186/s12938-021-00965-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Background Wogonin (5, 7-dihydroxy-8-methoxyflavone) is a natural di-hydroxyl flavonoid extracted from the root of Scutellaria baicalensis Georgi. This paper was intended to investigate the mechanism of action of wogonin in alleviating the inflammation and apoptosis in acute lung injury (ALI). Materials and methods Lipopolysaccharide (LPS) was used to establish the in vitro model of ALI. After wogonin treatment, the cell viability and apoptosis of LPS-induced A549 cells were, respectively, measured by CCK-8, TUNEL assays and acridine orange/ethidium bromide dual staining, while the contents of inflammatory cytokines and oxidative stress markers were estimated by RT-qPCR, ELISA assay, western blot analysis and commercial kits. Western blot was also conducted to assess the expression of proteins involved. Subsequently, the effect of wogonin on the sirtuin 1 (SIRT1)-mediated high-mobility group box 1 protein (HMGB1) deacetylation was investigated. SIRT1 inhibitor EX527 was used to evaluate the regulatory effects of wogonin on SIRT1-mediated HMGB1 deacetylation in A549 cells under LPS stimulation. Results LPS induced inflammation, oxidative stress and apoptosis of A549 cells, which was abolished by wogonin. It was also found that wogonin promoted the HMGB1 deacetylation, accompanied by upregulated SIRT1 expression. However, SIRT1 inhibitor EX527 partially reversed the protective effects of wogonin on the inflammation and apoptosis of LPS-induced A549 cells. Conclusion Wogonin alleviated the inflammation and apoptosis in LPS-induced A549 cells by SIRT1-mediated HMGB1 deacetylation, which might represent the identification of a novel mechanism by which wogonin exerts protective effects on ALI and provide ideas for the application of wogonin to ALI treatment.
Collapse
Affiliation(s)
- Jinlin Ge
- Department of Pulmonary and Critical Care Medicine, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang Province, China
| | - Huanhuan Yang
- Department of Pulmonary and Critical Care Medicine, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang Province, China
| | - Yufeng Zeng
- Department of Pulmonary and Critical Care Medicine, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang Province, China
| | - Yunjie Liu
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Nantong, 298 Xinhua Road, Chongchuan District, Nantong, 226002, Jiangsu, China.
| |
Collapse
|
8
|
Dai JM, Guo WN, Tan YZ, Niu KW, Zhang JJ, Liu CL, Yang XM, Tao KS, Chen ZN, Dai JY. Wogonin alleviates liver injury in sepsis through Nrf2-mediated NF-κB signalling suppression. J Cell Mol Med 2021; 25:5782-5798. [PMID: 33982381 PMCID: PMC8184690 DOI: 10.1111/jcmm.16604] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/24/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life‐threatening organ dysfunction syndrome, and liver is a susceptible target organ in sepsis, because the activation of inflammatory pathways contributes to septic liver injury. Oxidative stress has been documented to participate in septic liver injury, because it not only directly induces oxidative genotoxicity, but also exacerbates inflammatory pathways to potentiate damage of liver. Therefore, to ameliorate oxidative stress is promising for protecting liver in sepsis. Wogonin is the compound extracted from the medicinal plant Scutellaria baicalensis Geogi and was found to exert therapeutic effects in multiple inflammatory diseases via alleviation of oxidative stress. However, whether wogonin is able to mitigate septic liver injury remains unknown. Herein, we firstly proved that wogonin treatment could improve survival of mice with lipopolysaccharide (LPS)‐ or caecal ligation and puncture (CLP)‐induced sepsis, together with restoration of reduced body temperature and respiratory rate, and suppression of several pro‐inflammatory cytokines in circulation. Then, we found that wogonin effectively alleviated liver injury via potentiation of the anti‐oxidative capacity. To be specific, wogonin activated Nrf2 thereby promoting expressions of anti‐oxidative enzymes including NQO‐1, GST, HO‐1, SOD1 and SOD2 in hepatocytes. Moreover, wogonin‐induced Nrf2 activation could suppress NF‐κB‐regulated up‐regulation of pro‐inflammatory cytokines. Ultimately, we provided in vivo evidence that wogonin activated Nrf2 signalling, potentiated anti‐oxidative enzymes and inhibited NF‐κB‐regulated pro‐inflammatory signalling. Taken together, this study demonstrates that wogonin can be the potential therapeutic agent for alleviating liver injury in sepsis by simultaneously ameliorating oxidative stress and inflammatory response through the activation of Nrf2.
