1
|
Monroy-Cárdenas M, Almarza C, Valenzuela-Hormazábal P, Ramírez D, Urra FA, Martínez-Cifuentes M, Araya-Maturana R. Identification of Antioxidant Methyl Derivatives of Ortho-Carbonyl Hydroquinones That Reduce Caco-2 Cell Energetic Metabolism and Alpha-Glucosidase Activity. Int J Mol Sci 2024; 25:8334. [PMID: 39125904 PMCID: PMC11313435 DOI: 10.3390/ijms25158334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone series, whose members differ only in the number and position of methyl groups on a common scaffold, on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by density functional theory (DFT) analysis. These compounds' effect on enzymatic activity, their molecular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs) than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport flux. Additionally, menadione-induced ROS production was prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new drugs for T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
| | - Cristopher Almarza
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Paulina Valenzuela-Hormazábal
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - Félix A. Urra
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Ramiro Araya-Maturana
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
2
|
Méndez D, Tellería F, Monroy-Cárdenas M, Montecino-Garrido H, Mansilla S, Castro L, Trostchansky A, Muñoz-Córdova F, Zickermann V, Schiller J, Alfaro S, Caballero J, Araya-Maturana R, Fuentes E. Linking triphenylphosphonium cation to a bicyclic hydroquinone improves their antiplatelet effect via the regulation of mitochondrial function. Redox Biol 2024; 72:103142. [PMID: 38581860 PMCID: PMC11002875 DOI: 10.1016/j.redox.2024.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Francisca Tellería
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, 3460000, Chile
| | - Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | | | - Volker Zickermann
- Institute of Biochemistry II, Goethe University Medical School, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, Goethe University Medical School, Germany
| | - Sergio Alfaro
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
3
|
Montecino-Garrido H, Sepúlveda M, Méndez D, Monroy-Cárdenas M, Alfaro S, González-Avendaño M, Caballero J, Urra FA, Araya-Maturana R, Fuentes E. Assessing mitochondria-targeted acyl hydroquinones on the mitochondrial platelet function and cytotoxic activity: Role of the linker length. Free Radic Biol Med 2023; 208:26-36. [PMID: 37516371 DOI: 10.1016/j.freeradbiomed.2023.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION The use of triphenylphosphonium cation (TPP+) linked to phenolic compounds by alkyl chains has a significant relevance as a mitochondrial delivery strategy in biomedicine because it affects mitochondrial bioenergetics in models of noncommunicable diseases such as cancer and cardiovascular-related conditions. Studies indicate that a long alkyl chain (10-12 carbon) increases the mitochondrial accumulation of TPP+-linked drugs. In contrast, other studies show that these compounds are consistently toxic to micromolar concentrations (as observed in platelets). In the present study, we evaluated the in vitro effect of three series of triphenylphosphonium-linked acyl hydroquinones derivates on the metabolism and function of human platelets using 3-9 carbons for the alkyl linker. Those were assessed to determine the role of the length of the alkyl chain linker on platelet toxicity. METHODS Human platelets were exposed in vitro to different concentrations (2-40 μM) of every compound; cellular viability, phosphatidylserine exposition, mitochondrial membrane potential (ΔΨm), intracellular calcium release, and intracellular ROS generation were assessed by flow cytometry. An in silico energetic profile was generated with Umbrella sampling molecular dynamics (MD). RESULTS AND CONCLUSIONS There was an increase in cytotoxic activity directly related to the length of the acyl chain and lipophilicity, as seen by three techniques, and this was consistent with a decrease in ΔΨm. The in silico energetic profiles point out that the permeability of the mitochondrial membrane may be involved in the cytotoxicity of phosphonium salts. This information may be relevant for the design of new TPP+ -based drugs with a safe cardiovascular profile.
Collapse
Affiliation(s)
- Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Magdalena Sepúlveda
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile
| | - Sergio Alfaro
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Mariela González-Avendaño
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Santiago, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
4
|
Fuentes E, Arauna D, Araya-Maturana R. Regulation of mitochondrial function by hydroquinone derivatives as prevention of platelet activation. Thromb Res 2023; 230:55-63. [PMID: 37639783 DOI: 10.1016/j.thromres.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Platelet activation plays an essential role in the pathogenesis of thrombotic events in different diseases (e.g., cancer, type 2 diabetes, Alzheimer's, and cardiovascular diseases, and even in patients diagnosed with coronavirus disease 2019). Therefore, antiplatelet therapy is essential to reduce thrombus formation. However, the utility of current antiplatelet drugs is limited. Therefore, identifying novel antiplatelet compounds is very important in developing new drugs. In this context, the involvement of mitochondrial function as an efficient energy source required for platelet activation is currently accepted; however, its contribution as an antiplatelet target still has little been exploited. Regarding this, the intramolecular hydrogen bonding of hydroquinone derivatives has been described as a structural motif that allows the reach of small molecules at mitochondria, which can exert antiplatelet activity, among others. In this review, we describe the role of mitochondrial function in platelet activation and how hydroquinone derivatives exert antiplatelet activity through mitochondrial regulation.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile.
