1
|
Moen A, Johnsen H, Hristozov D, Zabeo A, Pizzol L, Ibarrola O, Hannon G, Holmes S, Debebe Zegeye F, Vogel U, Prina Mello A, Zienolddiny-Narui S, Wallin H. Inflammation related to inhalation of nano and micron sized iron oxides: a systematic review. Nanotoxicology 2024; 18:511-526. [PMID: 39275857 DOI: 10.1080/17435390.2024.2399039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024]
Abstract
Inhalation exposure to iron oxide occurs in many workplaces and respirable aerosols occur during thermal processes (e.g. welding, casting) or during abrasion of iron and steel products (e.g. cutting, grinding, machining, polishing, sanding) or during handling of iron oxide pigments. There is limited evidence of adverse effects in humans specifically linked to inhalation of iron oxides. This contrasts to oxides of other metals used to alloy or for coating of steel and iron of which several have been classified as being hazardous by international and national agencies. Such metal oxides are often present in the air at workplaces. In general, iron oxides might therefore be regarded as low-toxicity, low-solubility (LTLS) particles, and are often considered to be nontoxic even if very high and prolonged inhalation exposures might result in diseases. In animal studies, such exposures lead to cancer, fibrosis and other diseases. Our hypothesis was that pulmonary-workplace exposure during manufacture and handling of SPION preparations might be harmful. We therefore conducted a systematic review of the relevant literature to understand how iron oxides deposited in the lung are related to acute and subchronic pulmonary inflammation. We included one human and several in vivo animal studies published up to February 2023. We found 25 relevant studies that were useful for deriving occupational exposure limits (OEL) for iron oxides based on an inflammatory reaction. Our review of the scientific literature indicates that lowering of health-based occupational exposure limits might be considered.
Collapse
Affiliation(s)
- Aurora Moen
- National Institute of Occupational Health, Oslo, Norway
| | - Helge Johnsen
- National Institute of Occupational Health, Oslo, Norway
| | | | - Alex Zabeo
- Ca' Foscari University of Venice, Venizia, Italy
| | | | | | - Gary Hannon
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | - Sarah Holmes
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Adriele Prina Mello
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | | | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
2
|
Deng R, Zhu Y, Wu X, Wang M. Toxicity and Mechanisms of Engineered Nanoparticles in Animals with Established Allergic Asthma. Int J Nanomedicine 2023; 18:3489-3508. [PMID: 37404851 PMCID: PMC10317527 DOI: 10.2147/ijn.s411804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Asthma is a chronic respiratory disease that is highly sensitive to environmental pollutants, including engineered nanoparticles (NPs). Exposure to NPs has become a growing concern for human health, especially for susceptible populations. Toxicological studies have demonstrated strong associations between ubiquitous NPs and allergic asthma. In this review, we analyze articles that focus on adverse health effects induced by NPs in animal models of allergic asthma to highlight their critical role in asthma. We also integrate potential mechanisms that could stimulate and aggravate asthma by NPs. The toxic effects of NPs are influenced by their physicochemical properties, exposure dose, duration, route, as well as the exposure order between NPs and allergens. The toxic mechanisms involve oxidative stress, various inflammasomes, antigen presenting cells, immune cells, and signaling pathways. We suggest that future research should concentrate on establishing standardized models, exploring mechanistic insights at the molecular level, assessing the combined effects of binary exposures, and determining safe exposure levels of NPs. This work provides concrete evidence of the hazards posed by NPs in animals with compromised respiratory health and supports the modifying role of NPs exposure in allergic asthma.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| | - Ya Zhu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| |
Collapse
|
3
|