Collapse
Affiliation(s)
- Ji-Min Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei-Nan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi-Zhou Tan
- Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Kun-Wei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-Jia Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Cheng-Li Liu
- Department of Hepatobiliary Surgery, Air Force Medical Center, Beijing, China.,Fourth Military Medical University, Xi'an, China
| | - Xiang-Min Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Kai-Shan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing-Yao Dai
- Department of Hepatobiliary Surgery, Air Force Medical Center, Beijing, China.,Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Xu DD, Hou XY, Wang O, Wang D, Li DT, Qin SY, Lv B, Dai XM, Zhang ZJ, Wan JB, Xu FG. A four-component combination derived from Huang-Qin Decoction significantly enhances anticancer activity of irinotecan. Chin J Nat Med 2021; 19:364-375. [PMID: 33941341 DOI: 10.1016/s1875-5364(21)60034-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/30/2022]
Abstract
Huang-Qin Decoction (HQD) is a classic prescription for diarrhea in Chinese medicine treatment. Recent studies have demonstrated that HQD and its modified formulation PHY906 could ameliorate irinotecan (CPT-11) induced gastrointestinal (GI) toxicity and enhance its anticancer therapeutic efficacy. Nevertheless, which constituents in HQD are effective is still unclear so far. The study aims to screen out the key bioactive components combination from HQD that could enhance the anticancer effect of CPT-11. First, the potential bioactive constituents were obtained through system pharmacology strategy. Then the bioactivity of each constituent was investigated synthetically from the aspects of NCM460 cell migration, TNF-α release of THP-1-derived macrophage and MTT assay in HCT116 cell. The contribution of each constituent in HQD was evaluated using the bioactive index Ei, which taken the content and bioactivity into comprehensive consideration. And then, the most contributing constituents were selected out to form a key-component combination. At last, the bioefficacy of the key-component combination was validated in vitro and in vivo. As a result, a key-component combination (HB4) consisting of four compounds baicalin, baicalein, glycyrrhizic acid and wogonin was screened out. In vitro assessment indicated that HB4 could enhance the effect of CPT-11 on inhibiting cell proliferation and inducing apoptosis in HCT116. Furthermore, the in vivo study confirmed that HB4 and HQD have similar pharmacological activity and could both enhance the antitumor effect of CPT-11 in HCT116 xenograft model. Meanwhile, HB4 could also reduce the CPT-11 induced GI toxicity.