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
5
|
Monroy-Cárdenas M, Andrades V, Almarza C, Vera MJ, Martínez J, Pulgar R, Amalraj J, Araya-Maturana R, Urra FA. A New Quinone-Based Inhibitor of Mitochondrial Complex I in D-Conformation, Producing Invasion Reduction and Sensitization to Venetoclax in Breast Cancer Cells. Antioxidants (Basel) 2023; 12:1597. [PMID: 37627592 PMCID: PMC10451541 DOI: 10.3390/antiox12081597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV-1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells. Introducing methyl groups at FRV-1 structure produced analogs that acted as electron acceptors at the Complex I level or increased the inhibitory effect of FCCP-stimulated oxygen consumption rate, which correlated with their redox potential, but increased toxicity on RMF-621 human breast fibroblasts was observed. FRV-1 was inactive in the naphthoquinone oxidoreductase 1 (NOQ1)-positive BC cell line, MCF7, but the sensitivity was recovered by dicoumarol, a NOQ1 inhibitor, suggesting that FRV-1 is a NOQ1 substrate. Importantly, FRV-1 selectively inhibited the proliferation, migration, and invasion of NQO1 negative BC cell, MDA-MB-231, in an OXPHOS- and ROS-dependent manner and sensitized it to the BH3 mimetic drug venetoclax. Overall, FRV-1 is a novel Complex I inhibitor in D-active conformation, blocking possibly the re-activation to A-state, producing selective anti-cancer effects in NQO1-negative BC cell lines.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Víctor Andrades
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Cristopher Almarza
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - María Jesús Vera
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Jorge Martínez
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830490, Chile
| | - John Amalraj
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Félix A. Urra
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| |
Collapse
|
6
|
Vivas-Ruiz DE, Rosas P, Proleón A, Torrejón D, Lazo F, Tenorio-Ricca AB, Guajardo F, Almarza C, Andrades V, Astorga J, Oropesa D, Toledo J, Vera MJ, Martínez J, Araya-Maturana R, Dubois-Camacho K, Hermoso MA, Alvarenga VG, Sanchez EF, Yarlequé A, Oliveira LS, Urra FA. Pictolysin-III, a Hemorrhagic Type-III Metalloproteinase Isolated from Bothrops pictus (Serpentes: Viperidae) Venom, Reduces Mitochondrial Respiration and Induces Cytokine Secretion in Epithelial and Stromal Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15051533. [PMID: 37242775 DOI: 10.3390/pharmaceutics15051533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM-cancer-cell interactions.
Collapse
Affiliation(s)
- Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| | - Paola Rosas
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Alex Proleón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
| | - Ana Belén Tenorio-Ricca
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Francisco Guajardo
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Cristopher Almarza
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Víctor Andrades
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Jessica Astorga
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Daniel Oropesa
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - María Jesús Vera
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Laboratorio de Biología Celular, INTA, University of Chile, Santiago 7810000, Chile
| | - Jorge Martínez
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Laboratorio de Biología Celular, INTA, University of Chile, Santiago 7810000, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Karen Dubois-Camacho
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Valéria G Alvarenga
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Eladio Flores Sanchez
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Luciana Souza Oliveira
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Félix A Urra
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| |
Collapse
|
7
|
Zhou Y, Zou J, Xu J, Zhou Y, Cen X, Zhao Y. Recent advances of mitochondrial complex I inhibitors for cancer therapy: Current status and future perspectives. Eur J Med Chem 2023; 251:115219. [PMID: 36893622 DOI: 10.1016/j.ejmech.2023.115219] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Mitochondrial complex I (CI) as a critical multifunctional respiratory complex of electron transport chain (ETC) in mitochondrial oxidative phosphorylation has been identified as vital and essence in ATP production, biosynthesis and redox balance. Recent progress in targeting CI has provided both insight and inspiration for oncotherapy, highlighting that the development of CI-targeting inhibitors is a promising therapeutic approach to fight cancer. Natural products possessing of ample scaffold diversity and structural complexity are the majority source of CI inhibitors, although low specificity and safety hinder their extensive application. Along with the gradual deepening in understanding of CI structure and function, significant progress has been achieved in exploiting novel and selective small molecules targeting CI. Among them, IACS-010759 had been approved by FDA for phase I trial in advanced cancers. Moreover, drug repurposing represents an effective and prospective strategy for CI inhibitor discovery. In this review, we mainly elaborate the biological function of CI in tumor progression, summarize the CI inhibitors reported in recent years and discuss the further perspectives for CI inhibitor application, expecting this work may provide insights into innovative discovery of CI-targeting drugs for cancer treatment.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Grivennikova VG, Khailova LS, Zharova TV, Kotova EA, Antonenko YN. Inhibition of respiratory complex I by 6-ketocholestanol: Relevance to recoupling action in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148594. [PMID: 35850263 DOI: 10.1016/j.bbabio.2022.148594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
6-Ketocholestanol (kCh) is known as a mitochondrial recoupler, i.e. it abolishes uncoupling of mitochondria by such potent agents as carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 3,5-di(tert-butyl)-4-hydroxybenzylidenemalononitril (SF6847) [Starkov et al., 1997]. Here, we report data on the kCh-induced inhibition of both NADH-oxidase and NADH-ubiquinone oxidoreductase activities of the respiratory complex I in bovine heart submitochondrial particles (SMP). Based on the absence of such inhibition with hexaammineruthenium (III) (HAR) as the complex I electron acceptor, the kCh effect could be associated with the ubiquinone-binding centre of this respiratory enzyme. In isolated rat liver mitochondria (RLM), kCh inhibited oxygen consumption with the glutamate/malate, substrates of NAD-linked dehydrogenases, while no inhibition of RLM respiration was observed with succinate, in agreement with the absence of the kCh effect on the succinate oxidase activity in SMP. Three kCh analogs (cholesterol, 6α-hydroxycholesterol, and 5α,6α-epoxycholesterol) exhibited no effect on the NADH oxidase activities in both SMP and RLM. Importantly, the kCh analogs were ineffective in the recoupling of RLM treated with CCCP or SF6847. Therefore, interaction of kCh with the complex I may be involved in the kCh-mediated mitochondrial recoupling.
Collapse
Affiliation(s)
- Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation.
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Tatyana V Zharova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation.