Yue L, Qidian L, Jiawei W, Rou X, Miao H. Acute iron oxide nanoparticles exposure induced murine eosinophilic airway inflammation via TLR2 and TLR4 signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:925-935. [PMID: 34982504 DOI: 10.1002/tox.23455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (Fe2 O3 NPs) is the main component of air pollution particles in urban rail transit environment. People are more exposed to Fe2 O3 NPs, however, the studies on relationship between Fe2 O3 NPs and respiratory health are limited. In the present study, acute airway inflammation caused by Fe2 O3 NPs and its possible mechanism were investigated. BALB/c mice were intratracheally challenged with different concentrations of Fe2 O3 NPs. Fe2 O3 NPs induced bronchial epithelial barrier function damage, infiltration of neutrophils and lymphocytes into the airway submucosa, secretion of mucus in the airway epithelium and elevated expression of eosinophil major basic protein (EMBP) in lungs. Compared with the control group, Fe2 O3 NPs increased eosinophils by 20 times in bronchoalveolar lavage fluid (BALF), and markedly increased eosinophils related cytokines and chemokines, including interleukin (IL) -5, IL-33, thymic stromal lymphopoietin (TSLP), monocyte chemotactic protein (MCP)-3, eotaxin, tumor necrosis factor (TNF)-α, keratinocyte chemoattractant (KC). Furthermore, Fe2 O3 NPs up-regulated levels of IL-5, MCP-3, eotaxin, and KC in serum. In vitro studies showed that Fe2 O3 NPs increased the genes and proteins expression of Toll-like receptors (TLR)-2, TLR4, TNF receptor associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), nuclear factor (NF)-κB, and TNF-α in RAW267.4 cells. The downstream inflammatory cytokine protein expression and release such as TNF-α was significantly decreased after using TLR2/TLR4 inhibitor OxPAPC, but not MyD88 inhibitor ST2825. These results suggest that TLR2 and TLR4 played important role in Fe2 O3 NPs inducing acute eosinophilic airway inflammation in the murine lung.
Collapse
Affiliation(s)
- Liang Yue
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| | - Li Qidian
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| | - Wang Jiawei
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| | - Xue Rou
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| | - He Miao
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| |
Collapse
|
4
|
Singh D, Marrocco A, Wohlleben W, Park HR, Diwadkar AR, Himes BE, Lu Q, Christiani DC, Demokritou P. Release of particulate matter from nano-enabled building materials (NEBMs) across their lifecycle: Potential occupational health and safety implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126771. [PMID: 34391975 PMCID: PMC8595827 DOI: 10.1016/j.jhazmat.2021.126771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 05/11/2023]
Abstract
The present study investigates potential nanomaterial releases and occupational health risks across the lifecycle of nano-enabled building materials (NEBMs), namely, insulations and coatings. We utilized real-world degradation scenarios of a) sanding (mechanical), b) incineration (thermal), and c) accelerated UV-aging (environmental) followed by incineration. Extensive physicochemical characterization of the released lifecycle particulate matter (LCPM) was performed. The LCPM2.5 aerosol size fraction was used to assess the acute biological, cytotoxic and inflammatory effects on Calu-3 human lung epithelial cells. RNA-Seq analysis of exposed cells was performed to assess potential for systemic disease. Findings indicated that release dynamics and characteristics of LCPM depended on both the NEBM composition and the degradation scenario(s). Incineration emitted a much higher nanoparticle number concentration than sanding (nearly 4 orders of magnitude), which did not change with prior UV-aging. Released nanofillers during sanding were largely part of the matrix fragments, whereas those during incineration were likely physicochemically transformed. The LCPM from incineration showed higher bioactivity and inflammogenicity compared to sanding or sequential UV-aging and incineration, and more so when metallic nanofillers were present (such as Fe2O3). Overall, the study highlights the need for considering real-world exposure and toxicological data across the NEBM lifecycle to perform adequate risk assessments and to ensure workplace health and safety.