Collapse
Affiliation(s)
- Dou-Dou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Ying Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Ou Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Ting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Si-Yuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Min Dai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Zun-Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Feng-Guo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Jiang M, Li Z, Zhu G. Immunological regulatory effect of flavonoid baicalin on innate immune toll-like receptors. Pharmacol Res 2020; 158:104890. [PMID: 32389860 DOI: 10.1016/j.phrs.2020.104890] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
As an essential component of the innate immune system, Toll-like receptors (TLRs) are a family of well-recognized ligand-binding receptors found in various organisms and initiate host immune responses. Activation of TLRs signaling pathways lead to the induction of numerous genes that function in host defense. Baicalin is a natural compound from the dry raw root of Scutellaria baicalensis (S. baicalensis) and it has been found to exhibit several pharmaceutical actions, such as anti-inflammation, anti-tumor and antivirus. These biological activities are mainly related to the regulatory effect of baicalin on the host immune response. In this review, we provide an overview of the regulation of baicalin on TLRs signaling pathways in various pathological conditions, and highlight potential targets for the development of the regulatory effect of natural compound from traditional Chinese medicine on innate immune system.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
Heimfarth L, Carvalho AMS, Quintans JDSS, Pereira EWM, Lima NT, Bezerra Carvalho MT, Barreto RDSS, Moreira JCF, da Silva-Júnior EF, Schmitt M, Bourguignon JJ, de Aquino TM, Araújo-Júnior JXD, Quintans-Júnior LJ. Indole-3-guanylhydrazone hydrochloride mitigates long-term cognitive impairment in a neonatal sepsis model with involvement of MAPK and NFκB pathways. Neurochem Int 2020; 134:104647. [DOI: 10.1016/j.neuint.2019.104647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
|
12
|
Jang H, Lee J, Park S, Kim JS, Shim S, Lee SB, Han SH, Myung H, Kim H, Jang WS, Lee SJ, Myung JK. Baicalein Mitigates Radiation-Induced Enteritis by Improving Endothelial Dysfunction. Front Pharmacol 2019; 10:892. [PMID: 31474856 PMCID: PMC6707809 DOI: 10.3389/fphar.2019.00892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
Background and Aims: Radiation-induced intestinal injury occurred in application of radiotherapy for abdominal and pelvic cancers or in nuclear accidents. Radiation-induced enteritis may be considered an ideal model of gastrointestinal inflammation. The endothelium is a crucial component of inflammation, and the endothelial dysfunction following radiation exposure induces the intestinal proinflammatory response and progression of radiation enteritis. Baicalein (5,6,7-trihydroxyflavonoid) is a flavonoid from Scutellaria baicalensis used in oriental herbal medicine. Baicalein has been found to have multiple beneficial properties including antioxidant, anti-inflammatory, anti-allergic, and anti-cancer activities. Here, we investigated the therapeutic effects of baicalein on endothelial dysfunction in radiation-induced intestinal inflammation. Materials and Methods: We performed histological analysis, bacterial translocation, and intestinal permeability assays and also assessed infiltration of leukocytes and inflammatory cytokine expression using a mouse model of radiation-induced enteritis. In addition, to investigate the effect of baicalein in endothelial dysfunction, we analyzed endothelial-derived adherent molecules in human umbilical vein endothelial cells (HUVECs) and irradiated intestinal tissue. Results: Histological damage such as shortening of villi length and impaired intestinal crypt function was observed in the radiation-induced enteritis mouse model. Intestinal damage was attenuated in baicalein-treated groups with improvement of intestinal barrier function. Baicalein inhibited the expression of radiation-induced adherent molecules in HUVECs and intestine of irradiated mouse and decreased leukocyte infiltration in the radiation-induced enteritis. Conclusions: Baicalein could accelerate crypt regeneration via recovery of endothelial damage. Therefore, baicalein has a therapeutic effect on radiation-induced intestinal inflammation by attenuating endothelial damage.