| |
Collapse
|
9
|
Schmeda-Hirschmann G, Burgos-Edwards A, Rojas de Arias A, López-Torres C, Palominos C, Fuentes-Retamal S, Herrera Y, Dubois-Camacho K, Urra FA. A paraguayan toad Rhinella schneideri preparation based on Mbya tradition increases mitochondrial bioenergetics with migrastatic effects dependent on AMPK in breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115344. [PMID: 35526731 DOI: 10.1016/j.jep.2022.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/17/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Paraguay, healers from the Mbya culture treat cancer with a recipe prepared with the native toad Rhinella schneideri. However, the chemical composition and biological effects of the recipe remain unknown. AIM OF THE STUDY The aim is to determine the composition of the traditional preparation made using the toad R. schneideri and to evaluate its effect on human breast cancer (BC) cells. MATERIALS AND METHODS The metabolites contained in the preparation were concentrated using XAD-7 resin, and the concentrate was analyzed by HPLC-MS/MS. The effect of the preparation was assessed in normal (MCF10F) and BC cells (MDA-MB-231 and MCF7). The mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) levels, and cell cycle progression were determined by flow cytometry. The oxygen consumption rate (OCR) was measured by Clark electrode, and fibronectin-dependent migration in normoxia and hypoxia-like conditions were evaluated by transwell assay. RESULTS From the Amberlite-retained extract from the preparation, 24 compounds were identified, including alkaloids, amino acids, bufadienolides, and flavonoids, among others. The crude extract (CE) did not affect cell cycle progression and viability of BC cell lines. Moreover, it did not make cancer cells more sensitive to the cytotoxic effect of the chemotherapeutics doxorubicin and teniposide. On the other hand, the CE reduced the menadione-induced ROS production and increased NADH, Δψm, and the OCR. Respiratory complexes I and III as well as ATP synthase levels were increased in an AMPK-dependent manner. Moreover, the CE inhibited the migration of BC cells in normoxia and a hypoxia-like condition using CoCl2 as a HIF1α-stabilizing agent. This latter effect involved an AMPK-dependent reduction of HIF1α levels. CONCLUSIONS The Paraguayan toad recipe contains metabolites from the toad ingredient, including alkaloids and bufadienolide derivatives. The CE lacks cytotoxic effects alone or in combination with chemotherapeutics. However, it increases mitochondrial bioenergetics and inhibits the cancer cell migration in an AMPK-dependent manner in BC cells. This is the first report of the in vitro anticancer effect of a traditional Rhinella sp. toad preparation based on Mbya tradition.
Collapse
Affiliation(s)
- Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, 3460000, Chile.
| | - Alberto Burgos-Edwards
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, 3460000, Chile; Universidad Nacional de Asunción, Facultad de Ciencias Químicas, Campus San Lorenzo, P.O. Box 1055, Paraguay
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O' Leary, Barrio La Encarnación, Asunción, Código Postal 1255, Paraguay
| | - Camila López-Torres
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Charlotte Palominos
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Yarela Herrera
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Karen Dubois-Camacho
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Félix A Urra
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| |
Collapse
|
10
|
Loizou M, Papaphilippou P, Vlasiou M, Spilia M, Peschos D, Simos YV, Keramidas AD, Drouza C. Binuclear VIV/V, MoVI and ZnII - hydroquinonate complexes: Synthesis, stability, oxidative activity and anticancer properties. J Inorg Biochem 2022; 235:111911. [DOI: 10.1016/j.jinorgbio.2022.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
11
|
Urra FA, Fuentes-Retamal S, Palominos C, Rodríguez-Lucart YA, López-Torres C, Araya-Maturana R. Extracellular Matrix Signals as Drivers of Mitochondrial Bioenergetics and Metabolic Plasticity of Cancer Cells During Metastasis. Front Cell Dev Biol 2021; 9:751301. [PMID: 34733852 PMCID: PMC8558415 DOI: 10.3389/fcell.2021.751301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
The role of metabolism in tumor growth and chemoresistance has received considerable attention, however, the contribution of mitochondrial bioenergetics in migration, invasion, and metastasis is recently being understood. Migrating cancer cells adapt their energy needs to fluctuating changes in the microenvironment, exhibiting high metabolic plasticity. This occurs due to dynamic changes in the contributions of metabolic pathways to promote localized ATP production in lamellipodia and control signaling mediated by mitochondrial reactive oxygen species. Recent evidence has shown that metabolic shifts toward a mitochondrial metabolism based on the reductive carboxylation, glutaminolysis, and phosphocreatine-creatine kinase pathways promote resistance to anoikis, migration, and invasion in cancer cells. The PGC1a-driven metabolic adaptations with increased electron transport chain activity and superoxide levels are essential for metastasis in several cancer models. Notably, these metabolic changes can be determined by the composition and density of the extracellular matrix (ECM). ECM stiffness, integrins, and small Rho GTPases promote mitochondrial fragmentation, mitochondrial localization in focal adhesion complexes, and metabolic plasticity, supporting enhanced migration and metastasis. Here, we discuss the role of ECM in regulating mitochondrial metabolism during migration and metastasis, highlighting the therapeutic potential of compounds affecting mitochondrial function and selectively block cancer cell migration.
Collapse
Affiliation(s)
- Félix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Charlotte Palominos
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Yarcely A Rodríguez-Lucart
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile.,Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile.,Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
12
|
Córdova-Delgado M, Fuentes-Retamal S, Palominos C, López-Torres C, Guzmán-Rivera D, Ramírez-Rodríguez O, Araya-Maturana R, Urra FA. FRI-1 Is an Anti-Cancer Isoquinolinequinone That Inhibits the Mitochondrial Bioenergetics and Blocks Metabolic Shifts by Redox Disruption in Breast Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10101618. [PMID: 34679752 PMCID: PMC8533268 DOI: 10.3390/antiox10101618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Since breast cancer (BC) cells are dependent on mitochondrial bioenergetics for promoting proliferation, survival, and metastasis, mitochondria highlight as an important target for anticancer drug discovery. FRI-1, methyl 1, 3-dimethyl-5, 8-dioxo-5, 8-dihydro-4-isoquinolinecarboxylate, was previously described as a selective cytotoxic compound on cancer cell lines, however, details on the mechanism of action remain unknown. In this work, we describe that FRI-1 inhibits mitochondrial bioenergetics, producing apoptosis in MCF7 and MDA-MB-231 BC cell lines. FRI-1 decreases the maximal oxygen consumption rate (OCR), Δψm, NADH, and ATP levels, with a notable increase of mitochondrial reactive oxygen species (ROS) production, promoting AMPK activation with pro-survival effects. Moreover, FRI-1 inhibits the metabolic remodeling to glycolysis induced by oligomycin. In isolated tumoral mitochondria, FRI-1 increases Complex I and III-dependent OCR state 2, and this is sensitive to rotenone and antimycin A inhibitor additions, suggesting a redox cycling event. Remarkably, α-ketoglutarate and lipoic acid supplementation reversed and promoted, respectively, the FRI-1-induced apoptosis, suggesting that mitochondrial redox disruption affects 2-oxoglutarate dehydrogenase (OGDH) activity, and this is involved in their anticancer mechanism. Consistent with this, the combination of FRI-1 and CPI-613, a dual inhibitor of redox-sensible tricarboxylic acid (TCA) cycle enzymes PDH and OGDH, produced extensive BC cell death. Taken together, our results suggest that FRI-1 exhibits anticancer effects through inhibition of mitochondrial bioenergetics by redox disruption in BC cells.