Collapse
Affiliation(s)
- Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA
| | - Antonella Marrocco
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA
| | | | - Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, NY 14642, USA
| | - Avantika R Diwadkar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Quan Lu
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA
| | - David C Christiani
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA.
| |
Collapse
|
5
|
Zhang W, Gao J, Lu L, Bold T, Li X, Wang S, Chang Z, Chen J, Kong X, Zheng Y, Zhang M, Tang J. Intracellular GSH/GST antioxidants system change as an earlier biomarker for toxicity evaluation of iron oxide nanoparticles. NANOIMPACT 2021; 23:100338. [PMID: 35559839 DOI: 10.1016/j.impact.2021.100338] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 05/14/2023]
Abstract
Glutathione (GSH) and glutathione-S-transferases (GSTs) are two frontlines of cellular defense against both acute and chronic toxicity of xenobiotics-induced oxidative stress. The contribution of GSH and GST enzymes to signaling pathways and the regulation of GSH homeostasis play a central role in the detoxification of numerous environmental toxins and impurities. Iron oxide nanoparticles stemmed from traffic exhaust, steel manufacturing, or welding as a potential environmental pollution can lead to adverse respiratory outcomes and aggravate the risk of chronic health conditions via persistent oxidative stress. In this work, two kinds of acute exposure experiments of iron oxide (Fe2O3 and Fe3O4) nanoparticles in cells and in vivo were conducted to evaluate the GSH levels and GST activity. Our current research presented Fe3O4 nanoparticles at lower concentrations (≤100 μg/ml) seem to be more toxic to the human bronchial epithelial cells as their consumption of GSH and decrease of GST activity. The catalysis activity of Fe3O4 nanoparticles per se may contribute to the intracellular GSH consumption along with inhibition of glutathione-S-transferase class mu 1 and P (GSTM1 and GSTP1) active site and expression decrease of GSTM1 and GSTP1. Accordingly, the GSH consumption and decrease in GST activity directed to the further lipid peroxidation regarded as an earlier marker for toxicity evaluation of iron oxide nanoparticles, and relevant intervention may be effective for prevention of respiratory exposure induced damage from iron oxide nanoparticles.
Collapse
Affiliation(s)
- Wanjun Zhang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinling Gao
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China; Department of Infection Management Service, Dushu Lake Hospital Affiliated of Soochow University, Suzhou 215000, China
| | - Lin Lu
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Tsendmaa Bold
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xin Li
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shuo Wang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhishang Chang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Chen
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiao Kong
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mingliang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
| | - Jinglong Tang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of the present educational review on superparamagnetic iron oxide nanoparticles (SPIONs) is to inform and guide young scientists and students about the potential use and challenges associated with SPIONs. The present review discusses the basic concepts of magnetic resonance imaging (MRI), basic construct of SPIONs, cytotoxic challenges associated with SPIONs, shape and sizes of SPIONs, site-specific accumulation of SPIONs, various methodologies applied to reduce cytotoxicity including coatings with various materials, and application of SPIONs in targeted delivery of chemotherapeutics (Doxorubicin), biotherapeutics (DNA, siRNA), and positron emission tomography (PET) imaging applications.
Collapse
|
7
|
Gaharwar US, Kumar S, Rajamani P. Iron oxide nanoparticle-induced hematopoietic and immunological response in rats. RSC Adv 2020; 10:35753-35764. [PMID: 35517102 PMCID: PMC9056920 DOI: 10.1039/d0ra05901c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
The application and use of iron oxide nanoparticless (IONPs) in the biomedical field are steadily increasing, although it remains uncertain whether IONPs are safe or should be used with caution. In the present study, we investigated the toxicity profile of ultrafine IONPs in rats administered with 7.5, 15 and 30 mg IONPs/kg body wt intravenously once a week for 4 weeks. IONP treatment reduces bone marrow-mononuclear cell proliferation, increases free radical species and DNA damage leading to growth arrest and subsequently apoptosis induction at 15 and 30 mg doses. It also induces apoptosis in undifferentiated hematopoietic stem cells. IONP treatment significantly increased the pro-inflammatory cytokine (Interleukin (IL)-1β, TNF-α, and IL-6) level in serum. The induction in inflammation was likely mediated by splenic M1 macrophages (IL-6 and TNF-α secretion). IONP treatment induces splenocyte apoptosis and alteration in the immune system represented by reduced CD4+/CD8+ ratio and increased B cells. It also reduces innate defense represented by lower natural killer cell cytotoxicity. IONP administration markedly increased lipid peroxidation in the spleen, while the glutathione level was reduced. Similarly, superoxide dismutase activity was increased and catalase activity was reduced in the spleen of IONP-treated rats. At an organ level, IONP treatment did not cause any significant injury or structural alteration in the spleen. Collectively, our results suggest that a high dose of ultrafine IONPs may cause oxidative stress, cell death, and inflammation in a biological system.