Collapse
Affiliation(s)
- Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Joong Sun Kim
- Herbal Medicine Resources Center, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sung-Honn Han
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| |
Collapse
|
13
|
Wu YH, Chuang LP, Yu CL, Wang SW, Chen HY, Chang YL. Anticoagulant effect of wogonin against tissue factor expression. Eur J Pharmacol 2019; 859:172517. [PMID: 31265843 DOI: 10.1016/j.ejphar.2019.172517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 11/25/2022]
Abstract
Tissue factor (TF) is the primary cause of atherothrombosis, the rupture of atherosclerotic plaques with subsequent thrombosis, leading to acute cardiovascular events, such as myocardial infarction and stroke. Wogonin (Wog) is an active component of Scutellaria baicalensis, used for inflammatory diseases, atherosclerosis, and hyperlipidemia. The anticoagulant effect of Wog on TF expression remains unexplored. In this study, we have investigated the effects of Wog on TF gene expression and its underlying molecular mechanism in human vascular endothelial cells (ECs). We found that Wog dose-dependently inhibited PMA-enhanced TF mRNA, protein, and activity in ECs. This inhibition was attributed to its decreasing nuclear accumulations of transcription factors, phospho-c-Jun and early growth response-1(Egr-1), not nuclear factor-κB (NF-κB), through blocking extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways. Reduction by Wog of Egr-1 nuclear level and Egr-1/DNA binding activity was associated with its inhibition of Egr-1 de novo synthesis. Wog as well as inhibitors to ERK and JNK suppressed TF promoter activity and protein expression in reporter gene and Western blot analyses. Furthermore, it also exhibited anticoagulant function by inhibiting TF expression and activity in tumor necrosis factor-alpha (TNF-α)- and lipopolysaccharide (LPS)-treated ECs and THP-1 cells. These results suggest that Wog inhibits ERK/Egr-1- and JNK/AP-1-mediated transactivation of TF promoter activity, leading to downregulation of TF expression and activity induced by inflammatory mediators. Wog targeting pathological TF expression without affecting its basal level may be a safer templet in the development of anticoagulant agent for cardiovascular thrombotic diseases related to atherothrombosis.
Collapse
Affiliation(s)
- Yi-Hong Wu
- School and Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan; Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan, Taiwan
| | - Li-Pang Chuang
- Sleep Center, Department of Pulmonary and Critical Care Medicine, Linkou, Taoyuan, Taiwan
| | - Chao-Lan Yu
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan; Division of Hematology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shyi-Wu Wang
- Department of Physiology and Pharmacology, College of Medicine, Guishan, Taoyuan, Taiwan
| | - Hsin-Yung Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Guishan, Taoyuan, Taiwan; Department of Neurology and Dementia Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ying-Ling Chang
- School and Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Dual Effect of Glucuronidation of a Pyrogallol-Type Phytophenol Antioxidant: A Comparison between Scutellarein and Scutellarin. Molecules 2018; 23:molecules23123225. [PMID: 30563286 PMCID: PMC6321565 DOI: 10.3390/molecules23123225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022] Open
Abstract
To explore whether and how glucuronidation affects pyrogallol-type phytophenols, scutellarein and scutellarin (scutellarein-7-O-glucuronide) were comparatively investigated using a set of antioxidant analyses, including spectrophotometric analysis, UV-vis spectra analysis, and ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. In spectrophotometric analyses of the scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•), and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radicals (PTIO•) and the reduction of Cu2+ ions, scutellarein showed lower IC50 values than scutellarin. However, in •O₂--scavenging spectrophotometric analysis, scutellarein showed higher IC50 value than scutellarin. The analysis of UV-Vis spectra obtained after the Fe2+-chelating reaction of scutellarin showed a typical UV-Vis peak (λmax = 611 nm), while scutellarein showed no typical peak. In UPLC-ESI-Q-TOF-MS/MS analysis, mixing of scutellarein with DPPH• yielded MS peaks (m/z 678, 632, 615, 450, 420, 381, 329, 300, 288, 227, 196, 182, 161, and 117) corresponding to the scutellarein-DPPH adduct and an MS peak (m/z 570) corresponding to the scutellarein-scutellarein dimer. Scutellarin, however, generated no MS peak. On the basis of these findings, it can be concluded that glucuronidation of pyrogallol-type phytophenol antioxidants has a dual effect. On the one hand, glucuronidation can decrease the antioxidant potentials (except for •O₂- scavenging) and further lower the possibility of radical adduct formation (RAF), while on the other hand, it can enhance the •O₂--scavenging and Fe2+-chelating potentials.