Collapse
Affiliation(s)
- Miguel Córdova-Delgado
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 8380453, Chile; (M.C.-D.); (S.F.-R.); (C.P.); (C.L.-T.)
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 8380453, Chile; (M.C.-D.); (S.F.-R.); (C.P.); (C.L.-T.)
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile
| | - Charlotte Palominos
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 8380453, Chile; (M.C.-D.); (S.F.-R.); (C.P.); (C.L.-T.)
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 8380453, Chile; (M.C.-D.); (S.F.-R.); (C.P.); (C.L.-T.)
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile
| | - Daniela Guzmán-Rivera
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370149, Chile;
| | - Oney Ramírez-Rodríguez
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén, Eusebio Lillo 667, Coyhaique 5951537, Chile;
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile
- Correspondence: (R.A.-M.); (F.A.U.); Tel.: +56-71-220-0285 (R.A.-M.); +56-22-978-6066 (F.A.U.)
| | - Félix A. Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 8380453, Chile; (M.C.-D.); (S.F.-R.); (C.P.); (C.L.-T.)
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile
- Correspondence: (R.A.-M.); (F.A.U.); Tel.: +56-71-220-0285 (R.A.-M.); +56-22-978-6066 (F.A.U.)
| |
Collapse
|
13
|
Iaubasarova IR, Khailova LS, Firsov AM, Grivennikova VG, Kirsanov RS, Korshunova GA, Kotova EA, Antonenko YN. The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler. PLoS One 2020; 15:e0244499. [PMID: 33378414 PMCID: PMC7773232 DOI: 10.1371/journal.pone.0244499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The synthesis of a mitochondria-targeted derivative of the classical mitochondrial uncoupler carbonyl cyanide-m-chlorophenylhydrazone (CCCP) by alkoxy substitution of CCCP with n-decyl(triphenyl)phosphonium cation yielded mitoCCCP, which was able to inhibit the uncoupling action of CCCP, tyrphostin A9 and niclosamide on rat liver mitochondria, but not that of 2,4-dinitrophenol, at a concentration of 1–2 μM. MitoCCCP did not uncouple mitochondria by itself at these concentrations, although it exhibited uncoupling action at tens of micromolar concentrations. Thus, mitoCCCP appeared to be a more effective mitochondrial recoupler than 6-ketocholestanol. Both mitoCCCP and 6-ketocholestanol did not inhibit the protonophoric activity of CCCP in artificial bilayer lipid membranes, which might compromise the simple proton-shuttling mechanism of the uncoupling activity on mitochondria.
Collapse
Affiliation(s)
- Iliuza R. Iaubasarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Ljudmila S. Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander M. Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Roman S. Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina A. Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
14
|
Méndez D, Donoso-Bustamante V, Pablo Millas-Vargas J, Pessoa-Mahana H, Araya-Maturana R, Fuentes E. Synthesis and pharmacological evaluation of acylhydroquinone derivatives as potent antiplatelet agents. Biochem Pharmacol 2020; 183:114341. [PMID: 33197432 DOI: 10.1016/j.bcp.2020.114341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Platelets are the smallest blood cells, and their activation (platelet cohesion or aggregation) at sites of vascular injury is essential for thrombus formation. Since the use of antiplatelet therapy is an unsolved problem, there are now focused and innovative efforts to develop novel antiplatelet compounds. In this context, we assessed the antiplatelet effect of an acylhydroquinone series, synthesized by Fries rearrangement under microwave irradiation, evaluating the effect of diverse acyl chain lengths, their chlorinated derivatives, and their dimethylated derivatives both in the aromatic ring and also the effect of the introduction of a bromine atom at the terminus of the acyl chain. Findings from a primary screening of cytotoxic activity on platelets by lactate dehydrogenase assay identified 19 non-toxic compounds from the 27 acylhydroquinones evaluated. A large number of them showed IC50 values less than 10 µM acting against specific pathways of platelet aggregation. The highest activity was obtained with compound 38, it exhibited sub-micromolar IC50 of 0.98 ± 0.40, 1.10 ± 0.26, 3.98 ± 0.46, 6.79 ± 3.02 and 42.01 ± 3.48 µM against convulxin-, collagen-, TRAP-6-, PMA- and arachidonic acid-induced platelet aggregation, respectively. It also inhibited P-selectin and granulophysin expression. We demonstrated that the antiplatelet mechanism of compound 38 was through a decrease in a central target in human platelet activation as in mitochondrial function, and this could modulate a lower response of platelets to activating agonists. The results of this study show that the chemical space around ortho-carbonyl hydroquinone moiety is a rich source of biologically active compounds, signaling that the acylhydroquinone scaffold has a promising role in antiplatelet drug research.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | | | | | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | | | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
15
|
Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Int J Mol Sci 2020; 21:ijms21176014. [PMID: 32825551 PMCID: PMC7503725 DOI: 10.3390/ijms21176014] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, which implements a profound metabolic rewiring in order to support a high proliferation rate and to ensure cell survival in its complex microenvironment. Although initial studies considered glycolysis as a crucial metabolic pathway in tumor metabolism reprogramming (i.e., the Warburg effect), recently, the critical role of mitochondria in oncogenesis, tumor progression, and neoplastic dissemination has emerged. In this report, we examined the main mitochondrial metabolic pathways that are altered in cancer, which play key roles in the different stages of tumor progression. Furthermore, we reviewed the function of important molecules inhibiting the main mitochondrial metabolic processes, which have been proven to be promising anticancer candidates in recent years. In particular, inhibitors of oxidative phosphorylation (OXPHOS), heme flux, the tricarboxylic acid cycle (TCA), glutaminolysis, mitochondrial dynamics, and biogenesis are discussed. The examined mitochondrial metabolic network inhibitors have produced interesting results in both preclinical and clinical studies, advancing cancer research and emphasizing that mitochondrial targeting may represent an effective anticancer strategy.