Collapse
Affiliation(s)
- Usha Singh Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University New Delhi 110067 India +91-11-26741586 +91-11-26704162
| | - Sumit Kumar
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University New Delhi 110067 India +91-11-26741586 +91-11-26704162
| |
Collapse
|
8
|
Morgan J, Bell R, Jones AL. Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:107-136. [PMID: 32106786 DOI: 10.1080/10937404.2020.1731896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
Collapse
Affiliation(s)
- Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Robin Bell
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
9
|
Souza LRR, Bernardes LE, Barbetta MFS, da Veiga MAMS. Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24121-24131. [PMID: 31228067 DOI: 10.1007/s11356-019-05713-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Although iron oxide occurs naturally in the environment, iron oxide nanoparticles have distinct mobility, reactivity, and toxicity, which can harm the human health and nature. This scenario has motivated the investigation of the toxic effects of iron oxide nanoparticles (akaganeite predominance + hematite) on the aquatic plant Lemna minor. First, nanoparticles were synthesized and characterized; then, different iron oxide NP concentrations were added to Lemna minor culture. After 7 days, all the Lemna minor leaves died, irrespective of the added NP concentration. The iron oxide NP impact on the plant was evaluated based on malondialdehyde (MDA) production from thiobarbituric acid reactive substances (TBARS), which was dose-dependent; i.e., lipid peroxidation in the plant increased with rising iron oxide NP concentration. The chlorophyll content decreased at high iron oxide NP concentrations, which disrupted the light absorption mechanism. Fe accumulation in Lemna minor roots also occurred, which can harm nutrient uptake. Therefore, the iron oxide NP toxic impact on plants and related ecosystems requires further studies in order to prevent environmental damage.
Collapse
Affiliation(s)
- Lilian Rodrigues Rosa Souza
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14040-901, Brazil
| | - Luís Eduardo Bernardes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14040-901, Brazil
| | - Maike Felipe Santos Barbetta
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14040-901, Brazil
| | - Márcia Andreia Mesquita Silva da Veiga
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The explosive growth of the nanotechnology industry has necessitated the examination of engineered nanomaterials (ENMs) for their toxicity. The unique properties that make ENMs useful also make them a health risk, and individuals with pre-existing diseases such as asthma are likely more susceptible. This review summarizes the current literature on the ability of ENMs to both exacerbate and directly cause asthma. RECENT FINDINGS Recent studies highlight the ability of metal nanoparticles (NPs) and carbon nanotubes (CNTs) to not only exacerbate pre-existing asthma in animal models but also initiate allergic airway disease directly. CNTs alone are shown to cause airway mucus production, elevated serum IgE levels, and increased TH2 cytokine levels, all key indicators of asthma. The ability of ENMs to modulate the immune response in asthma varies depending on their physicochemical properties and exposure timing. CNTs consistently exacerbate asthma, as do Ni and TiO2 NPs, whereas some NPs like Au attenuate asthma. Evidence is strong that ENMs can contribute to allergic airway disease; however, more work is required to determine their mechanisms, and more epidemiological studies are needed to validate results from animal models.