Collapse
|
15
|
Shi R, Zhu D, Wei Z, Fu N, Wang C, Liu L, Zhang H, Liang Y, Xing J, Wang X, Wang Y. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition. Life Sci 2018; 207:442-450. [PMID: 29969608 DOI: 10.1016/j.lfs.2018.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
AIMS Endothelial-to-mesenchymal transition (EndoMT) was shown to lead to endothelial cell (EC) dysfunction in pulmonary arterial hypertension (PAH). Baicalein was reported to inhibit epithelial-to-mesenchymal transition (EMT), a biological process that has many regulatory pathways in common with EndoMT. Whether it can attenuate PAH by inhibiting EndoMT remains obscure. MAIN METHODS PAH was induced by a single subcutaneous injection of MCT (60 mg/kg) in male Sprague Dawley rats. Two weeks after MCT administration, the rats in the treatment groups received baicalein orally (50 or 100 mg/kg/day) for an additional 2 weeks. Hemodynamic changes and right ventricular hypertrophy (RVH) were evaluated on day 28. Cardiopulmonary interstitial fibrosis was detected using Masson's trichrome, Picrosirius-red, and immunohistochemical staining. The reactivity of pulmonary arteries (PAs) was examined ex vivo. The protein expresson of EndoMT molecules, bone morphogenetic protein receptor 2 (BMPR2), and nuclear factor-κB (NF-κB) was examined to explore the mechanism of protective action of baicalein. KEY FINDINGS Baicalein (50 and 100 mg/kg) significantly alleviated MCT-induced PAH and cardiopulmonary interstitial fibrosis. Furthermore, baicalein treatment enhanced PA responsiveness to acetylcholine (ACh) in PAH rats. The upregulation of EndoMT molecules (N-cadherin, vimentin, Snail, and Slug) strongly suggest that EndoMT participates in MCT-induced PAH, which was reversed by baicalein (50 and 100 mg/kg) treatment. Moreover, baicalein partially reversed MCT-induced reductions in BMPR2 and NF-κB activation in the PAs. SIGNIFICANCE Baicalein attenuated MCT-induced PAH in rats by inhibiting EndoMT partially via the NF-κB-BMPR2 pathway. Thus, baicalein might be considered as a promising treatment option for PAH.
Collapse
Affiliation(s)
- Ruizan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China.
| | - Diying Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Zehui Wei
- Department of Pharmacology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Naijie Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Chang Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Linhong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Huifeng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Yueqin Liang
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
| | - Jianfeng Xing
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan 030032, China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
16
|
Dai XM, Cui DN, Wang J, Zhang W, Zhang ZJ, Xu FG. Systems Pharmacology Based Strategy for Q-Markers Discovery of HuangQin Decoction to Attenuate Intestinal Damage. Front Pharmacol 2018; 9:236. [PMID: 29615909 PMCID: PMC5870050 DOI: 10.3389/fphar.2018.00236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
The quality control research of traditional Chinese medicine (TCM) is lagged far behind the space of progress in modernization and globalization. Thus the concept of quality marker (Q-marker) was proposed recently to guide the quality investigations of TCM. However, how to discover and validate the Q-marker is still a challenge. In this paper, a system pharmacology based strategy was proposed to discover Q-marker of HuangQin decoction (HQD) to attenuate Intestinal Damage. Using this strategy, nine measurable compounds including paeoniflorin, baicalin, scutellarein, liquiritigenin, norwogonin, baicalein, glycyrrhizic acid, wogonin, and oroxylin A were screened out as potential markers. Standard references of these nine compounds were pooled together as components combination according to their corresponding concentration in HQD. The bioactive equivalence between components combination and HQD was validated using wound healing test and inflammatory factor determination experiment. The comprehensive results indicated that components combination is almost bioactive equivalent to HQD and could serve as the Q-markers. In conclusion, our study put forward a promising strategy for Q-markers discovery.