Collapse
|
16
|
Monroy-Cárdenas M, Méndez D, Trostchansky A, Martínez-Cifuentes M, Araya-Maturana R, Fuentes E. Synthesis and Biological Evaluation of Thio-Derivatives of 2-Hydroxy-1,4-Naphthoquinone (Lawsone) as Novel Antiplatelet Agents. Front Chem 2020; 8:533. [PMID: 32850615 PMCID: PMC7417813 DOI: 10.3389/fchem.2020.00533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
We designed and synthesized in water, using conventional heating and microwave irradiation, new thio-derivatives of 2-hydroxy-1,4-naphthoquinone, a naturally occurring pigment known as lawsone or hennotannic acid, thus improving their antiplatelet activity with relevance to their potential future use in thrombus formation treatment. The structure-activity relationship showed that the thiophenyl moiety enhances the antiplatelet activity. Moreover, the position and nature of the substituent at the phenyl ring have a key effect on the observed biological activity. Compound 4 (2-((4-bromophenyl)thio)-3-hydroxynaphthalene-1,4-dione) was the most active derivative, presenting IC50 values for platelet aggregation inhibition of 15.03 ± 1.52 μM for TRAP-6, and 5.58 ± 1.01 μM for collagen. Importantly, no cytotoxicity was observed. Finally, we discussed the structure-activity relationships of these new lawsone thio-derivatives on inhibition of TRAP-6- and collagen-induced platelet aggregation.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Diego Méndez
- Department of Clinical Biochemistry and Immunohaematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Andrés Trostchansky
- Departamento de Bioquimica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maximiliano Martínez-Cifuentes
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Escuela de Tecnología Médica, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
17
|
Vivas-Ruiz DE, Sandoval GA, Gonzalez-Kozlova E, Zarria-Romero J, Lazo F, Rodríguez E, Magalhães HPB, Chávez-Olortegui C, Oliveira LS, Alvarenga VG, Urra FA, Toledo J, Yarlequé A, Eble JA, Sanchez EF. Fibrinogen-clotting enzyme, pictobin, from Bothrops pictus snake venom. Structural and functional characterization. Int J Biol Macromol 2020; 153:779-795. [PMID: 32169454 DOI: 10.1016/j.ijbiomac.2020.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
A thrombin-like enzyme, pictobin, was purified from Bothrops pictus snake venom. It is a 41-kDa monomeric glycoprotein as showed by mass spectrometry and contains approx. 45% carbohydrate by mass which could be removed with N-glycosidase. Pictobin coagulates plasma and fibrinogen, releasing fibrinopeptide A and induces the formation of a friable/porous fibrin network as visualized by SEM. The enzyme promoted platelet aggregation in human PRP and defibrination in mouse model and showed catalytic activity on chromogenic substrates S-2266, S-2366, S-2160 and S-2238. Pictobin interacts with the plasma inhibitor α2-macroglobulin, which blocks its interaction with fibrinogen but not with the small substrate BApNA. Heparin does not affect its enzymatic activity. Pictobin cross reacted with polyvalent bothropic antivenom, and its deglycosylated form reduced its catalytic action and antivenom reaction. In breast and lung cancer cells, pictobin inhibits the fibronectin-stimulated migration. Moreover, it produces strong NADH oxidation, mitochondrial depolarization, ATP decrease and fragmentation of mitochondrial network. These results suggest by first time that a snake venom serinprotease produces mitochondrial dysfunction by affecting mitochondrial dynamics and bioenergetics. Structural model of pictobin reveals a conserved chymotrypsin fold β/β hydrolase. These data indicate that pictobin has therapeutic potential in the treatment of cardiovascular disorders and metastatic disease.
Collapse
Affiliation(s)
- Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru.
| | - Gustavo A Sandoval
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Edgar Gonzalez-Kozlova
- Department of Genetics and Genomic Sciences, Icahn School for Data Science and Genomic Technology, New York, NYC, USA
| | - Jacquelyne Zarria-Romero
- Laboratorio de Reproducción y Biología del Desarrollo, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela ra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Edith Rodríguez
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Henrique P B Magalhães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Carlos Chávez-Olortegui
- Departamento de Bioquímica-Inmunología, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Luciana S Oliveira
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Valeria G Alvarenga
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Félix A Urra
- Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7800003, Chile
| | - Jorge Toledo
- Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile; Facultad de Ciencias de la Salud, Universidad San Sebastián, Lota 2465, Providencia, Santiago 7510157, Chile
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Eladio F Sanchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| |
Collapse
|
18
|
Donoso-Bustamante V, Borrego EA, Schiaffino-Bustamante Y, Gutiérrez DA, Millas-Vargas JP, Fuentes-Retamal S, Correa P, Carrillo I, Aguilera RJ, Miranda D, Chávez-Báez I, Pulgar R, Urra FA, Varela-Ramírez A, Araya-Maturana R. An acylhydroquinone derivative produces OXPHOS uncoupling and sensitization to BH3 mimetic ABT-199 (Venetoclax) in human promyelocytic leukemia cells. Bioorg Chem 2020; 100:103935. [PMID: 32454391 DOI: 10.1016/j.bioorg.2020.103935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial β-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.