Collapse
|
11
|
Poh TY, Ali NABM, Mac Aogáin M, Kathawala MH, Setyawati MI, Ng KW, Chotirmall SH. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part Fibre Toxicol 2018; 15:46. [PMID: 30458822 PMCID: PMC6245551 DOI: 10.1186/s12989-018-0282-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Our development and usage of engineered nanomaterials has grown exponentially despite concerns about their unfavourable cardiorespiratory consequence, one that parallels ambient ultrafine particle exposure from vehicle emissions. Most research in the field has so far focused on airway inflammation in response to nanoparticle inhalation, however, little is known about nanoparticle-microbiome interaction in the human airway and the environment. Emerging evidence illustrates that the airway, even in its healthy state, is not sterile. The resident human airway microbiome is further altered in chronic inflammatory respiratory disease however little is known about the impact of nanoparticle inhalation on this airway microbiome. The composition of the airway microbiome, which is involved in the development and progression of respiratory disease is dynamic, adding further complexity to understanding microbiota-host interaction in the lung, particularly in the context of nanoparticle exposure. This article reviews the size-dependent properties of nanomaterials, their body deposition after inhalation and factors that influence their fate. We evaluate what is currently known about nanoparticle-microbiome interactions in the human airway and summarise the known clinical, immunological and toxicological consequences of this relationship. While associations between inhaled ambient ultrafine particles and host immune-inflammatory response are known, the airway and environmental microbiomes likely act as intermediaries and facilitate individual susceptibility to inhaled nanoparticles and toxicants. Characterising the precise interaction between the environment and airway microbiomes, inhaled nanoparticles and the host immune system is therefore critical and will provide insight into mechanisms promoting nanoparticle induced airway damage.
Collapse
Affiliation(s)
- Tuang Yeow Poh
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Nur A'tikah Binte Mohamed Ali
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Micheál Mac Aogáin
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Mustafa Hussain Kathawala
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sanjay Haresh Chotirmall
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
12
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:977-990. [PMID: 29409836 PMCID: PMC5899012 DOI: 10.1016/j.nano.2018.01.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.
| |
Collapse
|
14
|
Johansson M, Gustafsson Å, Johanson G, Öberg M. Comparison of airway response in naïve and ovalbumin-sensitized mice during short-term inhalation exposure to chlorine. Inhal Toxicol 2017; 29:82-91. [PMID: 28330427 DOI: 10.1080/08958378.2017.1299260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE It has been suggested that asthmatics are more susceptible than healthy individuals to airborne irritating chemicals in general. However, there is limited human data available to support this hypothesis due to ethical and practical difficulties. We explored a murine model of ovalbumin (OVA)-induced airway inflammation to study susceptibility during acute exposure to chemicals with chlorine as a model substance. METHODS Naïve and OVA sensitized female BALB/c mice were exposed to chlorine at four different concentrations (0, 5, 30 and 80 ppm) for 15 minutes with online recording of the respiratory function by plethysmography. The specific effects on respiratory mechanics, inflammatory cells and inflammatory mediators (cytokines and chemokines) of the airways were measured 24 hours after the chlorine exposure as well as histopathological examination of the lungs. RESULTS Similar concentration-dependent reductions in respiratory frequency were seen in the two groups, with a 50% reduction (RD50) slightly above 5 ppm. Decreased body weight 24 hours after exposure to 80 ppm was also observed in both groups. Naïve, but not OVA-sensitized, mice showed increased bronchial reactivity and higher number of neutrophils in bronchoalveolar lavage fluid at 80 ppm. CONCLUSIONS The results do not support an increased susceptibility to chlorine among OVA-sensitized mice. This animal model, which represents a phenotype of eosinophilic airway inflammation, seems unsuitable to study susceptibility to inhalation of irritants in relation to asthma.