Collapse
Affiliation(s)
- Xiao-Min Dai
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dong-Ni Cui
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wei Zhang
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Zun-Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Feng-Guo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Baicalin and baicalein attenuate renal fibrosis in vitro via inhibition of the TGF-β1 signaling pathway. Exp Ther Med 2017; 14:3074-3080. [PMID: 28928802 PMCID: PMC5590043 DOI: 10.3892/etm.2017.4888] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
Abstract
Baicalin and baicalein are flavonoid compounds derived from Scutellaria baicalensis Georgi. These compounds have been used in the treatment of numerous diseases, including fibrotic diseases. However, research regarding their antifibrotic effects and mechanism of action in renal fibrosis is limited. In the present study, normal rat kidney interstitial fibroblast (NRK-49F) cells were stimulated with transforming growth factor (TGF)-β1, with or without baicalin/baicalein, and assessed for proliferation, apoptosis, extracellular matrix (ECM) accumulation, collagen expression, TGF-β1 expression and mothers against decapentaplegic homolog 3 (SMAD3) protein activation. The results revealed that baicalin and baicalein exhibited antifibrotic effects in vitro, whereas baicalein had a stronger inhibitory action compared with baicalin on TGF-β1-induced NRK-49F cell proliferation, deposition of ECM, collagen synthesis, endogenous TGF-β1 expression and phosphorylation of SMAD3. In conclusion, the findings of the present study indicate that baicalin and baicalein, particularly baicalein, exhibit antifibrotic effects in vitro by inhibiting the TGF-β1 pathway. Therefore, these compounds have the potential to be developed as novel agents to treat renal fibrosis.
Collapse
|
18
|
[Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19. [PMID: 28506353 PMCID: PMC7389122 DOI: 10.7499/j.issn.1008-8830.2017.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD). METHODS A total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA. RESULTS Compared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (P<0.05). Compared with the ADHD model group, the methylphenidate hydrochloride group and the medium- and high-dose baicalin groups had a significant increase in the ATPase activity (P<0.05), a significant reduction in the LDH activity (P<0.05), and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the methylphenidate hydrochloride group, the high-dose baicalin group had significantly greater changes in these indices (P<0.05). Compared with the low-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05); the medium- and high-dose baicalin groups had a significant reduction in the LDH activity (P<0.05) and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the medium-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05). CONCLUSIONS Both methylphenidate hydrochloride and baicalin can improve synaptosomal ATPase and LDH activities in rats with ADHD. The effect of baicalin is dose-dependent, and high-dose baicalin has a significantly greater effect than methylphenidate hydrochloride. Baicalin exerts its therapeutic effect possibly by upregulating the AC/cAMP/PKA signaling pathway.
Collapse
|
19
|
Ge GF, Shi WW, Yu CH, Jin XY, Zhang HH, Zhang WY, Wang LC, Yu B. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits. Toxicol Appl Pharmacol 2017; 318:23-32. [DOI: 10.1016/j.taap.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/14/2022]
|
20
|
Zhou R, Han X, Wang J, Sun J. Baicalin may have a therapeutic effect in attention deficit hyperactivity disorder. Med Hypotheses 2016; 85:761-4. [PMID: 26604025 DOI: 10.1016/j.mehy.2015.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 11/19/2022]
Abstract
Baicalin is a flavonoid purified from Scutellaria baicalensis Georgi. It possesses a variety of pharmacological properties, such as anti-inflammatory, antioxidant, antiapoptotic, and neuro-protective properties, and provides protection against cerebral hemorrhage. However, it is seldom considered a therapeutic in mental disorders. Recent studies showed that baicalin protects cerebral functions against ischemia and has sedative and anxiolytic-like effects. Animal experiments showed that it protects dopaminergic neurons in the striatum, hippocampus and substantia nigra. It also has effects such as anti-depressive and anti-epileptic and offers resistance to Parkinson's disease. Attention deficit hyperactivity disorder (ADHD) pathogenesis is closely related to dopamine deficiency. However, the therapeutic effect of baicalin in ADHD has not been studied. We hypothesize that baicalin may protect dopaminergic neurons and increase brain dopamine levels, thus serving as an effective novel treatment for ADHD.