Collapse
Affiliation(s)
- Viviana Donoso-Bustamante
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile
| | - Edgar A Borrego
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | | | - Denisse A Gutiérrez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Pablo Correa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ileana Carrillo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renato J Aguilera
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Dante Miranda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ignacio Chávez-Báez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Rodrigo Pulgar
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Armando Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| |
Collapse
|
19
|
Méndez D, Urra FA, Millas-Vargas JP, Alarcón M, Rodríguez-Lavado J, Palomo I, Trostchansky A, Araya-Maturana R, Fuentes E. Synthesis of antiplatelet ortho-carbonyl hydroquinones with differential action on platelet aggregation stimulated by collagen or TRAP-6. Eur J Med Chem 2020; 192:112187. [PMID: 32155530 DOI: 10.1016/j.ejmech.2020.112187] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death in the world. Platelets have a major role in cardiovascular events as they bind to the damaged endothelium activating and forming thrombi. Although some hydroquinone scaffold-containing compounds have known antiplatelet activities, currently there is a lack of evidence on the antiplatelet activity of hydroquinones carrying electron attractor groups. In this work, we evaluate the antiplatelet effect of a series of ortho-carbonyl hydroquinone derivatives on cytotoxicity and function of human platelets, using collagen and thrombin receptor activator peptide 6 (TRAP-6) as agonists. Our structure-activity relationship study shows that gem-diethyl/methyl substitutions and the addition/modifications of the third ring of ortho-carbonyl hydroquinone scaffold influence on the selective index (IC50 TRAP-6/IC50 Collagen) and the inhibitory capacity of platelet aggregation. Compounds 3 and 8 inhibit agonist-induced platelet aggregation in a non-competitive manner with IC50 values of 1.77 ± 2.09 μM (collagen) and 11.88 ± 4.59 μM (TRAP-6), respectively and show no cytotoxicity. Both compounds do not affect intracellular calcium levels and mitochondrial bioenergetics. Consistently, they reduce the expression of P-selectin, activation of glycoprotein IIb/IIIa, and release of adenosine triphosphate and CD63 from platelet. Our findings may be used for further development of new drugs in platelet-related thrombosis diseases.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ramiro Araya-Maturana
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile; Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
20
|
Fuentes E, Araya-Maturana R, Urra FA. Regulation of mitochondrial function as a promising target in platelet activation-related diseases. Free Radic Biol Med 2019; 136:172-182. [PMID: 30625393 DOI: 10.1016/j.freeradbiomed.2019.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Platelets are anucleated cell elements produced by fragmentation of the cytoplasm of megakaryocytes and have a unique metabolic phenotype compared with circulating leukocytes, exhibiting a high coupling efficiency to mitochondrial adenosine triphosphate production with reduced respiratory reserve capacity. Platelet mitochondria are well suited for ex vivo analysis of different diseases. Even some diseases induce mitochondrial changes in platelets without reflecting them in other organs. During platelet activation, an integrated participation of glycolysis and oxidative phosphorylation is mediated by oxidative stress production-dependent signaling. The platelet activation-dependent procoagulant activity mediated by collagen, thrombin and hyperglycemia induce mitochondrial dysfunction to promote thrombosis in oxidative stress-associated pathological conditions. Interestingly, some compounds exhibit a protective action on platelet mitochondrial dysfunction through control of mitochondrial oxidative stress production or inhibition of respiratory complexes. They can be grouped in a) Natural source-derived compounds (e.g. Xanthohumol, Salvianoloc acid A and Sila-amide derivatives of NAC), b) TPP+-linked small molecules (e.g. mitoTEMPO and mitoQuinone) and c) FDA-approved drugs (e.g. metformin and statins), illustrating the wide range of molecular structures capable of effectively interacting with platelet mitochondria. The present review article aims to discuss the mechanisms of mitochondrial dysfunction and their association with platelet activation-related diseases.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
21
|
Martínez-Cifuentes M, Monroy-Cárdenas M, Millas-Vargas JP, Weiss-López BE, Araya-Maturana R. Assessing Parameter Suitability for the Strength Evaluation of Intramolecular Resonance Assisted Hydrogen Bonding in o-Carbonyl Hydroquinones. Molecules 2019; 24:E280. [PMID: 30646498 PMCID: PMC6359028 DOI: 10.3390/molecules24020280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023] Open
Abstract
Intramolecular hydrogen bond (IMHB) interactions have attracted considerable attention due to their central role in molecular structure, chemical reactivity, and interactions of biologically active molecules. Precise correlations of the strength of IMHB's with experimental parameters are a key goal in order to model compounds for drug discovery. In this work, we carry out an experimental (NMR) and theoretical (DFT) study of the IMHB in a series of structurally similar o-carbonyl hydroquinones. Geometrical parameters, as well as Natural Bond Orbital (NBO) and Quantum Theory of Atoms in Molecules (QTAIM) parameters for IMHB were compared with experimental NMR data. Three DFT functionals were employed to calculated theoretical parameters: B3LYP, M06-2X, and ωB97XD. O…H distance is the most suitable geometrical parameter to distinguish among similar IMHBs. Second order stabilization energies ΔEij(2) from NBO analysis and hydrogen bond energy (EHB) obtained from QTAIM analysis also properly distinguishes the order in strength of the studied IMHB. ΔEij(2) from NBO give values for the IMHB below 30 kcal/mol, while EHB from QTAIM analysis give values above 30 kcal/mol. In all cases, the calculated parameters using ωB97XD give the best correlations with experimental ¹H-NMR chemical shifts for the IMHB, with R² values around 0.89. Although the results show that these parameters correctly reflect the strength of the IMHB, when the weakest one is removed from the analysis, arguing experimental considerations, correlations improve significantly to values around 0.95 for R².
Collapse
Affiliation(s)
- Maximiliano Martínez-Cifuentes
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Casilla 9845, Santiago 8940577, Chile.
| | - Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
| | - Boris E Weiss-López
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
22
|
Urra FA, Muñoz F, Córdova-Delgado M, Ramírez MP, Peña-Ahumada B, Rios M, Cruz P, Ahumada-Castro U, Bustos G, Silva-Pavez E, Pulgar R, Morales D, Varela D, Millas-Vargas JP, Retamal E, Ramírez-Rodríguez O, Pessoa-Mahana H, Pavani M, Ferreira J, Cárdenas C, Araya-Maturana R. FR58P1a; a new uncoupler of OXPHOS that inhibits migration in triple-negative breast cancer cells via Sirt1/AMPK/β1-integrin pathway. Sci Rep 2018; 8:13190. [PMID: 30181620 PMCID: PMC6123471 DOI: 10.1038/s41598-018-31367-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Highly malignant triple-negative breast cancer (TNBC) cells rely mostly on glycolysis to maintain cellular homeostasis; however, mitochondria are still required for migration and metastasis. Taking advantage of the metabolic flexibility of TNBC MDA-MB-231 cells to generate subpopulations with glycolytic or oxidative phenotypes, we screened phenolic compounds containing an ortho-carbonyl group with mitochondrial activity and identified a bromoalkyl-ester of hydroquinone named FR58P1a, as a mitochondrial metabolism-affecting compound that uncouples OXPHOS through a protonophoric mechanism. In contrast to well-known protonophore uncoupler FCCP, FR58P1a does not depolarize the plasma membrane and its effect on the mitochondrial membrane potential and bioenergetics is moderate suggesting a mild uncoupling of OXPHOS. FR58P1a activates AMPK in a Sirt1-dependent fashion. Although the activation of Sirt1/AMPK axis by FR58P1a has a cyto-protective role, selectively inhibits fibronectin-dependent adhesion and migration in TNBC cells but not in non-tumoral MCF10A cells by decreasing β1-integrin at the cell surface. Prolonged exposure to FR58P1a triggers a metabolic reprograming in TNBC cells characterized by down-regulation of OXPHOS-related genes that promote cell survival but comprise their ability to migrate. Taken together, our results show that TNBC cell migration is susceptible to mitochondrial alterations induced by small molecules as FR58P1a, which may have therapeutic implications.