Collapse
Affiliation(s)
- Mia Johansson
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Åsa Gustafsson
- b Swedish Defense Research Agency (FOI) , Umeå , Sweden.,c Swedish Toxicology Sciences Research Center (Swetox) , Södertälje , Sweden
| | - Gunnar Johanson
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Mattias Öberg
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden.,c Swedish Toxicology Sciences Research Center (Swetox) , Södertälje , Sweden
| |
Collapse
|
15
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
16
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
17
|
Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. NANOMATERIALS 2017; 7:nano7100307. [PMID: 28984829 PMCID: PMC5666472 DOI: 10.3390/nano7100307] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Fine/micron-sized iron oxide particulates are incidentally released from a number of industrial processes, including iron ore mining, steel processing, welding, and pyrite production. Some research suggests that occupational exposure to these particulates is linked to an increased risk of adverse respiratory outcomes, whereas other studies suggest that iron oxide is biologically benign. Iron oxide nanoparticles (IONPs), which are less than 100 nm in diameter, have recently surged in use as components of novel drug delivery systems, unique imaging protocols, as environmental catalysts, and for incorporation into thermoplastics. However, the adverse outcomes associated with occupational exposure to IONPs remain relatively unknown. Relevant in vivo studies suggest that pulmonary exposure to IONPs may induce inflammation, pulmonary fibrosis, genotoxicity, and extra-pulmonary effects. This correlates well with in vitro studies that utilize relevant dose, cell type(s), and meaningful end points. A majority of these adverse outcomes are attributed to increased oxidative stress, most likely caused by particle internalization, dissolution, release of free iron ions, and disruption of iron homeostasis. However, because the overall toxicity profile of IONPs is not well understood, it is difficult to set safe exposure limit recommendations that would be adequate for the protection of at-risk workers. This review article will focus on known risks following IONPs exposure supported by human, animal, and cell culture-based studies, the potential challenges intrinsic to IONPs toxicity assessment, and how these may contribute to the poorly characterized IONPs toxicity profile.
Collapse
|
18
|
Xiaoli F, Junrong W, Xuan L, Yanli Z, Limin W, Jia L, Longquan S. Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability. Nanomedicine (Lond) 2017; 12:777-795. [PMID: 28322126 DOI: 10.2217/nnm-2016-0397] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To examine the neurotoxicity of prenatal exposure to ZnO nanoparticles on rat offspring. MATERIALS & METHODS Pregnant Sprague-Dawley rats were exposed to ZnO nanoparticles (NPs) by gavage. Toxicity was assessed including zinc biodistribution, cerebral histopathology, antioxidant status and learning and memory capability. RESULTS A significantly elevated concentration of zinc was detected in offspring brains. Transmission electron microscope observations showed abnormal neuron ultrastructures. Histopathologic changes such as decreased proliferation and higher apoptotic death were observed. An obvious imbalanced antioxidant status occurred in brains. Adult experimental offspring exhibited impaired learning and memory behavior in the Morris water maze test compared with control groups. CONCLUSION These adverse effects on offspring brain may cause impaired learning and memory capabilities in adulthood, particularly in female rats.
Collapse
Affiliation(s)
- Feng Xiaoli
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wu Junrong
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lai Xuan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Yanli
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Limin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Liu Jia
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
19
|
Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 2016; 38:53-63. [PMID: 27056797 DOI: 10.1016/j.jtemb.2016.03.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - Natalia Fernández-Bertólez
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain; Department of Cell and Molecular Biology, Universidade da Coruña, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain
| | - Gözde Kiliç
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Solange Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Sonia Fraga
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Maria Joao Bessa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Eduardo Pásaro
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - João Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain.
| |
Collapse
|
20
|
Présumé M, Simon-Deckers A, Tomkiewicz-Raulet C, Le Grand B, Tran Van Nhieu J, Beaune G, Duruphty O, Doucet J, Coumoul X, Pairon JC, Boczkowski J, Lanone S, Andujar P. Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology 2016; 10:1535-1544. [PMID: 27680323 DOI: 10.1080/17435390.2016.1242797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of the great promises that the development of nanotechnologies can offer, concerns regarding potential adverse health effects of occupational exposure to nanoparticle (NP) is raised. We recently identified metal oxide NP in lung tissue sections of welders, located inside macrophages infiltrated in fibrous regions. This suggests a role of these NP in the lung alterations observed in welders. We therefore designed a study aimed to investigate the pulmonary effects, in mice, of repeated exposure to NP administered at occupationally relevant doses. We therefore chose four metal oxide NPs representative of those found in the welder's lungs: Fe2O3, Fe3O4, MnFe2O4 and CrOOH. These NPs were administered weekly for up to 3 months at two different doses: 5 μg, chosen as occupationally relevant to welding activity, and 50 μg, chosen as occupationally relevant to the context of an NP-manufacturing facility. Our results show that 3 month-repeated exposures to 5 μg NP induced limited pulmonary effects, characterized by the development of a mild peribronchiolar fibrosis observed for MnFe2O4 and CrOOH NP only. This fibrotic event was further extended in terms of intensity and localization after the repeated administration of 50 μg NP: all but Fe2O3 NP induced the development of peribronchiolar, perivascular and alveolar fibrosis, together with an interstitial inflammation. Our data demonstrate for the first time a potential risk for respiratory health posed by repeated exposure to NP at occupationally relevant doses. Given these results, the development of occupational exposure limits (OELs) specifically dedicated to NP exposure might therefore be an important issue to address.