Collapse
|
21
|
Wang C, Jia Z, Wang Z, Hu T, Qin H, Du G, Wu C, Zhang J. Pharmacokinetics of 21 active components in focal cerebral ischemic rats after oral administration of the active fraction of Xiao-Xu-Ming decoction. J Pharm Biomed Anal 2016; 122:110-7. [PMID: 26852160 DOI: 10.1016/j.jpba.2016.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 11/30/2022]
Abstract
The Xiao-Xu-Ming decoction (XXMD) is a traditional Chinese medicine prescription that is clinically used for the treatment of stroke. The active fraction of XXMD (AF-XXMD) exhibits pharmacological effects that are similar to those of XXMD. In this study, 21 primary compounds of AF-XXMD with potential anti-ischemic-stroke activities were selected as effective candidates to perform comparisons of their pharmacokinetic differences between control and cerebral ischemic rats and to characterize their pharmacokinetic behaviors in cerebral ischemic rats. After oral administration of AF-XXMD to control and cerebral ischemic rats, plasma and brain were harvested and analyzed using liquid chromatography coupled with tandem mass spectrometry. Reverse molecular docking results indicate that 21 AF-XXMD-derived compounds exert potential neuroprotection, anti- inflammation, and vascular dilation effects via interaction with multiple targets in stroke-related pathways. The blood-brain permeability, cerebral exposure and brain region distribution of these compounds were found to change in cerebral ischemic models. Flavonoids were identified as the predominant form in plasma, whereas chromones were found to be the major form in the brain, and alkaloids possessed moderate blood-brain permeability. Collectively, the cerebral pharmacokinetic behaviors of chromones, flavonoids and alkaloids were found to change under pathological conditions. The efficacy of AF-XXMD against cerebral ischemia is relevant to the synergistic effects of these compounds in targeting different receptors and pathways. Chromones exhibit relatively high brain permeability, and their activity and mechanism warrant further investigation.
Collapse
Affiliation(s)
- Caihong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhixin Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hailin Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Caisheng Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
22
|
Chen H, Guan B, Shen J. Targeting ONOO -/HMGB1/MMP-9 Signaling Cascades: Potential for Drug Development from Chinese Medicine to Attenuate Ischemic Brain Injury and Hemorrhagic Transformation Induced by Thrombolytic Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1159/000442468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Ku SK, Lee JH, O Y, Lee W, Song GY, Bae JS. Vascular barrier protective effects of 3-N- or 3-O-cinnamoyl carbazole derivatives. Bioorg Med Chem Lett 2015; 25:4304-7. [DOI: 10.1016/j.bmcl.2015.07.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/04/2015] [Accepted: 07/23/2015] [Indexed: 11/30/2022]
|
24
|
Park JS, Lee HJ, Lee DY, Jo HS, Jeong JH, Kim DH, Nam DC, Lee CJ, Hwang SC. Chondroprotective Effects of Wogonin in Experimental Models of Osteoarthritis in vitro and in vivo. Biomol Ther (Seoul) 2015; 23:442-8. [PMID: 26336584 PMCID: PMC4556204 DOI: 10.4062/biomolther.2015.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
We evaluated the chondroprotective effects of wogonin by investigating its effects on the gene expression and production of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as on production of MMP-3 in the rat knee. Rabbit articular chondrocytes were cultured in a monolayer, and RT-PCR was used to measure interleukin-1β (IL-1β)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and type II collagen. In rabbit articular chondrocytes, the effects of wogonin on IL-1β-induced production and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of wogonin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, wogonin inhibited the expression of MMP-3, MMP-1, MMP-13, and ADAMTS-4, but increased expression of type II collagen. Furthermore, wogonin inhibited the production and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that wogonin can regulate the gene expression and production of MMP-3, by directly acting on articular chondrocytes.
Collapse
Affiliation(s)
- Jin Sung Park
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hyun Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Dong Yeong Lee
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ho Seung Jo
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jin Hoon Jeong
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong Hee Kim
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dae Cheol Nam
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|