Collapse
Affiliation(s)
- Félix A Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Felipe Muñoz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Miguel Córdova-Delgado
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - María Paz Ramírez
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Bárbara Peña-Ahumada
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Melany Rios
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Pablo Cruz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Danna Morales
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Juan Pablo Millas-Vargas
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Evelyn Retamal
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Oney Ramírez-Rodríguez
- Campus Río Simpson, University of Aysén, Obispo Vielmo 62, Coyhaique, 5952122, Aysén, Chile
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Mario Pavani
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile
| | - Jorge Ferreira
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106, United States.
- The Buck Institute for Research on Aging, Novato, CA, 94945, United States.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales and Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, casilla 747, Talca, Chile.
| |
Collapse
|
23
|
Abstract
Recent evidence highlights that the cancer cell energy requirements vary greatly from normal cells and that cancer cells exhibit different metabolic phenotypes with variable participation of both glycolysis and oxidative phosphorylation. NADH-ubiquinone oxidoreductase (Complex I) is the largest complex of the mitochondrial electron transport chain and contributes about 40% of the proton motive force required for mitochondrial ATP synthesis. In addition, Complex I plays an essential role in biosynthesis and redox control during proliferation, resistance to cell death, and metastasis of cancer cells. Although knowledge about the structure and assembly of Complex I is increasing, information about the role of Complex I subunits in tumorigenesis is scarce and contradictory. Several small molecule inhibitors of Complex I have been described as selective anticancer agents; however, pharmacologic and genetic interventions on Complex I have also shown pro-tumorigenic actions, involving different cellular signaling. Here, we discuss the role of Complex I in tumorigenesis, focusing on the specific participation of Complex I subunits in proliferation and metastasis of cancer cells.
Collapse
Affiliation(s)
- Félix A Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe Muñoz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
24
|
Martínez-Cifuentes M, Cardona W, Saitz C, Weiss-López B, Araya-Maturana R. A Study about Regioisomeric Hydroquinones with Multiple Intramolecular Hydrogen Bonding. Molecules 2017; 22:molecules22040593. [PMID: 28387716 PMCID: PMC6153943 DOI: 10.3390/molecules22040593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/19/2022] Open
Abstract
A theoretical exploration about hydrogen bonding in a series of synthetic regioisomeric antitumor tricyclic hydroquinones is presented. The stabilization energy for the intramolecular hydrogen bond (IHB) formation in four structurally different situations were evaluated: (a) IHB between the proton of a phenolic hydroxyl group and an ortho-carbonyl group (forming a six-membered ring); (b) between the oxygen atom of a phenolic hydroxyl group and the proton of an hydroxyalkyl group (seven membered ring); (c) between the proton of a phenolic hydroxyl group with the oxygen atom of the hydroxyl group of a hydroxyalkyl moiety (seven-membered ring); and (d) between the proton of a phenolic hydroxyl group and an oxygen atom directly bonded to the aromatic ring in ortho position (five-membered ring). A conformational analysis for the rotation around the hydroxyalkyl substituent is also performed. It is observed that there is a correspondence between the conformational energies and the IHB. The strongest intramolecular hydrogen bonds are those involving a phenolic proton and a carbonyl oxygen atom, forming a six-membered ring, and the weakest are those involving a phenolic proton with the oxygen atom of the chromenone, forming five-membered rings. Additionally, the synthesis and structural assignment of two pairs of regioisomeric hydroquinones, by 2D-NMR experiments, are reported. These results can be useful in the design of biologically-active molecules.
Collapse
Affiliation(s)
- Maximiliano Martínez-Cifuentes
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Casilla 9845, Santiago 8940577, Chile.
| | - Wilson Cardona
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile.
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Casilla 233, Santiago 8380494, Chile.
| | - Boris Weiss-López
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
| |
Collapse
|
25
|
Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones. Molecules 2017; 22:molecules22040577. [PMID: 28375183 PMCID: PMC6154728 DOI: 10.3390/molecules22040577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p-quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R2 higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values (R2 = 0.957), followed by M06-2x (R2 = 0.947) and PBE0 (R2 = 0.942).
Collapse
|
26
|
Cadavid AP. Aspirin: The Mechanism of Action Revisited in the Context of Pregnancy Complications. Front Immunol 2017; 8:261. [PMID: 28360907 PMCID: PMC5350130 DOI: 10.3389/fimmu.2017.00261] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/23/2017] [Indexed: 01/04/2023] Open
Abstract
Aspirin is one of the most frequently used and cheapest drugs in medicine. It belongs to the non-steroidal anti-inflammatory drugs with a wide range of pharmacological activities, including analgesic, antipyretic, and antiplatelet properties. Currently, it is accepted to prescribe a low dose of aspirin to pregnant women who are at high risk of preeclampsia (PE) because it reduces the onset of this complication. Another pregnancy alteration in which a low dose of aspirin is recommended is the obstetric antiphospholipid syndrome (APS). The most recognized mechanism of action of aspirin is to inhibit the synthesis of prostaglandins but this by itself does not explain the repertoire of anti-inflammatory effects of aspirin. Later, another mechanism was described: the induction of the production of aspirin-triggered lipoxins (ATLs) from arachidonic acid by acetylation of the enzyme cyclooxygenase-2. The availability of a stable analog of ATL has stimulated investigations on the use of this analog and it has been found that, similar to endogenously produced lipoxins, ATL resolves inflammation and acts as antioxidant and immunomodulator. If we consider that in PE and in the obstetric APS, there is an underlying inflammatory process, aspirin might be used based on the induction of ATL. The objective of this review is to revisit the old and new mechanisms of action of aspirin. In particular, it intends to show other potential uses of this drug to prevent certain pregnancy complications in the light of its ability to induce anti-inflammatory and pro-resolving lipid-derived mediators.