Collapse
Affiliation(s)
| | - Angélique Simon-Deckers
- a INSERM, U955, Team4 , Créteil , France.,b CNRS, UMR 8502, Laboratoire de Physique des Solides , Orsay , France
| | - Céline Tomkiewicz-Raulet
- c INSERM, UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire , Paris , France.,d Université Paris Descartes , Paris , France
| | - Béatrice Le Grand
- c INSERM, UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire , Paris , France
| | - Jeanne Tran Van Nhieu
- e APHP, CHU Henri Mondor, Service d'Anatomo-Pathologie , Créteil , France.,f Université Paris-Est Créteil, Faculté de Médecine , Créteil , France
| | - Gregory Beaune
- g Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris , Paris , France
| | - Olivier Duruphty
- g Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris , Paris , France
| | - Jean Doucet
- b CNRS, UMR 8502, Laboratoire de Physique des Solides , Orsay , France
| | - Xavier Coumoul
- c INSERM, UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire , Paris , France.,d Université Paris Descartes , Paris , France
| | - Jean-Claude Pairon
- a INSERM, U955, Team4 , Créteil , France.,f Université Paris-Est Créteil, Faculté de Médecine , Créteil , France.,h Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie professionnelle , Créteil , France , and
| | - Jorge Boczkowski
- a INSERM, U955, Team4 , Créteil , France.,f Université Paris-Est Créteil, Faculté de Médecine , Créteil , France.,i APHP, DHU A-TVB, CHU Henri Mondor, Service d'Explorations fonctionnelles respiratoires , Créteil , France
| | - Sophie Lanone
- a INSERM, U955, Team4 , Créteil , France.,h Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie professionnelle , Créteil , France , and
| | - Pascal Andujar
- a INSERM, U955, Team4 , Créteil , France.,f Université Paris-Est Créteil, Faculté de Médecine , Créteil , France.,h Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie professionnelle , Créteil , France , and
| |
Collapse
|
21
|
Lewis CS, Torres L, Miyauchi JT, Rastegar C, Patete JM, Smith JM, Wong SS, Tsirka SE. Absence of Cytotoxicity towards Microglia of Iron Oxide (α-Fe 2O 3) Nanorhombohedra. Toxicol Res (Camb) 2016; 5:836-847. [PMID: 27274811 PMCID: PMC4890976 DOI: 10.1039/c5tx00421g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/04/2016] [Indexed: 12/11/2022] Open
Abstract
Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe2O3) Nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of nanorhombohedra exposure in the presence of microglia, we have synthesized Rhodamine B (RhB) labeled-α-Fe2O3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalization of RhB labeled-α-Fe2O3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure induce the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe2O3 N-Rhomb maintaining concentrations of up to 100 µg/mL after 48 hours of incubation, the in vitro and in vivo internalization of RhB labeled-α-Fe2O3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if they are to be used in a therapeutic setting.
Collapse
Affiliation(s)
- Crystal S. Lewis
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Luisa Torres
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Jeremy T. Miyauchi
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Cyrus Rastegar
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Jonathan M. Patete
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Jacqueline M. Smith
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Stanislaus S. Wong
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
- Condensed Matter Physics and Materials Science Department
, Building 480
, Brookhaven National Laboratory
,
Upton
, New York 11973
, USA
| | - Stella E. Tsirka
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| |
Collapse
|