Collapse
Affiliation(s)
- Angela P. Cadavid
- Reproduction Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
27
|
Schmeda-Hirschmann G, Gomez CV, Rojas de Arias A, Burgos-Edwards A, Alfonso J, Rolon M, Brusquetti F, Netto F, Urra FA, Cárdenas C. The Paraguayan Rhinella toad venom: Implications in the traditional medicine and proliferation of breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:106-118. [PMID: 28131913 DOI: 10.1016/j.jep.2017.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toads belonging to genus Rhinella are used in Paraguayan traditional medicine to treat cancer and skin infections. AIM OF THE STUDY The objective of the study was to determine the composition of venoms obtained from three different Paraguayan Rhinella species, to establish the constituents of a preparation sold in the capital city of Paraguay to treat cancer as containing the toad as ingredient, to establish the effect of the most active Rhinella schneideri venom on the cell cycle using human breast cancer cells and to assess the antiprotozoal activity of the venoms. METHODS The venom obtained from the toads parotid glands was analyzed by HPLC-MS-MS. The preparation sold in the capital city of Paraguay to treat cancer that is advertised as made using the toad was analyzed by HPLC-MS-MS. The effect of the R. schneideri venom and the preparation was investigated on human breast cancer cells. The antiprotozoal activity was evaluated on Leishmania braziliensis, L. infantum and murine macrophages. RESULTS From the venoms of R. ornata, R. schneideri and R. scitula, some 40 compounds were identified by spectroscopic and spectrometric means. Several minor constituents are reported for the first time. The preparation sold as made from the toad did not contained bufadienolides or compounds that can be associated with the toad but plant compounds, mainly phenolics and flavonoids. The venom showed activity on human breast cancer cells and modified the cell cycle proliferation. The antiprotozoal effect was higher for the R. schneideri venom and can be related to the composition and relative ratio of constituents compared with R. ornata and R. scitula. CONCLUSIONS The preparation sold in the capital city of Paraguay as containing the toad venom, used popularly to treat cancer did not contain the toad venom constituents. Consistent with this, this preparation was inactive on proliferation of human breast cancer cells. In contrast, the toad venoms of Rhinella species altered the cell cycle progression, affecting the proliferation of malignant cells. The findings suggest that care should be taken with the providers of the preparation and that the crude drug present a strong activity towards human breast cancer cell lines. The antiprotozoal effect of the R. schneideri venom was moderate while the venom of R. ornata was devoid of activity and that of R. scitula was active at very high concentration.
Collapse
Affiliation(s)
- Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000 Talca, Chile.
| | - Celeste Vega Gomez
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O` Leary, Barrio La Encarnación, Código Postal: 1255, Asunción, Paraguay
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O` Leary, Barrio La Encarnación, Código Postal: 1255, Asunción, Paraguay
| | - Alberto Burgos-Edwards
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000 Talca, Chile
| | - Jorge Alfonso
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O` Leary, Barrio La Encarnación, Código Postal: 1255, Asunción, Paraguay
| | - Miriam Rolon
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O` Leary, Barrio La Encarnación, Código Postal: 1255, Asunción, Paraguay
| | | | - Flavia Netto
- Instituto de Investigación Biológica del Paraguay, CP 1429 Asunción, Paraguay
| | - Félix A Urra
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Independencia 1027, Casilla 7, Santiago, Chile
| | - César Cárdenas
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Independencia 1027, Casilla 7, Santiago, Chile
| |
Collapse
|
28
|
Alkyl-substituted phenylamino derivatives of 7-nitrobenz-2-oxa-1,3-diazole as uncouplers of oxidative phosphorylation and antibacterial agents: involvement of membrane proteins in the uncoupling action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:377-387. [DOI: 10.1016/j.bbamem.2016.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022]
|
29
|
Schmeda-Hirschmann G, Quispe C, Arana GV, Theoduloz C, Urra FA, Cárdenas C. Antiproliferative activity and chemical composition of the venom from the Amazonian toad Rhinella marina (Anura: Bufonidae). Toxicon 2016; 121:119-129. [DOI: 10.1016/j.toxicon.2016.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/26/2022]
|
30
|
Martínez-Cifuentes M, Clavijo-Allancan G, Zuñiga-Hormazabal P, Aranda B, Barriga A, Weiss-López B, Araya-Maturana R. Protonation Sites, Tandem Mass Spectrometry and Computational Calculations of o-Carbonyl Carbazolequinone Derivatives. Int J Mol Sci 2016; 17:ijms17071071. [PMID: 27399676 PMCID: PMC4964447 DOI: 10.3390/ijms17071071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022] Open
Abstract
A series of a new type of tetracyclic carbazolequinones incorporating a carbonyl group at the ortho position relative to the quinone moiety was synthesized and analyzed by tandem electrospray ionization mass spectrometry (ESI/MS-MS), using Collision-Induced Dissociation (CID) to dissociate the protonated species. Theoretical parameters such as molecular electrostatic potential (MEP), local Fukui functions and local Parr function for electrophilic attack as well as proton affinity (PA) and gas phase basicity (GB), were used to explain the preferred protonation sites. Transition states of some main fragmentation routes were obtained and the energies calculated at density functional theory (DFT) B3LYP level were compared with the obtained by ab initio quadratic configuration interaction with single and double excitation (QCISD). The results are in accordance with the observed distribution of ions. The nature of the substituents in the aromatic ring has a notable impact on the fragmentation routes of the molecules.
Collapse
Affiliation(s)
- Maximiliano Martínez-Cifuentes
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Casilla 9845, Santiago 7800003, Chile.
| | - Graciela Clavijo-Allancan
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Pamela Zuñiga-Hormazabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Braulio Aranda
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Andrés Barriga
- Unidad de Espectrometría de Masas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Casilla 233, Santiago 8380494, Chile.
| | - Boris Weiss-López
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
| |
Collapse
|